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Introduction. Let T be a finite CW complex. We denote by K(T) the Groth-
endieck group of the classes of complex vector bundles over 7. We further write
Z, By for the integers with the discrete topology, the classifying space of the
infinite unitary group respectively. Then the K-theoretic version of the homotopy
classification theorem is given by the statement of the existence of a natural
bijection:

K(T) = [T,By X Z]

where [T, By X Z] denotes the set of homotopy classes of maps of T into By X Z.

The purpose of this paper is to present a scheme-theoretic analogue of the
above classification theorem in topology. Let S be an arbitrary scheme. Let T
be an irreducible regular affine scheme over S. We denote by K°(T) (resp. K(T))
the Grothendieck group of isomorphism classes of locally free Oy-Modules of
finite rank (resp. of isomorphism classes of coherent Oy—-Modules). Let 7: K°%(T)
—> Ko(T") be the homomorphism which sends the class in K°(T) of a locally free
Or-Module to that in Ky(7T). Suppose 7 be an isomorphism. This is the case if T
is Spec A with A a Dedekind domain or if T is a regular noetherian scheme with
an ample invertible O,—-Module ¥ where < is called ample if for any coherent
Or-Module & there exists an epimorphism: O — # ® % for positive inte-
gers p,q. Let &° be the direct sum of countably infinite copies of Os. Recall that
Grass,(¢°) stands for the Grassmannian of degree » which is defined by &° [11].
In analogy with Borel-Serre [ 2], we can define a rational S-homotopy of S-
morphisms. For the precise definition see § 2. We denote by [T, Grass,(£%] the
set of rational S-homotopy classes of S—-morphism: 7" — Grass,(&°). Let [&] be
the class in K°T) of a locally free Op-Module & of rank m. The elements of
the form [&]—m generates a subgroup of K%T). We write it as K(T). Then
our result can be stated as follows.

Theorem. There exists a natural bijection

li_ﬂ)m [T, Grass, (9] =3 K(T).
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Especially we can take Spec Z, Spec A with A a Dedekind domain for S, T

respectively. Then we have the following
Corollary.
The class number of A= Card [T,P(&"]

where P(&° is the projective bundle over Spec Z, defined by & (c. f. [1], L,9,

755
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1. The Grassmannians. Let S be a scheme and & a quasicoherent Og-
Module. Let T be an S-scheme with the structural morphism fr. &> stands for
the inverse image of & by fr and Grass,(&«) for the set of locally free quotients
of &g, with rank # Then the functor: T \——+ Grass,(% ) is represented by
Grass, (), 1. e. the Grassmannian of degree », defined by &. Furthermore there
exists a Module & over Grass,(&) called the fundamental Module over Grass, (&)

in such a way that the functor isomorphism
Homgs(T, Grass,(£)) =5 Grass,(&€a») (1)

is given by the map that sends g ¢ Homs(T,Gras,(&)) to g¥(@).
Let &° be the direct sum Os@Os@®... of countably infinite copies of Os. Let
@ ¢ Grass,((&Da»). Then

0r® ... PO @
N e

i copies

can be considered naturally as an element of Grassy.:(£°r,) where i runs through
1,2,... . Hence we have an inclusion: Grassa(£%ry) C Grassn.:(&°xy). This
inclusion corresponds to a closed immersion fn,n+it Grass,(£°)— Grass, . ;(£°).
In addition (Grass,(£%), fani) (Mi=1,2,...) constitutes a direct system of S-

schemes.

2. Rational S-homotopy. Let 7 be an indeterminate. Let S[Z] be the

spectre of the symmetric Algebra Og[Z] of Os. We write (Z) (resp. (1—2)) for
the Og[Z]-Ideal generated by Z (resp. 1—Z). The corresponding projection

0s[Z] — 05[Z1/(Z) =< Os
(resp. Os[Z] — 05[Z1/(1-Z) == Os)
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induces an S-morphism S — S[Z], denoted by # (resp. %). Let &=1;X# for
t=1,2 where 1; denotes the identity of 7. If we identify T X ¢S with T, then &;
can be viewed as morphisms: T — T[Z]. . ey
Let 77 be an S-scheme. Let fi,f;: T — T’ be S-morphisms. By a rational
S-homotopy from f; to fz we understand an S-morphism 4: T[Z] — T’ such that

fi=ho§; (2)

where i=1,2. Let R{fi,f.} be the relation <there exists a rational S-homotopy
from fi to f>>. Then this relation is reflexive and symmetric. Hence the relation
<there exist an integer #>0 and a sequence (g;)o<i<n» 0f S—morphisms: T — 7"
such that go=f1,g.=/. and R{gy,gis1} for i=0, ..., n—1>is an equivalence
relation (cf. [ 3], §6, Exercise 9). We call the class of f; mod this equivalence
relation the rational S-homotopy class of f;. We denote it by [fils—ra: Or simply
[fil.  fi1is said to be rationally S-homotopic to f, if f; is eqnivalent to f; with

respect to this equivalence relation.

3. K°(T). Let K%T) be the Grothendieck group of isomorphism classes of
locally free Or-Modules of finite type. Recall that there is a homomorphism
called rank,
rk: K(T) — C(T;Z), where C(T;Z) is the abelian group of all continuous maps
of T into Z with the discrete topology. Let us denote the kernel of 7k by K(T).

We write [T, Grass,(£°]s_,.. or simply [T, Grass,(&")] for the set of
rational S-homotopy classes of S-morphisms: T — Grass,(&%). Let us define
maps

tnnris LT, Grass,(£] — [T, Grass,.(&%]
by ¢n,nti([f1) =[fn,nriof] where f is any S-morphism: T — Grass,(£°). Then

([T, Grass,(£%], ¢;, ) is a direct system of sets. We denote by ¢, the canonical
map of [T, Grass,(¢°)] into lz_m) [T, Grass,(£%].

Now this section will be devoted to the definition of a natural surjection ¢:
KT — lz_)m [T, Grass,(£°]. WEe need the following proposition for it.

Proposition 1. Let &y, &; ¢ Grass,(£%zr,). Let f; (resp. f2) be the morphism:
T — Grass,(&") which corresponds to &;(resp. &;) by (1). If &; and &, are
isomorphic, then f; and f, are rationally S-homotopic. '

Proof. Let g, (resp. g») be the projection of £°@ &’ onto the first factor
(resp. the second factor). g¢; give rise to closed immersions Grass,(g;): Grass,
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(£°) — Grass,(&°® % (cf. [11,1,9,7), where i=1, 2. For brevity let us write
g; for Grass,(g;) in what follows. Then the first step of the proof is to show that
g:of; is rationally S-homotopic to @20 fo.

For that let us take an isomorphism 7: &2 ~ &, once and for all. Let g
(resp. g') be the projection of %, onto &, (resp. &2). We write g; instead of
rog'. Then &;=&«/Ker g; where i=1,2. We write U for the S-scheme TxsS[Z]
where Z is an indeterminate. Let fu be the structural morphism of U and p the
projection of U onto the first factor 7. Note that Z, 1—Z can be viewed as ele-
ments of I'(U,O0y). Let us now define a: 0 @&y — P (@) by

a=1-— Z)P*(gl) OfU*<41) + ZP*(gz) OfU*(QZ)-
In fact @ is an epimprphism as easily seen, whence
£ DL o/ Ker a =3 p(@D).

Since p*(&y) is locally free of rank », we have 20y DL/ Ker a e Grass, (&’
@«’). In consequence an S-morphism #: U — Grass,(£°@ &% corresponds
to it by (1). Thus we obtain the commutative diagram:

§i
T T x S[Z]

¥

Grass, (£°@&0).

Grassn (&)
aq;
Equivalently we can say that J is a rational S-homotopy from g.of: to @zofa.
Now let us choose an isomorphsim 7: L Peg® =5 «° once and for all.
(Such an isomorphism certainly exists because &° is the direct sum of countably
infinite copies of Os.) It induces an isomorphism Grass,(m): Grass,(£%) = Grass,
(£°@&®. The second step of the proof is to show that Grass,(7) and q; are
rationally S-homotopic. Let us denote by fz the structural morphism of S-
scheme S[Z]. We define

Wi (@& sy — Ltz
by
W,=Q01—2) f7*a) + Zf (@),
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where i=1,2. It is epic as easily seen. Then Grass,(#';) are the required ratio-
nal S-homotopy from g; to Grass,(x).

From the Second Step it follows that for each ¢ g;of; and Grass,(n)of; are
rationally S-homotopic. Thus Grass,(7)ofi, g:°f1, @.0f> and Grass,(n)of, are mutu-
ally rationally S-homotopic. We can therefore conclude that f; and f, are ration-
ally S-homotopic, since Grass,(n) is an isomorphism. This completes the proof

of the proposition.
From now on we assume that 7 is affine. Let us define the natural surjection

v: R(T) — lim [T, Grass,(£"].
=

Any element v of K(T) can be written in the form [&]—m where m is a positive
integer standing for the class of O;™ and & a locally free Op~Module of rank m.
Since & is projective, there is an Or~Module & such that #@F =% Op" for
some positive integer ». Hence & is isomorphic to some quotient of &%), 1. e. &
e Grass,(&£%zr,). Thus to & there corresponds fz: T — Grass,(£°) by (1). Let
v=[%']—m be another form in which v is expressed. Then &£ @ 0;° =3 &' P O~
for positive integers s,s (cf. [ 4], p.347). Therefore, by Proposition 1, the
S-morphism fm,m+s0fg corresponding to & @075 is rationally S-homotopic to the
One fmm+s0fg corresponding to & @ Or%. Hence ¢,([fg]) = tm ([fe1). In other
words the element ¢,([fz]1) ¢ lz_m) [T, Grass, (£°7] does not depend on the choice

of ways of writing v=[&]—m. So we define

o) = en([feDD.

Remark. Suppose that T is Spec A for a noetherian integral domain A.
Then we can take an Or-Module of rank< N for & in the above where N=dim
Specm A ([ 5], Theorem 1). Hence there exists a natural map gy: R(T) — [T,
Grassy(£°)] such that ¢=tyopy.

4. Proof of the Theorem. Let Ky,(T) be the Grothendieck group of isomo-
rphism classes of coherent Or-Modules. Let & be any locally free Or—Module
of finite type. We denote by ¢ the homomorphism: K’(T) — Ko(T') which sends
the class in K° (T) of & to that in Ky,(T"). Suppose ¢ be an isomorphism.

Proposition 2. Let T’ be an S-scheme. Suppose S-morphisms fi,f.: T — T’
be rationally S-homotopic. Then f; and f. induce the same homomorphihm: K,
(T — K(D.

Proof. We take a rational S-homotopy from f; to f.. Let p be the first
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projection of U=T X sS[Z] as before. Then poé&;=1p (for &;,1r see §2) for f=
1,2. On the other hand p induces an isomorphism: K(T) =3 K,(U) since U is a
vector bundle over T with the structural morphism p ([ 61, Exposé IX, §1,
Proposition 1.6). Hence &; induce the same isomorphism &’ =6&": KU) == K
(T). It follows from (2) that

fif =&7oh’ = &7 ok =1
This completes the proof.

This proposition guarantees the injectivity of ¢. In fact the inverse of ¢ can
be constructed as follows. Let w be an arbitrary element of l_n_?;z [T, Grass,(£%].

Then w can be written as ¢,([f]) where m is a positive integer and f an S-morp-
hism: T — Grass,(¢%). To f there corresponds & ¢ Grassn (&%) by (1).
Suppose w can also be written in the form t,([f']) where f’ is an S-morphism:
T —> Grass, (¢%. Then there exists some positive integer v (=max (m,m'))
such that fn,,of is rationally S-homotopic to Fmrrof'. It follows from Proposition
2 that &,®0, ™ =3 &, @0, "™. We therefore have [g,]—m=[&,]—m in
K,(T). This implies that [&,] —m does not depend on the choice of expressions
w=t,([f]). We can now define the inverse of ¢, denoted ¥, by

Wtzv) =[&;]—m.

5. Dedekind rings. Let A be a Dedekind ring and M an A-module of finite
type. Then there exist a projective A-module of finite type P and a finite number

of maximal ideals in A, say (M;);1,...r,such that
M~ PO A/M;™
i=1

where n,(i=1, ..., ) are positive integers. We moreover know that P is isomo-
rphic to the direct sum of a free A-module and an ideal of A. We denote this
ideal by I. Let T =Spec A as before. We write C(A) for the ideal class group
of A and (M) for the rank of M. Defineé a map 7: K(T) — ZxC(A) by

(I = G (MD, i) + 2 ny cLCMLY)

where cI(I), cl(M;) denote the classes in C(A4) of I, M, respectively. In fact 7 is
an isomorphism ([ 7 ],4.7, Proposition 17), and yoi: K(T) — ZXC(A) is also
an isomorphism (cf. [ 81). Hence we have

RA(T) = Ko(T.
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The isomorphism 7oz induces

K(T) = C(A).

Thus ¢ is bijective. Since dim Spec A=1 on the other hand, we can get the

corollary in the introduction.

1]
£2]
£3]
[4]
£5]
£6]

L71
L8]
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