A HOMOTOPY CLASSIFICATION IN SCHEME THEORY

Toshiyuki MAEBASHI

(Received October 29, 1976)

Introduction. Let T be a finite CW complex. We denote by K(T) the Grothendieck group of the classes of complex vector bundles over T. We further write Z, B_{v} for the integers with the discrete topology, the classifying space of the infinite unitary group respectively. Then the K-theoretic version of the homotopy classification theorem is given by the statement of the existence of a natural bijection:

$$K(T) \cong [T, B_U \times Z]$$

where $[T, B_U \times Z]$ denotes the set of homotopy classes of maps of T into $B_U \times Z$.

The purpose of this paper is to present a scheme-theoretic analogue of the above classification theorem in topology. Let S be an arbitrary scheme. Let Tbe an irreducible regular affine scheme over S. We denote by $K^0(T)$ (resp. $K_0(T)$) the Grothendieck group of isomorphism classes of locally free O_T -Modules of finite rank (resp. of isomorphism classes of coherent O_T -Modules). Let $i: K^0(T)$ $\longrightarrow K_0(T)$ be the homomorphism which sends the class in $K^0(T)$ of a locally free O_T -Module to that in $K_0(T)$. Suppose i be an isomorphism. This is the case if T is Spec A with A a Dedekind domain or if T is a regular noetherian scheme with an ample invertible O_T -Module $\mathscr L$ where $\mathscr L$ is called ample if for any coherent O_T -Module $\mathscr F$ there exists an epimorphism: $O_T^{\ P} \longrightarrow \mathscr F \otimes \mathscr L^{\otimes q}$ for positive integers p,q. Let \mathscr{E}^0 be the direct sum of countably infinite copies of O_S . Recall that $Grass_n(\mathscr{E}^\circ)$ stands for the Grassmannian of degree n which is defined by \mathscr{E}^0 [1]. In analogy with Borel-Serre [2], we can define a rational S-homotopy of Smorphisms. For the precise definition see § 2. We denote by $[T, Grass_n(\mathscr{E}^0)]$ the set of rational S-homotopy classes of S-morphism: $T \longrightarrow Grass_n(\mathscr{E}^0)$. Let $[\mathscr{E}]$ be the class in $K^0(T)$ of a locally free O_T -Module $\mathscr E$ of rank m. The elements of the form $[\mathscr{E}]-m$ generates a subgroup of $K^0(T)$. We write it as $\widetilde{K}(T)$. Then our result can be stated as follows.

Theorem. There exists a natural bijection

$$\lim_{\longrightarrow} [T, Grass_n (\mathscr{E}^0)] \xrightarrow{\widetilde{K}} \widetilde{K}(T).$$

Especially we can take Spec Z, Spec A with A a Dedekind domain for S, T respectively. Then we have the following

Corollary.

The class number of $A = \operatorname{Card} [T, P(\mathscr{C}^0)]$

where $P(\mathscr{E}^0)$ is the projective bundle over Spec Z, defined by \mathscr{E}^0 (c. f. [1], I,9, 7,5).

Finally I would like to thank Professors M. Nishi and T. Oda for their kind advices.

1. The Grassmannians. Let S be a scheme and $\mathscr E$ a quasicoherent O_{S^-} Module. Let T be an S-scheme with the structural morphism f_T . $\mathscr E_{(T)}$ stands for the inverse image of $\mathscr E$ by f_T and $Grass_n(\mathscr E_{(T)})$ for the set of locally free quotients of $\mathscr E_{(T)}$ with rank n. Then the functor: $T \mid \longrightarrow Grass_n(\mathscr E_{(T)})$ is represented by $Grass_n(\mathscr E)$, i. e. the Grassmannian of degree n, defined by $\mathscr E$. Furthermore there exists a Module $\mathscr E$ over $Grass_n(\mathscr E)$ called the fundamental Module over $Grass_n(\mathscr E)$ in such a way that the functor isomorphism

$$Hom_S(T, Grass_n(\mathscr{E})) \cong Grass_n(\mathscr{E}_{(T)})$$
 (1)

is given by the map that sends $g \in Hom_S(T, Gras_n(\mathscr{E}))$ to $g^*(\mathscr{E})$.

Let \mathscr{E}^0 be the direct sum $O_S \oplus O_S \oplus \ldots$ of countably infinite copies of O_S . Let $\mathscr{E} \in Grass_n((\mathscr{E}^0)_{(T)})$. Then

$$O_T \oplus \ldots \oplus O_T \oplus \mathscr{Q}$$
 $i \text{ copies}$

can be considered naturally as an element of $Grass_{n+i}(\mathscr{C}^0_{(T)})$ where i runs through $1,2,\ldots$. Hence we have an inclusion: $Grass_n(\mathscr{C}^0_{(T)}) \subset Grass_{n+i}(\mathscr{C}^0_{(T)})$. This inclusion corresponds to a closed immersion $f_{n,n+i}\colon Grass_n(\mathscr{C}^0) \longrightarrow Grass_{n+i}(\mathscr{C}^0)$. In addition $(Grass_n(\mathscr{C}^0), f_{n,n+i})$ $(n,i=1,2,\ldots)$ constitutes a direct system of S-schemes.

2. Rational S-homotopy. Let Z be an indeterminate. Let S[Z] be the spectre of the symmetric Algebra $O_S[Z]$ of O_S . We write (Z) (resp. (1-Z)) for the $O_S[Z]$ -Ideal generated by Z (resp. 1-Z). The corresponding projection

$$O_S[Z] \longrightarrow O_S[Z]/(Z) \stackrel{\sim}{\Longrightarrow} O_S$$

(resp. $O_S[Z] \longrightarrow O_S[Z]/(1-Z) \stackrel{\sim}{\Longrightarrow} O_S$)

induces an S-morphism $S \longrightarrow S[Z]$, denoted by t_1 (resp. t_2). Let $\xi_i = 1_T \times t_i$ for i=1,2 where 1_T denotes the identity of T. If we identify $T \times_S S$ with T, then ξ_i can be viewed as morphisms: $T \longrightarrow T[Z]$.

Let T' be an S-scheme. Let $f_1, f_2: T \longrightarrow T'$ be S-morphisms. By a rational S-homotopy from f_1 to f_2 we understand an S-morphism $h: T[Z] \longrightarrow T'$ such that

$$f_i = h \circ \xi_i \tag{2}$$

where i=1,2. Let $R\{f_1,f_2\}$ be the relation \ll there exists a rational S-homotopy from f_1 to $f_2\gg$. Then this relation is reflexive and symmetric. Hence the relation \ll there exist an integer n>0 and a sequence $(g_i)_{0\leq i\leq n}$ of S-morphisms: $T\longrightarrow T'$ such that $g_0=f_1,g_n=f_2$ and $R\{g_1,g_{i+1}\}$ for $i=0,\ldots,n-1\gg$ is an equivalence relation (cf. [3], §6, Exercise 9). We call the class of f_1 mod this equivalence relation the rational S-homotopy class of f_1 . We denote it by $[f_1]_{S-rat}$ or simply $[f_1]$. f_1 is said to be rationally S-homotopic to f_2 if f_1 is equivalent to f_2 with respect to this equivalence relation.

3. $K^0(T)$. Let $K^0(T)$ be the Grothendieck group of isomorphism classes of locally free O_T -Modules of finite type. Recall that there is a homomorphism called rank,

 $rk: K^0(T) \longrightarrow C(T; \mathbb{Z})$, where $C(T; \mathbb{Z})$ is the abelian group of all continuous maps of T into \mathbb{Z} with the discrete topology. Let us denote the kernel of rk by $\widetilde{K}(T)$.

We write $[T, \operatorname{Grass}_n(\mathscr{C}^0)]_{S-rat}$ or simply $[T, \operatorname{Grass}_n(\mathscr{C}^0)]$ for the set of rational S-homotopy classes of S-morphisms: $T \longrightarrow \operatorname{Grass}_n(\mathscr{C}^0)$. Let us define maps

$$c_{n,n+i}: [T, \operatorname{Grass}_n(\mathscr{E}^0)] \longrightarrow [T, \operatorname{Grass}_{n+i}(\mathscr{E}^0)]$$

by $\iota_{n,n+i}([f]) = [f_{n,n+i} \circ f]$ where f is any S-morphism: $T \longrightarrow Grass_n(\mathscr{E}^0)$. Then $([T, Grass_n(\mathscr{E}^0)], \iota_{n,n+i})$ is a direct system of sets. We denote by ι_n the canonical map of $[T, Grass_n(\mathscr{E}^0)]$ into $\varinjlim [T, Grass_n(\mathscr{E}^0)]$.

Now this section will be devoted to the definition of a natural surjection φ : $\widetilde{K}(T) \longrightarrow \underset{n}{lim} [T, \operatorname{Grass}_n(\mathscr{E}^0)]$. We need the following proposition for it.

Proposition 1. Let $\mathscr{Q}_1, \mathscr{Q}_2 \in Grass_n(\mathscr{C}^0_{(T)})$. Let f_1 (resp. f_2) be the morphism: $T \longrightarrow Grass_n(\mathscr{C}^0)$ which corresponds to \mathscr{Q}_1 (resp. \mathscr{Q}_2) by (1). If \mathscr{Q}_1 and \mathscr{Q}_2 are isomorphic, then f_1 and f_2 are rationally S-homotopic.

Proof. Let q_1 (resp. q_2) be the projection of $\mathscr{E}^0 \oplus \mathscr{E}^0$ onto the first factor (resp. the second factor). q_i give rise to closed immersions $Grass_n(q_i)$: $Grass_n$

 $(\mathscr{E}^0) \longrightarrow \operatorname{Grass}_n(\mathscr{E}^0 \oplus \mathscr{E}^0)$ (cf. [1], I, 9, 7), where i=1,2. For brevity let us write q_i for $\operatorname{Grass}_n(q_i)$ in what follows. Then the first step of the proof is to show that $q_1 \circ f_1$ is rationally S-homotopic to $q_2 \circ f_2$.

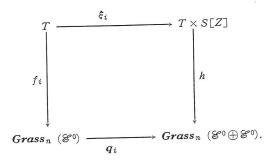
For that let us take an isomorphism $\gamma\colon \mathscr{Q}_2 \xrightarrow{} \mathscr{Q}_1$ once and for all. Let g_1 (resp. g') be the projection of $\mathscr{C}_{(T)}$ onto \mathscr{Q}_1 (resp. \mathscr{Q}_2). We write g_2 instead of $\gamma\circ g'$. Then $\mathscr{Q}_i=\mathscr{C}_{(T)}/Ker\,g_i$ where i=1,2. We write U for the S-scheme $T\times_SS[Z]$ where Z is an indeterminate. Let f_U be the structural morphism of U and p the projection of U onto the first factor T. Note that Z, 1-Z can be viewed as elements of $\Gamma(U,O_U)$. Let us now define $\alpha\colon \mathscr{C}_{(U)}\oplus\mathscr{C}_{(U)}\longrightarrow p^*(\mathscr{Q}_1)$ by

$$\alpha = (1 - Z)p^*(g_1) \circ f_U^*(q_1) + Zp^*(g_2) \circ f_U^*(q_2).$$

In fact α is an epimprphism as easily seen, whence

$$\mathscr{E}^{0}_{(U)} \oplus \mathscr{E}^{0}_{(U)} / Ker \ \alpha \Longrightarrow p^{*}(\mathscr{Q}_{1}).$$

Since $p^*(\mathscr{Q}_1)$ is locally free of rank n, we have $\mathscr{C}_{(U)} \oplus \mathscr{C}_{(U)} / Ker \ \alpha \in Grass_n(\mathscr{C}_{(U)} \oplus \mathscr{C}_{(U)})$. In consequence an S-morphism $h: U \longrightarrow Grass_n(\mathscr{C}^0 \oplus \mathscr{C}^0)$ corresponds to it by (1). Thus we obtain the commutative diagram:



Equivalently we can say that h is a rational S-homotopy from $q_1 \circ f_1$ to $q_2 \circ f_2$.

Now let us choose an isomorphsim $\pi\colon \mathscr{E}^0\oplus\mathscr{E}^0 \hookrightarrow \mathscr{E}^0$ once and for all. (Such an isomorphism certainly exists because \mathscr{E}^0 is the direct sum of countably infinite copies of O_S .) It induces an isomorphism $Grass_n(\pi)\colon Grass_n(\mathscr{E}^0) \hookrightarrow Grass_n(\mathscr{E}^0\oplus\mathscr{E}^0)$. The second step of the proof is to show that $Grass_n(\pi)$ and G_S are rationally G_S -homotopic. Let us denote by G_S the structural morphism of G_S -scheme G_S . We define

$$h'_i \colon (\mathscr{E}^0 \oplus \mathscr{E}^0)_{(S[Z])} \longrightarrow \mathscr{E}^0_{(S[Z])}$$

bу

$$h'_{i} = (1 - Z) f_{Z}^{*}(q_{i}) + Z f_{Z}^{*}(\pi),$$

where i=1,2. It is epic as easily seen. Then $Grass_n(h'_i)$ are the required rational S-homotopy from q_i to $Grass_n(\pi)$.

From the Second Step it follows that for each $i \ q_i \circ f_i$ and $Grass_n(\pi) \circ f_i$ are rationally S-homotopic. Thus $Grass_n(\pi) \circ f_1$, $q_1 \circ f_1$, $q_2 \circ f_2$ and $Grass_n(\pi) \circ f_2$ are mutually rationally S-homotopic. We can therefore conclude that f_1 and f_2 are rationally S-homotopic, since $Grass_n(\pi)$ is an isomorphism. This completes the proof of the proposition.

From now on we assume that T is affine. Let us define the natural surjection

$$\varphi \colon \ \widetilde{K}(T) \longrightarrow \underset{n}{\lim} \ [T, \operatorname{Grass}_n(\mathscr{E}^0)].$$

Any element v of $\widetilde{K}(T)$ can be written in the form $[\mathscr{E}]-m$ where m is a positive integer standing for the class of O_T^m and \mathscr{E} a locally free O_T -Module of rank m. Since \mathscr{E} is projective, there is an O_T -Module \mathscr{F} such that $\mathscr{E} \oplus \mathscr{F} \xrightarrow{} O_T^r$ for some positive integer r. Hence \mathscr{E} is isomorphic to some quotient of $\mathscr{E}^0_{(T)}$, i. e. \mathscr{E} ε $Grass_n(\mathscr{E}^0_{(T)})$. Thus to \mathscr{E} there corresponds $f_{\mathscr{E}}\colon T \longrightarrow Grass_n(\mathscr{E}^0)$ by (1). Let $v = [\mathscr{E}'] - m'$ be another form in which v is expressed. Then $\mathscr{E} \oplus O_T^S \xrightarrow{} \mathscr{E}' \oplus O_T^{S'}$ for positive integers s, s' (cf. [4],

of ways of writing $v = [\mathscr{E}] - m$. So we define

$$\varphi(v) = \iota_m([f_{\mathscr{E}}]).$$

Remark. Suppose that T is Spec A for a noetherian integral domain A. Then we can take an O_T -Module of rank $\leq N$ for $\mathscr E$ in the above where $N=\dim$ Specm A ([5], Theorem 1). Hence there exists a natural map $\varphi_N \colon \widetilde K(T) \longrightarrow [T, \operatorname{Grass}_N(\mathscr E^0)]$ such that $\varphi = \iota_N \circ \varphi_N$.

4. Proof of the Theorem. Let $K_0(T)$ be the Grothendieck group of isomorphism classes of coherent O_T -Modules. Let $\mathscr E$ be any locally free O_T -Module of finite type. We denote by i the homomorphism: $K^0(T) \longrightarrow K_0(T)$ which sends the class in $K^0(T)$ of $\mathscr E$ to that in $K_0(T)$. Suppose i be an isomorphism.

Proposition 2. Let T' be an S-scheme. Suppose S-morphisms $f_1, f_2 \colon T \longrightarrow T'$ be rationally S-homotopic. Then f_1 and f_2 induce the same homomorphism: K_0 $(T') \longrightarrow K_0(T)$.

Proof. We take a rational S-homotopy from f_1 to f_2 . Let p be the first

projection of $U = T \times_S S[Z]$ as before. Then $p \circ \xi_i = 1_T$ (for ξ_i , 1_T see §2) for i = 1, 2. On the other hand p induces an isomorphism: $K_0(T) \xrightarrow{\sim} K_0(U)$ since U is a vector bundle over T with the structural morphism p ([6], Exposé IX, §1, Proposition 1.6). Hence ξ_i induce the same isomorphism $\xi_1' = \xi_2'$: $K_0(U) \xrightarrow{\sim} K_0(T)$. It follows from (2) that

$$f_1' = \xi_1' \circ h' = \xi_2' \circ h' = f_2'.$$

This completes the proof.

This proposition guarantees the injectivity of φ . In fact the inverse of φ can be constructed as follows. Let w be an arbitrary element of $\lim_{n \to \infty} [T, \operatorname{Grass}_n(\mathscr{E}^0)]$.

Then w can be written as $\iota_m([f])$ where m is a positive integer and f an S-morphism: $T \longrightarrow Grass_m(\mathscr{E}^0)$. To f there corresponds $\mathscr{E}_f \in Grass_m(\mathscr{E}^0)$ by (1). Suppose w can also be written in the form $\iota_{m'}([f'])$ where f' is an S-morphism: $T \longrightarrow Grass_{m'}(\mathscr{E}^0)$. Then there exists some positive integer $r \in max(m,m')$ such that $f_{m,r} \circ f$ is rationally S-homotopic to $f_{m',r} \circ f'$. It follows from Proposition 2 that $\mathscr{E}_f \oplus O_T^{r-m} \longrightarrow \mathscr{E}_{f'} \oplus O_T^{r-m'}$. We therefore have $[\mathscr{E}_f] - m = [\mathscr{E}_{f'}] - m'$ in $K_0(T)$. This implies that $[\mathscr{E}_f] - m$ does not depend on the choice of expressions $w = \iota_m([f])$. We can now define the inverse of φ , denoted Ψ , by

$$\Psi(w) = [\mathscr{E}_f] - m.$$

5. Dedekind rings. Let A be a Dedekind ring and M an A-module of finite type. Then there exist a projective A-module of finite type P and a finite number of maximal ideals in A, say $(M_i)_{i=1}, \dots, r$, such that

$$M \cong P \oplus \sum_{i=1}^r A/M_i^{n_i}$$

where $n_i(i=1,\ldots,r)$ are positive integers. We moreover know that P is isomorphic to the direct sum of a free A-module and an ideal of A. We denote this ideal by I. Let $T=\operatorname{Spec} A$ as before. We write C(A) for the ideal class group of A and r(M) for the rank of M. Define a map $\gamma\colon K_0(T)\longrightarrow Z\times C(A)$ by

$$\gamma(\lceil \tilde{M} \rceil) = (r(M), cl(I) + \sum_{i=1}^{r} n_i \ cl(M_i))$$

where cl(I), $cl(M_i)$ denote the classes in C(A) of I, M_i respectively. In fact γ is an isomorphism ([7],4.7, Proposition 17), and $\gamma \circ i \colon K^0(T) \longrightarrow \mathbb{Z} \times C(A)$ is also an isomorphism (cf. [8]). Hence we have

$$K^0(T) \stackrel{i}{\simeq} K_0(T).$$

The isomorphism $\gamma \circ i$ induces

$$\tilde{K}(T) \cong C(A)$$
.

Thus φ is bijective. Since dim Spec A=1 on the other hand, we can get the corollary in the introduction.

PEFERENCES

- [1] A. Grothendieck and J. Dieudonné, Eléments de Géometrie Algébrique, Springer, Berlin-Heidelberg-New York, 1971.
- [2] A. Borel and J-P. Serre, Le théorème de Riemann-Roch, Bull. Soc. Math. France, 86 (1958), 97-136.
- [3] N. Bourbaki, Théorie des ensembles, Hermann, Paris, 1970.
- [4] H. Bass, Algebraic K-theory, W. A. Benjamin Inc., New Nork, 1968.
- [5] J-P. Serre, Modules projectifs et espaces fibrés à fibre vectorielle, Sém. Dubreil No. 23(1957-58).
- [6] SGA 6, Lecture Notes in Mathematics 225, Springer, Berlin-Heidelberg-New York,
- [7] N. Bourbaki, Algèbre commutative, Chap. 7, Hermann, Paris, 1965.
- [8] J. Milnor, Introduction to algebraic K-theory, Princeton University Press, Princeton, 1971.