ON THE RANK OF A CERTAIN CURVATURE TENSOR OF A SASAKIAN MANIFOLD

Toshio TAKAHASHI

(Received November 29, 1976)

- 1. The Riemannian curvature tensor R of a Riemannian manifold (M,g) is regarded as a self adjoint operator $R: \wedge^2 M_p \longrightarrow \wedge^2 M_p$ for each $p \in M$. C. Udriste [5] proved that if (M,g) is a Riemannian locally symmetric space of dimension n and if the curvature tensor R has the maximal rank n(n-1)/2, then (M,g) is of constant curvature. In the case of a Kählerian manifold, K. Satō [3] proved that if (M,J,g) is a Hermitian locally symmetric space of dimension 2n and if the Riemannian curvature tensor R has the maximal rank n^2 , then (M,J,g) is a space of constant holomorphic sectional curvature. In this note, we consider the case of a Sasakian manifold.
- 2. Let M be a (2n+1)-dimensional Sasakian manifold with the structure tensors ϕ, ξ, η and g:

(1)
$$\begin{cases} \phi^2 X = -X + \eta(X)\xi \\ \eta(\xi) = 1 \\ g(\phi X, \phi Y) = g(X, Y) - \eta(X) \eta(Y) \\ (\nabla_x \phi) Y = \eta(Y) X - g(X, Y)\xi, \end{cases}$$

where ∇ is the Riemannian connection for g and X and Y are tangent vectors on M. Let U be a small open neighborhood of an arbitrary point \dot{x} of M such that the induced Sasakian structure on U, denoted by the same letters, is regular. Let $I\!\!I$: $U \longrightarrow \bar{U} = U/\bar{\xi}$ be a local fibering, and let (J,\bar{g}) be the induced Kählerian structure on \bar{U} . Let R and \bar{R} be the curvature tensors constructed by g and \bar{g} , respectively. For a vector field \bar{X} on \bar{U} , we denote its horizonal lift (with respect to the connection form η) by \bar{X}^* . Then we have, for any vector fields \bar{X} , \bar{Y} and \bar{Z} on \bar{U} ,

$$(2) \qquad (\bar{\nabla}_{\bar{X}}\bar{Y})^* = \nabla_{\bar{X}}*\bar{Y}^* + d\eta(\bar{X}^*, \bar{Y}^*)\xi,$$

(3)
$$(\bar{R}(\bar{X}, \bar{Y})\bar{Z})^* = R(\bar{X}^*, \bar{Y}^*)\bar{Z}^* + g(\phi \bar{Y}^*, \bar{Z}^*)\phi \bar{X}^*$$
$$-g(\phi \bar{X}^*, \bar{Z}^*)\phi \bar{Y}^* - 2g(\phi \bar{X}^*, \bar{Y}^*)\phi \bar{Z}^*,$$

where \overline{V} is the Riemannian connection for \overline{g} (cf. Ogiue [2]). Making use of

these formulas, we get

$$(4) \qquad ((\bar{\nabla}_{\bar{V}}\bar{R})(\bar{X},\bar{Y})\bar{Z})^* = -\phi^2[(\bar{\nabla}_{\bar{V}}*R)(\bar{X}^*,\bar{Y})\bar{Z}^*]$$

for any vector fields $\bar{X}, \bar{Y}, \bar{Z}$ and \bar{V} on \bar{U} (Takahashi [4]).

A Sasakian manifold is said to be a locally ϕ -symmetric space if

(5)
$$\phi^2[\nabla_V R)(X,Y)Z] = 0$$

holds for any horizontal vectors X, Y, Z and V, where a horizontal vector means that it is horizontal with respect to the connection form η of the local fibering; namely, a horizontal vector is nothing but a vector which is orthogonal to ξ . By the definition of a locally ϕ -symmetric space and (4), we get

LEMMA 1 (Takahashi [4]). A Sasakian manifold is locally ϕ -symmetric if and only if each Kählerian manifold, which is a base space of a local fibering, is a Hermitian locally symmetric space.

Let r be an arbitrary fixed real number, and let A be a tensor field of type (1,2) defined by

(6)
$$A(X)Y = d\eta(X,Y)\xi + r\eta(X)\phi Y - \eta(Y)\phi X.$$

The *M*-connection $\tilde{\nabla}$ is by definition

$$(7) \tilde{\nabla}_{r}Y = \nabla_{r}Y + A(X)Y.$$

We see that the tensor fields ϕ , ξ , η , g and A are parallel with respect to the M-connection \tilde{V} (Kato-Motomiya [1]). Let \tilde{R} be the curvature tensor of \tilde{V} . Then we get

(8)
$$\tilde{R}(X,Y)Z = R(X,Y)Z + B(X,Y)Z,$$

where .

(9)
$$B(X,Y)Z = \eta(Z) \{ \eta(X)Y - \eta(Y)X \}$$
$$+ g(\phi Y, Z)\phi X - g(\phi X, Z)\phi Y + 2rg(\phi X, Y)\phi Z$$
$$+ \{ g(X,Z) \eta(Y) - g(Y,Z) \eta(X) \} \xi.$$

Now, let \bar{X} and \bar{Y} be vector fields on \bar{U} . Then, taking account of (2) and (6), we get

$$(10) \qquad (\overline{\nabla}_{\bar{X}}\overline{Y})^* = \widetilde{\nabla}_{\bar{X}}*\overline{Y}^*.$$

Making use of (10), $[\bar{X}, \bar{Y}]^* = [\bar{X}^*, \bar{Y}^*] - \eta[\bar{X}^*, \bar{Y}^*] \xi$ and $\nabla_{\xi} \bar{X}^* = \nabla_{\bar{X}} * \xi = \phi \bar{X}^*$, we get

(11)
$$(\bar{R}(\bar{X}, \bar{Y})\bar{Z})^* = \tilde{R}(\bar{X}^*, \bar{Y}^*)\bar{Z}^* + (1+r)\eta([\bar{X}^*, \bar{Y}^*])\phi\bar{Z}^*.$$

Hence, if we consider the M-connection $\tilde{\nabla}$ for r=-1, we see that, for any tangent vectors \bar{X} , \bar{Y} and \bar{Z} at $H(x)\in\bar{U}$,

(12)
$$(\bar{R}(\bar{X},\bar{Y})\bar{Z})^* = \tilde{R}(\bar{X}^*,\bar{Y}^*)\bar{Z}^*$$

holds good. On the other hand, since ξ and g are parallel with respect to the M-connection $\tilde{\nabla}$, we see that $\tilde{R}(\xi,X)=0$ holds good for any tangent vector X on U. Thus we get the following lemma:

LEMMA 2 The rank of the curvature tensors $ar{R}$ and \widetilde{R} are the same.

We know the following:

LEMMA 3 (Ogiue [2]). A Sasakian manifold is of constant ϕ -holomorphic sectional curvature k if and only if each Kählerian manifold, which is a base space of a local fibering, is of constant holomorphic sectional curvature k+3.

LEMMA 4 (K. Satō [3]). Let M be a Hermitian locally symmetric space of dimension 2n. Then the Riemannian curvature tensor of M has the maximal rank n^2 if and only if M is of constant holomorphic sectional curvature $k \neq 0$.

Combining Lemmas 1,2,3 and 4, we get the following:

THEOREM. Let M be a Sasakian locally ϕ -symmetric space of dimension 2n+1. Then the curvature tensor \tilde{R} for r=-1 has the maximal rank n^2 if and only if M is of constant ϕ -holomorphic sectional curvature $k\neq -3$.

If we define a ϕ -holomorphic M-sectional curvature M(X) by

(13)
$$M(X) = g(\tilde{R}(X, \phi X) \phi X, X)$$

for a unit horizontal vector X, the above Theorem is equivalent the following:

THEOREM'. Let M be a Sasakian locally ϕ -symmetric space of dimension 2n+1. Then the curvature tensor \tilde{R} for r=-1 has the maximal rank n^2 if and only if M is of constant ϕ -holomorphic M-section curvature $m \neq 0$.

PROOF. Taking account of (8) and (9), we see that M is of constant ϕ -holomorphic sectional curvature k if and only if M is of constant ϕ -holomorphic M-sectional curvature k+3. Hence we get the conclusion.

References

[1] T. Kato and K. Motomiya, A study on certain homogeneous spaces, Tôhoku Math. J.

21(1969),1-20.

- [2] K. Ogiue, On fiberings of almost contact manifolds, Kōdai Math. Sem. Rep. 17 (1965), 53-62.
- [3] K. Satō, On the Riemannian curvature tensor in a Kaehler manifold, to appear.
- $[4\,]$ T. Takahashi, Sasakian ϕ -symmetric spaces, to appear in Tôhoku Math. J.
- [5] C. Udriste, On the Riemannian curvature tensor, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S.) 16(64) (1972),471-476.

Department of Mathematice Faculty of Science Kumamoto University