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1. Introduction. In this paper we present a central problem and partial
solution for the local analysis of an analytic H-space analogous to the local
analysis of a Lie group by the Campbell-Hausdorff theorem. Thus (M, m) is an
analytic H-space if M is an analytic manifold and m: MXM— M is an analytic
function so that there exists e€ M with m(e, x)=m(x, &)=z for all x€M; [8].
Thus following Lie group theory we first consider the analysis of (M, m) near e
by using a local H-space. A local analytic H-space is a triple (M, E, m) where M
is an analytic manifold, E is an open set containing the point ¢, and m: EX E—>M
is an analytic function satisfying m(e, x) =m(x, &) = x for all x € E. In this paper all
(local) H-spaces are assumed to be analytic. For the analysis near ¢ of (M, E,m)
choose a coordinate function f with domain a neighborhood of e so that f(e)=0.
There is a neighborhood D of 0 in R” so that  is represented in terms of f by
Fm(x, )=V (f(x), f(») where V:DXD—R" is analytic. Thus (R", D, V) is a
local H-space locally isomorphic with (M, E, m) at e. The function V has a Taylor’s
series representation at (0,0) €D as
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where V=1%o, 0) is the £th derivative of V at (0,0); see [3,4]. The derivative
V*is a symmetric A-linear function on (R"*XR™" to R™ and it was shown in [4]
that V(0,0)=0, V'(x, y)=x+y and V¥, y)*=a(x, y) is bilinear on R". Thus, an
algebra (R", +,a) can be associated with the local H-space (M, E, m) relative to
the coordinate function f. In the case of a Lie group G, f can be chosen to be a
canonical coordinate and the algebra (R",+, @) is the Lie algebra associated with
G. From the Campbell- Hausdorff theorem for a Lie group [6], each higher
derivative V*(x, y)k is a specific homogeneous polynomial of degree % given in
terms of the algebra determined by V?(x, ). Thus the derivatives V' and V2
determine the higher derivatives V* and consequently determine V. This gives
rise to the following general problem of giving a local classification of H-spaces.
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MAIN PROBLEM. What conditions on the local H-space (M, E, m) and the
coordinate function f imply there exists an integer N so that the terms Vi(x, p*
for k<N determine the terms V"(x, y)" for #>> N and consequently determine V.
By ‘““determine’”’ we mean that for every x, yER", V"(x,y" for n>> N is in the
subsystem of the algebraic structure (R™; VY, V% ..., V") generated by x and y.

2. Partial Solution. We consider the above problem for power—associative
analytic H-spaces with N=2. Thus suppose (M,_YE, m) is a local analytic H-space
and x is in E. Let x°=e and if # is a positive integer for which x"1is in E, let
2"=m(x, x*). Then (M, E, m) is power-associative in case ™= m(x", x™)
whenever £" and ™ is in E and x"*™ exists. Examples arise from Lie groups and
the multiplicative structure of alternative algebras e.g. the 7-sphere S’ obtained
from the Cayley numbers of norm 1. Analogous to canonical coordinates for Lie

groups we have the following results with the proof appearing in [2].

THEOREM 1. Let (M, E,m) bz a local analytic H—space.

(i) Let f be a coordinate function at e which induces the local H-space (R",
D,V) as above. If the derivatives V"(sx,tx)"=0 for k=2, s, t€R and x €ER", then
(M, E, m) is power—associative and V (sx, tx)=(s+t)x.

(ii) Comnversely, if (M, E,m) is power associative, then there exists a coordinate
Fumnction f at e which induces the local H-space (R*,D,V) satisfying V(0,0)=0 and
V¥Csx, tx) =0 for k=>2, s, tCR and x € R". In this case V (sz,tx)=(s+Dx and the
associated algebra (R", + ,a) is anti~commutative (where (X, V)=V¥X, V).

We apply these results to the construction of power-associative local analytic
H-spaces from power-associative algebras in a manner analogous to the construction
of the general linear group GL(m, R) of non-singular m X matrices from the
algebra M, of all m X m matrices. Thus let (4, +, ») ke an n-dimensional power~
associative algebra over the real field R which has a two-sided multiplicative
identity element 1. With A as the underlying manifold, the local analytic H-space
(A, A, m) is power—associative; where m(x, y)=x+yin A; we use - to denote .
Hence we may choose a canonical coordinate function f as in Theorem 1 for (A4,
A, ). We show that f is the local inverse function of the exponential function, E,

computed in A by E(x)=>) 1/k! x* as for GL(n, R). Consequently the equation
k=0
fm(x, )=V (f(x), f(y) of section 1 can be put in more familiar form

Ex)-E(N=EWV (x, )

—
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to compute the Taylor’s series for V. We call V the canonical coordinate repre-
sentation for .

In this case we obtain V*(x, y)*=xy—yx=[x, y] the “commutator function”
in (4, +, ).

An algebra (4, +, ) is said to be alternative provided it satisfies the identities
@, x, ) =(y, x, x) =0 where (x, y, 2) =(xy)z—x (yz) is the “associator function”.
From [7] an alternative algebra is power-associative and the subalgebra, A(x,y),
of A generated by x,y and 1 is associative. Using this the following is proved in

[21.

THEOREM 2. If (A, +,-) is an alternative algebra and V is the canomical
coordinate representation for - constructed above, then V? determines V in the sense
that V*, for £>2, is the specific homogeneous polynomial in the V* multiplication
on A given by the CampbelZ~Haz¢sd07ﬁ formula.

Let A™ denote the algebra with vector space A and multiplication [x, y]=717?
(x, y)°. With A an alternative algebra, A~ is a Malcev algebra [5,6]. If A is
associative, then A~ is a Lie algebra and if A is the nonassociative algebra obtained
from the Cayley numbers, then A~ is not Lie and is discussed in [5]. In the latter
case the one-dimensional subspace R1 is the center of A~ and sr=A"/R1 is a
simple 7-dimensional Malcev algebra which can be regarded as the ‘‘tangent
algebra” to the H-space S”. The algebra . can be used to analyze S7 in a

manner analogous to the use of a Lie algebra in the analysis of a Lie group.

3. The converse. We now consider the converse of Theorem 2 where we
assume V?* determines the higher derivatives V* for k>2 and show that with mild
restrictions the underlying power-associative algebra (A4, +,-) is alternative.
Thus since V?(x,3)*=1[x,y] we assume V3(x,y)?® is a homogeneous polynomial in
V?(x,9)°; that is, we assume the condition

H: There are real numbers «, b such that
V3(x,9)°=3alx, [x, 51,1+ 360y, [9,x],]
for all z,y in (A4, +, ).

Since undetermined numbers «, b enter into the identities for A, we take up
the slack by considering quasi-equivalent algebras.

DEFINITION. Let A be an algebra and let #,v be numbers so that #-+p=1
and #z—»7#0. Let A® denote the algebra with vector space A and multiplication
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xoy=uxy+uyx. A is quasi-equivalent to an algebra B in case there are numbers

u,v as above so that A°=B as algebras.

THEOREM 3. Let (A, +,-) be a power-associative algebra with 1 and let (A4,
A, ) be the corresponding local analytic H-space. Let f be the canonical coordinate
system which represents (A,A,-) by (R",D,V) as before where V satisfies condition
H. Then,

(i) (A, +,+) or its complexification is quasi-equivalent to an algebra B sati-
sfying (y,x,x)=0 and (x, %, y) =2[x, [x,y]] for some complex number A; [11.

() If the power-associative algebra (A, +,*) contains an idempotent e=¢’
which is not in the center of (A, +,+), then (A, +, ) or its complexification s
quasi-equivalent to an alternative algebra.

(i) If the algebra (A, +,<) in (i) or its complexification is a semi-simple
power—associative algebra, then (A, +, 2 or its complexification is quasi—equivalent

to an alternative algebra.

Thus, in this last two cases we see that when a power-associative algebra (4,
+,+) induces a local H-space and the canonical coordinate representation V of
the multiplication is determined by V' and V2, then (A4, +,-) is essentially an

alternative algebra.

4. Homomorphisms of local H-spaces. The analytic homomorphisms of local
analytic H-spaces are studied using canonical coordinates with results similar to

those of Lie groups.

THEOREM 4. Let (M, E,m) be a power—associative local analytic H-space.

(1) If his a continuous homomorphism of (M, E, m) which is differentiable at
e, then h is analytic at e.

(i) Let f be the canonical coordinate Function which represents (M, E, m) as
(R™,D,V) and let h be an analytic homomorphism of (M, E, m) into itself. Then h
can be represented near e by h=f"" oT of where T R"— R" is linear and satisfies
TV e, =V*(Tx, Ty)" for k is a positive integer and x, yER". Conversely, any
linear map T satisfying these equations induces an analytic homomorphism of (M,
E,m) into itself.

Thus these results give a solution to the Main Problem for N=2. Now, what

algebraic structures solve this problem for N>37?
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