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Introduction

Here we refer to the Theorem 2D of Fong [7] as the Second reduction
Theorem (while the First reduction Theorem means the Theorem 2B of the same
paper). We begin with a brief outline of the character correspondences given in
that Theorem.

Let G be a finite group and H a normal p'-subgroup of G. Let T be an
irreducible complex representation of G and X an irreducible component of Ta.
Assume that X is G-stable. Then as is well known, T is the tensor product of
two projective representations; T=T®X, where 7 is a projective representation of
G=G/H and X is a projective representation of G such that Xy =X (Clifford [4]).

Let 2 be an algebraic number field containing the |G|-th roots of unity.
By Reynolds [13], we may assume that T and X are written in 2 and that the
2-cocycle, say «, of G arising from the projective representation T takes e-th
roots of unity as values, where ¢ is the order of « (computed in the field of
complex numbers). Let X and X be p-modular representations induced by X and X
respectively.

Using «, we construct a central extension

1—Z—G—G—1

, where Z is a cyclic group of order e.

Then 7 is lifted to a representation of é We proceed on fixed coset representa-
tives of Z in G. Since p+|H|, the induced modular representation X is irreducible.
If M is an irreducible modular constituent of 7', then My contains X as a component.
Since X is an irreducible projective representation of G such that ¥;=2X, we have
M=M®ZX for some projective representation M of G, which has 2-cocycle a.

Furthermore, from this and that e is prime to p (Fong [7] pp. 274), it follows
that if T and T belong to the same p-block of G, then they determine the same
2-cocycle a. In particular, 7' is lifted to a representation of é

From the aboves and from that (without restrictions on the characteristic of 2

and the order of H)
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) T—T is a 1-1 correspondence between Irr (2G|X) and Irr (Qé)m, where
the latter is a set of the (non-equivalent) irreducible representations of G which have
2-cocycle o when regarded as projective representations of G.

, we may now conclude that with respect to the correspondences T<«T and
M<—>M, the decomposition numbers are same; dry=d7 s Incidently, it follows
that they occur between the p-block of G and that of G to which T and 7 belong
respectively.

The above (%) was obtained by Clifford [4]. Since then, several authors has
obtained it in their study of endomorphism rings of induced G-modules. On the
other hand, Dade has shown it in a most native way using the language of Clifford
systems (Dade [6] Prop. 8.10).

The aim of this parer is to interpret the Second reduction Theorem from the
Dade’s theory of Clifford systems. It will turn out that the correspondences given
above are induced from a certain block ideal isomorphism over a local ring.
-Though the theory of Clifford systems is considerably deep, we need only an
introductory part of it. So in the first section, we shall summarize necessary
results with proofs.

In the final section, we shall show a result which will refine Satz 7 of Huppert
[10] as well as Theorem 2.1 of Hamernik and Michler [9].

Recently, CIiff [3] has extended the above () to a correspondence between
indecomposable (modular) representations. We shall refer to his result for the
completeness.

1. Basic materials of this section will be found in Dade [6]. Let G ke a finite
group. Let o be a local domain with quotient field £ and residue field 2 We

consider a graded Clifford system %° {%]|g€ G} over n. Hence it holds that

(1) A=) U

£c @G

(2) A We=Uy, forall g, hEG
(3) 1€

Here we assume that S is free of finite rank over o for all g€G. Let @ and

@} be the centralizers of 9 in U° and in U} respectively. Then =@ G9.
geq

Let ¥=2®Y" and A=~®YU’. Then both U, {A,=2R%U|g€G) and A (A, =
EQUY| g€ G} are graded Clifford systems over 2 and % respectively.

In case the that o is a field, the following result has been proved by Dade.
Also, the first statement below is classical.
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THEOREM 1. Assume ] is central separable over v. Then we have

(1) "R — A°
W W
x®y — =xy, as v-algebras, under which €3 QU] is mapped onto U

(2) G§Y is rank one over o and €% C)=C%, for all g, h€G

(3) 2RC°=E=Cy() and FRE=E=CyAL).

PROOF. The first statement is clear from Theorem 3.1 and Theorem 3.3 of
Auslander and Goldman [2]. Clearly we have €% ) C €%, On the other hand,
from A% A% =A%, we have €% C RUA =%, ®UA°, whence we get €% €f=C%, since A is
free over 0. Since @!=p by the assumption, we get the first half of (2) by the
same method as in the proof of Lemma 14.2 of Dade [6]. Since 2} is projective
over its enveloping algebra, say 4° we have a natural isomorphism :2®G’=£®
Hom 5o, A =Homz @, %) =€, where 4=%,®4°. This completes the proof.

Now, let A be a normal subgroup of G and X € Irr (2H). We assume that 2
is a splitting field for A and X is G-stable. Then 9, =Q2H/(0: X) is a central
separable algebra over £, being isomorphic to the full matrix algebra M (n, 2),
n=dim,X. From the assumption, we have g(0: X)g '=(0: X) for all g€G. We
form a 2-algebra A=2G/(0: X)R2G and let UAz;=(RHg+ (0: X) 26)/(0: X) £G for
g=5¢G=G/H. Then ¥, {UAz|F€G) is a graded Clifford system over 2. We have
A=ER®?U; by Theorem 1, where €=Cy () as above. We choose a 2-basis {2z}zce
such that 2; €€, and 2;,=1. Then we have

Aia=a(g, h) iz for some a(g, k) € 2 =02—{0).

Hence « is a 2-cocycle of G. Let g’ be the image of g€ G by the natural map
2G—A. Then there is a unique element 7, of 2, such that g'=21;®n,, so that we
have n,7,=a(g, ) "'ng, for all g, h€G. In particular X affords a projective repre-
sentation of G with a 2-cocyble B such that B(g, A)=a(g, k)™ for all g, h€G.
Thus we get the following well-known results.

COROLLARY 1. There is a 1-1 correspondence

Irr (2G| X) «—— Irr(©)

M <~— M

such that M=M®X as A =CER9A, -modules.

PROOF. Clear since ; is isomorphic to M (#n, 2).
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COROLLARY 2. Let us denote by the same symbol X the representation afforded
by the QH-module X. Let T be an irreducible representation of G whose restriction
to H contains X as a component.

Then T is the tensor product of two projective repersentations; T=TQX, where
T is a projective representation of G with a as its 2-cocycle and X is a projective
representation of G such that X ;=X.

COROLLARY 3. Let a be as above. Then there is a simple QG-module M such
that My =X if and only if ais cohomologous to the identity in H*(G, 2%).

PROOF. “‘if part” is clear from Corollary 1 and that G=0G. Suppose there
is a simple 2G-module M such that My=X, then we have dim, M=1. In other
words, the twisted group ring € has a one dimensional representation u: €— .0,
whence it follows that a(g, k) = x(&) (k) 2(h)™'~1, where u(@) =u(Ap).

COROLLARY 4. Assume that there is a simple 2G-module X such that Xy=X.
Then there is a 1-1 correspondence
Iry (2G| X) «—— Irr (2G)

W w

M —> M
such that M=MQRX as 9G-modules.

2. In what follows, we shall use the following notation; p is a fixed prime
number. @ is a Sylow p-subgroup of G. 2 is an algebraic number field containing
the |G|-th roots of unity. Let p be a prime divisor of P in 2 with o the ring of
p-integers and % the residue field. If M is an indecomposable 2G-module, then we
denote by vx;(M) a vertex of M.

In this section we assume that

(1) G>H, pt|H|

(2) XcIrr(2H) and I(X) =G, where I(X) denotes the inertial group of X

in G.

We apply arguments in the preceding section. Let e be the order of the 2-
cohomology class of . We know that e is prime to p (and divides [G: H], see
Fong [71). Also by the well-known argument due to Schur (see Curtis and Reiner
[5] § 53), there is a 2-cocycle & equivalent to «, such that

(1) @G nN'=1and & @ D=d A, k) =1 for all g, heG.

(2) & (g =1, for all g hE Q.

Considering « as a 2-cocycle of G, we construct a central extension

. S
1—Z—GC—G—1
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, where Z is a cyclic group of order e.

We see easily

(3) there exisis H G such that EféH and HNZ=1.

(4) Q may be identified with a Sylow p-subgroup of G.

Since £ is also a splitting field for G (Reynolds [13]), we have

(5) there is simple QG-module X such that Xa=X, X being regarded as B-

module through f.

Let X°(X° resp.) be an oH-lattice (0G-lattice resp.) such that X=0QRX" (X=
2®X° resp.). Since pT|H|, X° is uniquely determined up to pH-isomorphisms and
we have Homg(X% X% =o. Furthermore, (0: X% is a two sided (direct) component
of 0H and WW=0pH/(0: X° is central separable over o, being isomorphic to the full
matrix algebra M (#, 0), n=rank of X° over 0. Hence it follows that A =0G/0: X%

oG is a two sided component of oG and is a direct sum of blocks of 0G; A=A 1271%1

As in the field case, %°, {3 |g€®=G/H) is a graded Clifford system over o,
where %% = (0Hg+ (0: X006)/(0: X)0oG, for g€G. By Theorem 1, we have '=
E°®U.. Moreover from Corollary 3 and (5), we conclude that E=2®EC" is isomo-

rphic to the group ring 2®, whence we get €°=o®.

LEMMA 1. Let R and & be v-orders. Let X be an S-lattice such that Homeg
(X,X)=0. Then, if Y and Y' are R-lattices, the map ¢— ¢&®1: Homy (¥, Y) —
Homegg (Y ®X, Y'®X) is an v-isomorphism.

PROOF. See the proof of Lemma (51.2) [5].

We remark that {98y, ---,8,} is the set of blocks of oG which cover the block
ideal %° of 0H. We remark also that since p+|Z|, oG is isomorphic to a two sided
component of o6 and hence, if ® is a block of oG which covers 2}, then 8=, for

some 1 A1 7).
Now we have arrived at the Second reduction Theorem of Fong.

THEOREM 2 (Fong [7]) Let B be a block of oG which covers the block ideal I
of vH and let &=G/H.
L there is a block B of 0® such that B=BRY] as v-algebras.
.7
The diagram oG — oG
v
QIO
- ¥
BRIU —B

is commutative, where the vertical maps are projections.
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Hence the way of regarding a B-module as a %@%?—module through the
isomorphism above is compatible with the one of regarding an 1G-module as an oG-
module through f.

II. there is a 1-1 correspondence

Irr (2QP) «—— Irr (QR%)
W W
14 — V
, such that V=2VQ®X as 2G-modules, where X is a fixed 2G-module satisfying
(5).

III.  (CIliff [3]) there is a 1-1 correspondence
Ind (B) > Ind (§)
W

oot
M +—— M
, such that M=M®ZX as kG-modules, where B=rERS, 5=k®§3 and X=X°/pX".
M is irreducible (projective resp.) if and only if M is irreducible (projective
resp.).
. Moreover we have vxs(M)H/H =vxs(M) (we assume vxs(M) is contained in Q).
T he same holds between Ind°(B) and Indc(%) by replacing X with X°, where
Ind® (B) is the subset of Ind (B) consisting of of B-lattices.

IV. B and B have isomorphic defect groups, the same decomposition matrix

and the same Cartan matrix.

PROOF. First we shall show III for B-lattices. Let M be a B-lattice and let
M=Hommg (X° M). Since the operations of Sj% and A? commute on M, we can
naturally make M into a ®-module. Then M®RX° is a %@‘21‘1’=23~modu1e and is
isomorphic to M. In fact, the map ¢®x — ¢(x) (¢ € M, x € X°) is a B-homomorphism
M®X°—M. Furthermore, we have Mmg;sX" for some s>1 and then M®X==s
Hommg (X% X ®X°=sX°>~M (of course, the composite map coinsides with the map
given above).

If F and F' are $-lattices, then by Lemma | we have Homg (F, F)=Homg
(FRX°, FFR®X%. We see easily from this that F®X® is indecomposable if and
only if F is and that FQ X°~F'®X° if and only if F=F’. Thus we have shown
the first statement of III. The second one is clear.

To show the third one, let D be a p-subgroup of G (contained in @) and T=
ZHD. We note that ¢M is D-projective <=>M <@ 0GR p,M=0GQ pzM<=:M is
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DZ-projective<=>¢M is D-projective.

Now, by Lemma 1, Hom,s (M®X°, (0G®+M) @ X% =Homy(M@X", 0®R@<M)
®X% =Hom,ys (M, 00R®:M), where T=T/H.

Therefore, M<@ oG M<=>MQRQX'<D (GRM) @X<=>MX' <D oG
R (MRX.

Thus ¢M is D-projective < ¢M is D-projective <= ¢M is T-projective <>
oM is S-projective <= 4M is DH/H -projective, which implies that vxg (M) H/
H=vx4 (M). This completes the proof of IIL

The first statement of IV will follow from III by the Green’s vertex theory.

All others are clear from the argument so far.

3. In this section, we assume G is p-solvable. A part of the following
Theorem had been obtained by Huppert [10]. Our proof is fairly routine in view
of Serre’s method used in the proof of the Fong-Swan Theorem (Serre [14] 7° 17.6).

Let v(%) be the exponent of the highest p-power dividing an integer 7.

THEOREM 3. Let M be a simple kG-module. Then, there exist a subgroup T of
G and a simple ET-module L such that

(1) vx(M) is conjugage to a Sylow p-subgroup of T

(2) ptdim; L

(3) M=kGRr L

COROLLARY 5 (Hamernik and Michler [9]).
y (dim M) =a— v(Jvx(M) ), where a=v (|G)).

PROOF (of Theorem 3) We prove by the induction on |G| and v (|G]). We
may clearly assume O0,(G)=1. Let H=0, (G). Let X be a simple 2H-module
such that X is a component of My and I =I(X)=I(X). There exists a simple kI~
module M’ such that M=kGR® M. We see easily that vxo(M)=vx;(M"). Hence
if G>1I, the assertion follows from the induction on |G|.

Assume that G=1I1. Using the same notation as in the Theorem 2, we have
M=M®X and va(M)H'/I{T=vx@, (M). Since 0,(®) =1, the assertion holds for
E®-module M by the induction on v (|G|). So that, there exist a subgroup T of G
containing both H and Z, and a simple 2Z-module L, where ‘IzT/I-:T such that

[@D) vx@(M) is conjugate to a Sylow p-subgroup of ¥
(2) p+dim; L
(3) M=r®0®; L=:6®: L

Let T=f (T)%T/Z. Then vx (M) is conjugate to a Sylow subgroup of 7.
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We have M=MQ X¥=tG R +(LRX) =:CR+ L, where L=L®¥ and p + dimL.
Since Z acts trivially on M, we get M=~=%kG®, L. This completes the proof.

Appendix

Here we shall give a ring theoritical interpretation on the First reduction
Theorem from a result of Morita [11].

Let H be a normal subgroup of G and &; a central primitive idempotent of oH.
Let G, be the stabilizer of e, namely Gi={g€G|g '; g=e;} and let {g1=1, 2, -,
g-} be a set of coset representatives of G, in G; G=UG; g. We put e;=g"} g
and e=¢;+ -+ e,

Then, the Theorem 2 of Morita [11] may be stated as follows.

THEOREM. 0Ge is isomorphic to the full matrixz ring M (r,0Ge). If p+|H|,
then 0Ge,=2CR0Hz;, so that 0Ge=M (v, ) QoHs; where € is a certain twisted groud
ring of Gy/H over .

PROOF. We have that 0Ge =@ > 0Ge; with 0Ge;=20Gs; as left oG-modules

‘=1

for each 7. Hence as is well khown, we have 0Ge=M (r,E), where E=End,.
(0Ge1) =&10Ger. On the other hand, we observe that if g€£G;, then ¢ ge;=g(g e 9)
e1=0. Therefore we have &;0Ge;=¢;0G1e;=0Ge;.

The second half has been proved in section 2 by applying the general result
of section 2 (of course a direct proof is given in [11], which is more elementary).

From this Theorem, we know that if ¥ is a block of 0G which covers the
block nHe; of 0H, then there is a unique block ﬁ)‘ of 0G,e; such that =M (7, QT%) as
p—algebras. Moreover the Morita equivalence (see ¢. g&. Anderson and Fuller [1]
§ 22) sets up a 1-1 correspondence between the category of left ?iw‘—rnodules and
that of left $-modules, which eventually sends each 2’;‘~module N onto the induced
PB-module 0GR 4, N.

Of course this coinsides with the (ordinary or modular) character corresponde-
nces given in (the generalization by Reynolds [12] of) the First reduction Theorem
of Fong.
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