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0. Introduction.

Let M*™*(¢, £, 9, 2) be a Sasakian manifeld. A tangent vector of M*"*! is said
to be a horizontal vector if it is orthogonal to £ Let V be the Riemannian connection
for g, and let R be the curvature tensor of V. If ¢*[(V,R) (X,Y)Z]=0 holds for
any horizontal vectors X,Y,Z and V, the Sasakian manifold in consideration is said
to be a Sasakian locally ¢—symmetric space. In the previous note [6], the present
author introduced the above notion, and discussed about its fundamental properties.
In this note, we introduce a notion of a locally f~symmetric space for a S-manifold,

and discuss the similar arguments about it.

1. Preliminaries.

Let M™*'(f, &, &, 9% 7, &) be a manifold with a metric f-structure with

complemented frames:

fPX=—-X+327"(X) &,
N 77m<5ﬁ3>=3§, a, lex 2’
an FE—0, Pof=0, a—=1, 2,
g(fX, fY)=gX, Y)— 9" (X9 (D).

It is easy to see that
1.2 g&X )=7"(X), a=1,2

holds good.

We consider the product space M*"*2x E? where E*? is 2-dimensional Euclidean
space with a coordinate system (x, x%. If we put {;=8/0x" and {,=0/8x% a tangent
vector X of M?**X E? has a direct sum decomposition

(1.3 X=X+G1C1+42C2,

2n+2

where X is a tangent vector of M and @; and @, are real numbers. Let J be a
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tensor field of type (1,1) defined by
A4 JX=fX+3a.é— 27X L

It is easy to see that J is an almost complex structure of M*"**X E®. The torsion
tensor N of the almost comlex structure J is given by

a.5) NE.V=[JX,JY1-JIX,JY1-JJX,YI+J°[X, 7]

We say that the f—structure is normal if the torsion tensor N of J vanishes.
For any tangent vectors X and Y of M*"*?, we have the direct sum decompo-
sition of N(X,Y):

1.6) NXY)=N(X,Y)+NZXTY) G+ No(X,Y) o
according to (1.3), where

A NEXYD=UfXFYI-fIXfYI-ffX,YI+f*[XY]
+2Xd7" (X, Y) &a

1.8) N.(X,Y)=-—2d7"(fX,Y)—2d9"(X, fY)
=— Lz ¥+ Lpry™ (X0, a=1, 2.

"2 we get

Similarly, for any tangent vector X of M?
(1.9 NEL)=Noo(XD+ Ny i (X G+ Napy(X) L a=1,2.
where

(1.10) N o(XD=— (L, X, a=1,2,

(1.11) N, (X)) =(Le7Y (X, a, f=1.2.

Moreover, we see that

a.12 N (&, &) =14, &)

holds good.
In the following, we restate the results of H. Nakagawa [4] using the intrinsic
notations. It is trivial that if the f-structure is normal, then N, vanishes. To the

contrary, we have

THEOREM 1.1 (H. Nakagawa [4]). If N, vanishes identically, the f-structure

in consideration is normal.

This theorem follows from the following formulas:
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(1.13) N, (&, £ = — [, &1,

L1 No(fX,8)=—Noo(XD) -7 (X f[6,8], a=1,2

(1.15) 7°(Na,o(f X)) = — Nop(XD + 7" (07 ([61, &), @ B=12,

116 7"(N(X, fY D+ T (Ne(F X, D7’ (V) = —No(X, YD,  a=1,2
If a metric f~structure with complemented frames is normal and if

117 @"(X, VD =g(fX,Y), a=12,

holds for any tangent vectors X and Y, it is said to be a S-structure. A manifold
with a S-structure is said to be a S-manifold. It is known that if a metric f-

structure with complemented frames is a S-structure, then
1.18 LEM,:(_), a=1, 2,

Q19 a7 (X, YD) = (Vi (YD), a=1,?2,

(1.200 Vx&=rX, a=1,2

hold good, where V is the Riemannian connection for g (D. E. Blair [1]). Making

use of these formulas, we see that

Q.20 (VxNY=Z{"TDX—gX,Y) &)
+ wzﬁ 7"(X) (1Y) g —7° (V) &)

holds good for a S-structure (D. E. Blair [1]). Conversely, suppose a metric f-
structure with complemented frames satisfies (1.21) and (1.17), then we see that

N, Y=z DY = Vs ) X—F VDY +fVef) X
+22dy" (X, Y) &,
=0

holds good. Thus we get the following:

THEOREM 1.2. A metric f-structure with complemented frames is a S—structure
if and only if it satisfies (1.17) and (1.21).

It is easy to see that if a metric f-structure with complemented frames satisfies
(1.20), then it satifies (1.17) and (1.18), and vice versa. Hence we get

COROLLARY 1.3. A metric f-structure with complemented frames is a S-
structure if and only if it satisfies (1. 20) and (1. 21).
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2. A definition of a locally f-symmetric space.

Let M®™ (£, &, &, 7' 7> g) be a S—manifold. Since the f-structure is normal,
we have [&, &]1=0, and hence the distribution (&, &), spaned by & and &, is
involutive. For an arbitrary point x of M we can find a flat coordinate
neighborhood U of x with respect to (&, &} (Palais [51), and we have a local
fibering

Q.10 mU—U/{&, &).

Since f and 7 are invariant by &, we have an induced Kiahlerian structure (/J, &)
of U/(&, &) defined by

JX=mn, Fx*

@2 {
™ g+ 3" =g

where X is a vector field on U/{&, &) and X™ is the horizontal life (with respect
to the connection form 7= (3, %)) of X (cf. Blair-Ludden-Yano [2]). Since we
have g(Vgx¥*, &)= —g(¥* Vgne) = —g(¥'¥, X = —dp*(X*, 7)), we have

(2.3) VgV *=TzV)*— 5 dp"(X*, Tt

where X and ¥ are vector fields on U/{&, &}, V is the Riemannian connection for
g, and X*, ¥* and (Vz¥)* are the horizontal lifts of X, Y and VgV, respectively.
Since 2d7*(X*, 7™ = —y*([X™,Y*]) holds good, (2.3) is the same as

@8 Ver T*= (T + 5 37" (X% T*D 6o

Since we have 7*(Var T =g(Ver T¥, 80 = — g7, F XD =2 FY*, X5 =
—* (Ve X™), (2. 4 implies

2.5) (@gD)¥=VeT*— 51 °(Vex¥™) &,
= —f? Vgk v*

and hence we get

(2.6) (VzVeZ)*= —f2VeaVox Z*+2g(FV*, 29 X"
Taking account of (1.21), (2.5), (2.6) and

@7 [X*7¥=[X 71"+ 2 »[X*7*D ¢

we get
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2.8 RAEY) Z)*=RE*THZ*+2¢(f7* 2% r X*
—2g (FX*Z%) fY* —4g (fFX*, 7™ 7 2%
where we have used
(2.9 R(X*THe¢ =0,
which follows from (1.20) and (1.21). Since [£&,, Z*] =0 holds, we get
(2.10) R (X* &) Z%=—g(X* 7% 512, a=1,2
Making use of (1.21), (2.8), (2.9) and (2.10), we get
21D (VR (X, 7) 2)*
=(VpR) (X*T™ Z*+ (g (VR (X*TH 2%
—2g (fVR X g (T*, 2 +2g(f VT g (X*, 2%} 26,
~ On the other hand, we get, for an arbitrary a, a=1,2,
2 (FV* R (X% 7% 2% |
: =g (Vpk s, R (X*7™ 2%
=— g (&s, (VpxR) (X*7%) 7% — g (&., R (Vi X*,7%) 2%
‘ —gu R (X Vpx¥™) 2%  — g(€n, R (X* T VpxZ%
i = — (VR (X* TH 2  + g (R (2%, &) 7%, Vpx X5
i —g(R(Z%, &) X*, Vpx 7™ 4 g (R (X*, T &, VpxZ%)
5 =—7" ((Vy*R) (X*, ¥ Z% +2g(Z* 7 g/ 7* X"
—2g (2% X% g (FV*, 7%,

Hence we get

gFV*, RCIX* TN Z"— 25 (VX% g (%, 2%
+2g (FVH Y™ g(X*,Z9) 08,

=— 7 ((VpR) (X %, 7™ Z% 53¢,

=— S ((VpR) (X*, 7™ Z% ¢,

and hence we get
(2.12) ((VpR) (X,Y) 2)*=— f[(VsxR) (X*,7™*) Z*]

for any vector fields X, ¥, X and V of U/{&,&y). Thus the following definition is
reasonable:

DEFINITION. A S-manifold M*"**(f, &, &,7% %", g) is said to be a locally f-
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symmetric space if
2.13) fPL(VWR) (X, YD) Z]=0
holds for any horizontal vectors X, ¥, Z and V.

From this definition and (2.12), we get the following:

THEOREM 2.1. A S-manifold is a locally f-symmetric space if and only if
each Kihlerian manifold, which is a base space of the local fibering (2.1), is a

Heymitian locally symmetric space.

3. M-connection.

Let M® (£, &, &, 7' 7> g) be a S—manifold, and let » be an arbitrary fixed real
number. Let A be a tensor field defined by

(3.1 AXY={d7" (X, D& +r7" (X0 fY —7°X) fX].
The M-connection V is by definition
3.2 VyY=VxY+AXY,

whereV is the Riemannian connection for g We see that the structure tensors b
7% &, and g are parallel with respect to V, and hence A is also parallel.

Now, we consider the local fibering (2.1). Let X, ¥, Z and V be vector
fields on U/{&;,&). Then we get

3.3 Ta7*=T)%

G0 V., Z¥=Qa+n rZ%

and hence we get

3.5 REHTH Z*=R XD D*+4Q+n g(f XY™ 7%

where R is the curvature tenror of the M-connection V. Making use of (3.3) and
(8.5), we get

(3.6) (TR (X*, 7% ZF=(TsR) (X, V) F
On the other hand, since we have Vf=0, we get
3.7 R, fZ—'=f]?(X,Y) Z,

and hence we get
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B8® RUXY)Z=-RX fY)Z

for any tangent vectors X, ¥ and Z of M*"*% Since we have V&,=0, we get
B9 RX Y &=0,

and hence '

(3.10) R, Y)Z=0

for any tangent vectors X, ¥ and Z of M*"*%. Making use of (3.7)~(3.10) and

(8.6), we get that VR =0 holds good if and onl if VR=0 holds good. Thus we get

THEOREM 8.1. In order thai a S-manzifold is a locally f-symmetyic space it is
necessary and sufficient that the curvature tensor of the M-conmection is parallel

with respect to the M-connection in consideration.
REMARK. From (3.8) and (3.10), we get

3.1 R(fX, fY)=F(X,Y).

4. f-geodesic symmetry.

A geodesic y=r(s) in a S-manifold M**** (f, &, &,%', 7% g) is said to be a f-
geodesic if 7, (' ())=0, a=1, 2, holds at each point of the geodesic. A local
diffeomorphism o, of M***, x € M*"*’, is said to be a f-geodesic symmetry at # if,
for each f-geodesic y=7y(s) such that y(0) lies in the leaf bf the distribution {&,
&) passing through x,

@D o, r®=7(—3

holds for s. In this section, we shall prove the following theorem:

THEOREM 4.1. A mzcessary and sufficient condition for a S-manifold to be a
locally f-symmetric space is that each f-geodesic symmetry is a local automorphism

of the metric f—-structure.

By using the local fibering (2.1), it is easy to see that the sufficiency holds
good. To prove the necessity, we use the M-connection and Theorem 3.1.

Suppose a S-manifold M**** (f,&,,&,7',4°-g) be a locally f-symmetric space.
We consider the M-connection V on A*"*. The torsion tensor 7 of ¥V is by

definition
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42 TXY)=A4AXY-AMX
=21 247" (X, Y) &+ P+ D (7* (XD FY —4%Y) £ X} ],
and it is parallel with respect to V. By Theorem 3.1, the curvature tensor R of

V is parallel. Let x be an arbitrary point of M***%. Let (ey, e, ..., e,, &1z, &) be
an orthonormal basis of T,(M*"*%). We consider a linear isomorphism

4.3 o Ty (M™*D— T, (M™%

defined by

o0 (e;) = — ey, 1< 2n,
“. 4

a0 (gw:c) = gaf:c, 1 é aé 2.

Then, by (4 2) we see that T(o'o €;, 0o e]) = 2g (feu e]) (Zea) = 0o T(eve]) and
T (o0 €5, 0 $ux) =— (r+1) fe,=a T(el, &uz) holds good for 1 <4, < 2n and 1 la<2
Hence we get

4.5 oT,=T,.

On the other hand, (3.9) implies that R (e;,e;) ¢, is orthogonal to o a=1,2
Hence we get R (o e;, 0 e) avey=a, B (e;,e;) e;. (3.9) and (3.10) imply R (o e;,

€;) 0o Euz = 0o R (es, e 1) Eaes R (00 €5, 70 €u) 0o €r = 0o R (és, €u2) € and R (o0 €5, 00 £ u)
a0 532—‘00 R (e, . €po for 1<4,7,k<27nand 1<a,8<2. Thus we get

4.6) o R,=R,.

Hence, according to Theorem 7.4 of Chapter VI in Kobayashi-Nomizu [3], for
example, we see that the local diffeomorphism g5, defined by

“.7D & (65, Koy wn 5 Xon, 21, 22)

=(— %1, — %, ceey T Xop, 21, Z2)

on a normal coordinate neighborhood U with a normal coordinate system (x,
X2 « v vy X, 21,22) determined by {e, e, ..., e, &1z> §2:}, is a local affine transforma-
tion with respect to V. Since (o,4), =a, we get (Ozt)z0 fr = F20 (0282 (057 oy =
7% (0292800 = €uz and (o,4), g, =g, for 1<a<2 Hence, since o, is a local affine
transformation and since f, &,, 7* and g are parallel with respect to V, o, is a
local automorphism of the metric f-structure in consideration, and hence g; 1S a
f-geodesic symmetry.
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