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1. Introduction

This paper is concerned with determination of fundamental units of non-cyclic
cubic number fields which are not totally real. It is widely known that the unit
group of such a field is of rank one, i. e. has one free generator which is called

the fundamental unit. We shall consider cubic equations of the following type:
X —3pX*+ (m+3pHX—1=0,

where m and p are both rational integers, and besides m is assumed to be positive.
As is easily seen, they are irreducible for all m and p. Each of them has a unique
real root and so defines a real cubic number field which is not totally real. We
shall study the conditions for that these roots are the fundamental units of their
respective fields, and obtain related results.

In the case p=0 this problem has been recently investigated by Ishida [ 5].
The main result established by Ishida can be summarized as follows: '

If m>1 and either 4m*+ 27 or 4(m/3)*+ 1, according as m is prime to 3 or not,
is square free, then the voot e of the equation X°+mX—1=0 is the fundamental
unit of the cubic number field Q(s) generated by e.

Herein and hereafter @ means the field of rational numbers. Moreover Ishida
has shown that ¢ and its conjugate constitute the system of fundamental units of
the normal closure of Q(¢), provided ¢ is the fundamental unit of Q(¢) and m is
even. In this paper we shall see that this is also the case for m==3 (mod 9).

The ring of rational integers is denoted by Z, as usual. And for a number
field F the ring of integers of F and the discriminant of F' are denoted respectively
by Oz and by Dpg.

2. The case where Z [ ¢ ] is the ring of integers

From now on, m >1 denotes a natural number, and p denotes a rational

integer. We consider an irreducible cubic equation
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f XD =X—3pX°+ (m+3pHX—1=0.
Then the discriminant D; of f(X) equals
— U’ + 27(mp+ p°~ D).

Let ¢ be a unique real root of this equation; then 0<e<1, for f(0)=—-1<0
and f(1)=m+3p*—3p>0. Put K=Q(). So K is a real cubic number field
whose normal closure N is a quadratic extension K(&/D;) of K.

First, following the method of Ishida, we show that ¢ is the fundamental unit
of the subring Z [e] of Og. Let & >1 be the fundamental unit of Z [e]. It follows
from the theorem of Artin that |D (e)|<4el+24, where D( ) means the discrim-
inant of an algebraic integer [1], [ 6]. Since & exists in Z[e]l, |D(e)|L|D
(& )]. Hence we have an inequality

4m*+ 27T(mp+ p*—1)% < 4ed + 24,
which implies, since 4m*+27(mp+ p* —1)*>4(m + p)°+ 24,
m+p* < e

Suppose that e '=¢{ with a natural number e. Here e =" —3pe+m~+3p® and 0 <
¢<{1. [Especially, when »<0, 0<e<(m+3p"", because fF((m-+3p""1>0.
We then have inequalities

[ m+ 3p° if p>0,
| m+302+1  if p<o.

=1

(1

Hence it follows that e must be equal to 1, i. e. e"'=¢,, for otherwise from the
above inequalities we would get (m+ )2 < (m+p)° < f=c'<m-+3p*+1; this is
impossible. Our assertion has been thus verified.

Now, let # be the greatest common divisor of # and p*—1 such that # is
square free, (n, 3)=1 and ((mp+p°—1)/n, ©) =1.

We then have the following proposition concerning the fundamental unit of X,

PROPOSITION 1. In the cases

m=0 (mod 9), »=0, 1 (mod 3);
m=#=3 (mod 9), p= —1 (mod 3),

if 4m®+2T(mp+ p*—1)? is square free up to a divisor of 3n, then  is the Jundamental
unit of K.
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PROOF. From the fact stated above, it suffices to see that Ox=Z[c]. We
have

D= —Um*+2T(mp+p*— 1D =(0x:Z [ ¢ 1)* Dp.
By the definition of 7,
FX+p)=X+mX+mp+p°—1

is a polynomial of the so-called Eisenstein type with respect to every prime divisor
of n It then follows from Lemma 1 of Ishida [4], [ 7] that (Og: Z[ ] is

prime to n. Next, consider
FEX+D=X-3p—-DX+m+3(p—-DHX+m+3p(p—D.

When m is a multiple of 3 under our restrictions on p, f(X+1) is also of the
Eisenstein type with respect to 3, so that (Ox : Z[ ¢ 1) is not divisible by 3. It is
thus seen that (Ox : Z[ 1) and 37 have no common divisor greater than 1.
Accordingly the assumption on 4m®+27(mp+ p*—1)* allows us to have (Ox: Z[ ]
=1, 1. e. Ox=Z[ ¢ ], as desired.

3. The case where Z [ ¢ ] is a proper subring of the ring of integers

Next, we consider the case where Z [ e] is a proper subring of Og Let
now ¢ be the greatest common divisor of z and $°—1 such that mp—+p°—1=0
(mod ¢®; in the discussion below ¢ is always assumed to be square free. It then

follows that (e—p)?/q is an integer of K, because

holds. When (Og : Z [ ¢ 1) =g, which implies Dx=D;/q*, we have the following:

PROPOSITION 2. In the cases

m==0 (mod 9), p=0, 1 (mod 3);
m=3 (mod 9), p=—1 (mod 3);
m=0 (mod 9), mp+p*—1=£9 (mod 27),

if WP+ 21(mp+p°—1)2/q* is square free up to a divisor of 3m, then e is the
fundamental unit of K.
PROOF. (i) In the first two cases
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m==0 (mod 9, p=0, 1 (mod 3);
m=3 (mod 9), p=—1 (mod 3),

by the reason similar to the proof of the preceding proposition, it is seen that
Dr=— % U+ 27 (mp+ 5 — 1.
And also for the remaining case
m=0 (mod 9), mp+p*—1=+9 (mod 27)

Dy is presented with the above value, in other words (Og: Z [ ¢])=g, which is
shown as follows. In this case it is also easy to see that (Ox:Z[e1)/q is a
power of 3, and g is a multiple of 3 from its definition. In order to confirm that
(Og : Z[ e 1) =g, it suffices to show that O is generated by 1, e —p, (¢ —p)*/q as
a Z-module. Put x=a+b(c—p) + c(e —p)?/q with rational integers @, b, ¢. Then,
as is easily calculated, the product of three conjugates of x is cogruent to

&= (mp+p*— 1)+ Cmp+ p*— 1%/ g*+ ab’m

—b*m(mp+ p°—1) /¢ — 2a°cm/q+ ac’m®/¢* — 3abc(mp+ p°—1) /q

modulo 27. Here, (mp+p°—1)*/¢*=m/q=mp+ p*—1)/q=0 (mod 3), m(mp+ p°—
D/¢*=0 (mod 9 and (mp+p°—1)%/¢*==0 (mod 9). Thus it follows that if x/3
belongs to Og, then a=b=c¢=0 (mod 3), so that we have (Ox: Z [ ¢ D=q.

(ii) When ¢g=1, our assertion is the very same as that of the preceding
proposition. So we may assume ¢=>2. Note that g=1 in the case p=0, 1. Now,
we write also e '=¢% with the fundamental unit & >1 of K and e>1. Then,

similarly as the previous section, the following inequality holds:

1
7

U+ 27(mp+ p*— 1D = | D | < | D(ep) | < 4ed+ 2.4,

This together with (1) gives a relation

(m+3p%? p=2,

1 3, 27 3 2 3
3 + == +p°—1 6
<q2 '+ == Onpt 7 =109 > = { (m+3p°+1D° p<—1

If this relation can only be satisfied when e=1, then we have ¢ '=g¢, that is, ¢ is
the fundamental unit of K. Here, put
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( 12 ms 27 3_1)2) _6>2__ <m+3p2>3 ? 2 2,
q 4
¢(m’ P) =

2
(5 o+ 2 mpt DD —6) ~(m 35+ p=—1.

Then ¢(m, p) will be shown in the below to be always positive for all » and p
dealt with here, which will imply e=1.

(iii) We first consider the case where |mp+p°—1|=¢% In this case it is
easy to see ¢ >2 except only for m=2, p=—1, when ¢=2 and ¢ (2, —1)=529—
216 >0. So, suppose ¢ >2 and p7#—1. Then,

|mp+p°—1| —6—6|mp+ p°—1]

4
_ 3 1] —f= 5 g
—T|mp+p 1]—6 1 q—6>0.

Therefore, if p > 2,

¢ (m, p) = (

G

>
> 12m°+36 (mp+ p*—1)° — (m+3p»°

+ - (mp+p —1)— 6) — (m+3p%°

ST E

+ 6(mp+ p° —1)) — (m+3p»?

= 11m*+ 2Tm?p*+ (45p* —72p)m+ 9p° —72p° + 36

oy

L

and similarly if p < —2,

2

2
¢(m, ) =< ’; ——il <mp+p3—1>—6> —(m+3p°+1)°

> ( ’f — 6(mp+p3—1>>2—(m+3p2+ »?

> 12w+ 36(mp + p? — (m+ 3P+ 1)°

I

1172° + (279 — 3)m® + (450" — 18p° —3)m+ 9p° — 27p* —9p* —1
> 0.

And it is more easy to show ¢(m, p) >0 in the case where |mp-+p*—1| = 24% thus
proving our proposition.
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4. The case where (1+¢+¢%/3 is an integer

Put now x=(1+¢+4¢%/3, which is an element of K satisfying the following
equation:

%+ (2—§” —pz—p—l) %"+ ((% + 1>2+1>>2

M opr a1y 1 m P_om 3\ _
3 @p* +p+1) p>x+?<<7+pz+p> Tp—p)-o.

When this x is an integer of K, we have furthermore the next:
RPOPOSITION 3. In the cases
m=0 (mod 9), p=0 (mod 3);

m=3 (mod 9), p=—1 (mod 3),

if (dm+ 27 (mp+°—1)2/(3g)? is square free up to a divisor of n, then ¢ is the
Sundamental unit of K when p=0 or |mp+p°*—1| =74

PROOF. (i) Evidently (14+¢+¢/3 is an integer of K. As mp-+p°—1%0
(mod 3) in our case, g is not divisible by 3. Then it is similar to the proof of
Proposition 1 that Og is generated by 1, (1+e+¢3/3, (e—p)*/q as a Z-module,
and hence

e e _1__ 3 3 2
D= = g5z i+ 21Gmp+£° = DP.

We write again e '=¢j with the fundamental unit ¢, >1 of K and a natural number

e. Then the following inequalities also hold:

1 3 3__ 132 o3 |

gy G 2 mp 21 <deit24, lg

1 s, 27 s\ [m 80D bz 2 i
((3402 o+ - -1 6) <{(m+3p2+1)3 p=o. i

If the latter relation is not the case when e¢>> 2, « must be the fundamental unit of ;‘:!
K. In order to show this, put now It

(# o+ 2L mp+ 1)) —6)2— ot 35 p=2
Gz T , =
¢ (m, p)=

1

2
W(m3+'%(mp+z>3—1)2)—6)—(m+3.DZ—Fl)3 p=o.
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In the case p=0, and necessarily g=1, it is easy to see that ¢ (m, 0) >0 for all
m=0 (mod 9). And moreover, when g=1, it can also be verified that ¢ (m, p) >0
except only for m=3, p=—1. In the argument below we assume g =>2.

(ii) We consider the case where |mp+p*—1|=7¢ In this case we have

|p|>6 and ¢ >2 by practice calculation. Then, if p > 6,

3 2
wom 9 = (s + B mp+ 5 -1 —6) — (3

(3g9)?
3 2
= (%q)z + 271 (mP+P3-1)> — (m+3p5°
> %m3+ (27‘1 (mp+p3—1)> — (m+3p>°
31 5, 297 L., (8l ., 441 9
BT I T ”“”(Tﬁ 5 p)””* 16 ?
B 4;1 #a 41461
> 05
and if p<<—86,
3 2
¢ (m, p) = (_(_;nq_)_ — ZTI (mﬁ+p3—1)—6> — (m+3p*+1)°
3 2
2 (g5 = & op+ 5= ) = o+ 35+ 1)
2
%mﬁr (%l (mp+p3)> — (m+3p*+1)°
_ 31 3 297 2 2 225 4 3 9 6
= gt <1—61’ *3>m P (Tl’ =16p ‘3>m+ 167
—27p'— 92 —1
> 0.

And it is similar to show ¢(m, p) >0 in the case where |mp+p°—1|>74% Thus

we have e=1 and so ¢ *=z¢,

REMARK 1. In the above proof, the assumption |mp+p’—1|=74" is not
indispensable one. Indeed, we can prove ¢(m, p) >0, for example, under one of

the following conditions:
1) Imp+ P 1] =57, mZ — F;
2) |mp+p—1|=2¢", m=3q{{ig+1, m =10 p’;

23
3) Imp+p—1l=, m23qf g+ Lm= T
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Note here that |mp+p*—1|+64% 44° 3¢° from our assumption.

REMARK 2. There are, permitting repeats, 142 square free divisors g+1 of
P°—1 for 2<p <25, and 131 square free divisors g#1of p°—1 for —B<p< —1,
And there is one value of 7 not satisfying lmp+p°—1| =74, qg+1 for 2< p < 25:

m=21, p=2, g=7, ¢(21, 2) <0.

And there are six values of such m for —25 < p<—1, although they all satisfy
either one of the conditions 1), 2), 3) of Remark 1.

In the result the following theorem has been proved in the propositions above:

THEOREM 1. For any pair of a natural number m >1 and a rational number
b, let n denote the greatest common divisor of 7 and $*—1 such that #» is square
free and (1, 3)=(#n, (mp+p*—1)/7n) =1, and besides g also the greatest common
divisor of 7 and p°—1 such that mp-+p'—1=0 (mod ¢%). Then the root ¢ of the
cubic equation

X —3pX°+ m+3pDX—1=0

is the fundamental unit of Q(e) if

% Unm®+27(mp + p*— 1) or —(;W U+ 2T(mp + p°— 1)),
according as

m=*=0 (mod 9), »=0, 1 (mod 3);
m==3 (mod 9), = —1 (mod 3);
m=0 (mod 9, mp+p°—1=+9 (mod 27),

or

m=0 (mod 9), p=0 (mod 3);
m=3 (mod 9), p=—1 (mod 3)

with additional condition p=0 or |mp+p*—1|>74 is square free up to a divisor
of 3n.

In the case p=1 this theorem is described as follows:

COROLLARY. If both # and 4m+ 27 are square free, or m is a multiple of 9
and both /3 and 4(7/3) 49 are square free, then the root ¢ of the cubic equation

X —3X*+ m+3)X—1=0




32 Akira ENDO

is the fundamental unit of Q(e).

5. Units of the normal closure of Q(e)

With regard to units of the normal closure N of K=Q(e) in the case p=0,
Ishida [ 5] has shown that if ¢ is the fundamenatal unit of K and m is even, then
any pair of two conjugates of e constitutes the system of fundamental units of IN.
Also in the general case we obtain similar result by using the next lemma due to
Berwick [ 2 1.

LEMMA. Suppose that K is not pure cubic, i. e. N does not contain a primitive
cube root of unity, and ¢ is the fundamental unit of XK. Then, any pair of two
conjugates of ¢ constitutes the system of fundamental units of N, if and only if
there exists no rational integer « such that as is a cube in N. Otherwise, in the
unit group of N the index of the subgroup generated by the conjugates of ¢ and

the roots of unity is equal to 3.

TFrom now on, we assume that K satisfies the supposition of the lemma, i. e.
Qv —UmP+27T(mp+p>—1 ) = Q(5/—=3); this occurs, for instance, if p=0 and m
is arbitrary [ 5]. The following theorem can now be obtained;

THEOREM 2. Suppose that < is already the Fundamental unit of K. If one of

the conditions

m=p=0 (mod 2);
m=3 (mod 9), »=0 (mod 3);
p=—1 (mod 3)

is satisfied, then ¢ and its conjugate o = ¢ comstitute the system of fundamental units
of N. While, if p=1, then = and (L—e)/(1—¢) constitute the system of them.

PROOF. (i) Ishida’s proof for the case p=0 utilized ideal theory. Here,
however, the assertion will be shown in distinct and more elementary way. Set
f=c—2 and

E=a+ b+t
with rational integers @, b, ¢. And now, suppose that
ac=ap+af=£

holds for a rational integer a. Then




FUNDAMENTAL UNITS OF CUBIC NUMBER FIELDS 33

ap=a’— (8°+6abc —3bc*m) (mp + p°—1) + F(mp + p°* —1)%, (2)
a=23a’b— (b’ +6abc) m—+3bc*m* — (3b%c+3c%a—2*m) (mp+p°—1),  (3)
0 =3ab’+3ca®— (3b°c+3c%a) m+ *m® —3bc*(mp+ > —1). (4)

It will be shown in the below that these three equations can not be satisfied
simultaneously for any &, @, b, ¢ under our conditions. Without loss of generality
@, b, ¢ may be so chosen that (a, b, ¢)=1.

(ii) The case where m=p=0 (mod 2). From (2) and (4)

0=a+b+c¢ (mod 2),
0=ab-+bc+cae (mod 2),

whence a=b=c=0 (mod 2), a contradiction.
(iii) The case where =0 (mod 3). If 720 (mod 3), from (4) ¢=0 (mod
3), so that from (2) and (4)

0=24’+5° (mod 3),
0=ab® (mod 3),

which imply a=0b= c¢=0 (mod 3), also a contradiction. And, if m=0 (mod 3),
from (2) and (4)

0=2a’+0*+¢® (mod 3),
0=ab*+ bc*+ca® (mod 3),

Il

which yield, since (g, 8, ¢) =1, a=b=c=+1 (mod 3); then we may assume

without loss of generality

a=b=c=1 (mod 3).

Therefore we see that from (4)
0=3 (@b’ +bc’+ca®) —3 (bPc+ c*a) m~+Am® (mod 27) [
=9—6m+m? (mod 27) ' !

=(3—m)? (mod 27),

whence m=3 (mod 9).
(iv) The case where p=—1 (mod 3). If m=0 (mod 3), from (4) ¢=0
(mod 3) and hence ab=0 (mod 3); then from (2) and (3)

—a=ad—b+b* (mod 3),

a=—bm (mod 3), I
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so that a=b=c=0 (mod 3), a contradiction. And, if 2 =0 (mod 3), from C2)s
(3), (4)

—a=d — b+ (mod 3),
a=0 (mod 3),
0=ab®— b+ ca® (mod 3),
which yield, since (@, b, ©) =1,

-0

c==+1 (mod 3).

Il

a
These possibilities are also eliminated, because from (4)

0=3(ab?—bc*+cad®) —3 (BPc+ca—bc®) m+c*m® (mod 27)
=+ (9+m» (mod 27)
=0 (mod 27).

(v) Finally, if p=1,
(A=) /A=eN)’=¢/e

holds, because of (1 — e)®=me by definition. Therefore it follows at once from
the lemma above that ¢ and (1—e&)/(1—¢) constitute the system of fundamental
units of N.

We conclude this section by noting that in the case p=0 this theorem is
proved not only for even m but also for m=*3 (mod 9).

6. Concluding remarks

In the case p=0, Morikawa [8] has given a necessary and sufficient condition
on m for ¢ to be the square of a unit of @ (e). Namely, it is that is expressible
in the form

m=4da (& —1)
with a rational integer « In the general case, similar condition is stated as
dm = o — 6pa’ — 8a — 3P°

holds for some rational integer «; particularly in the case p =1 it can be restated

more simply as

m=4a’ (a—2),
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where « is also a rational integer.

EXAMPLE. 1) m=3, p=—1. In this case, as is stated in the proof of Propo-
sition 3, ¢=1 and ¢(3, —1) <<0. And that proof allows us to have that ¢ =&
with e=1 or 2, where & is the fundamental unit of Q(c). On the other hand

12=a'+ 64 — 8a —3

has an integral solution @ = —1. So, it can be concluded that e is the square of
the fundamental unit of Q(¢). In fact, ¢ is given as a root of the equation

X—-2x*—X—-1=0.

2) m=21, p=2. In this case, as is shown in Remark 2, ¢g=7 and ¢(21, 2)<0.
Similarly as above we have that ¢ '=¢j with e=1 or 2. The equation

84 =a'—124° — 8a — 12

has an integral solution @ = — 4. Therefore ¢ is the square of the fundamental
unit of Q(e). And ¢ is a root of the equation

XP—5X?—4X —1=0.

Finally we note that for any p and for any square free divisor g of p°—1 the
theorem of Erdés [3] ensures the infiniteness of » which satisfy the conditions
of Theorem 1.

Note: A result about the problem of Section 5 is obtained by Mr. K. Iimura.

His paper ““On the unit groups of certain sextic number fields” is to appear in the
Abh. Math. Sem. Univ. Hamburg.
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