A NOTE ON ENVELOPES OF HOLOMORPHY

Seiko OHGAI

(Received Dec. 21, 1978)

Introduction

It is well known that if D_1 , D_2 are domains of holomorphy in C^n , then the intersection $D_1 \cap D_2$ is a domain of holomorphy. Further, let $\{D_{\lambda}\}_{\lambda \in \Lambda}$ be a family of domains of holomorphy in C^n . Then the inner kernel of $\bigcap_{\lambda \in \Lambda} D_{\lambda}$ is a domain of holomorphy. It is also well known that the maximal domain of continuation $D_{\mathscr{F}}$ for a family \mathscr{F} of holomorphic functions given in a domain D is not necessarily a domain in C^n even if D is a domain in C^n , and so the following statement is not necessarily true: the envelope of holomorphy of a domain D in C^n coincides with the inner kernel of the intersection of the family of domains of holomorphy in C^n that contains D.

In this note we define the intersection of a family of Riemann domains by the aid of the notion of the union of Riemann domains introduced in [1], see also [2], [4] and we ask if the above statement is true in the category of Riemann domains with base point. Our answer is as follows: the envelope of a Riemann domain D with respect to a family $\mathscr F$ of holomorphic functions coincides with the intersection (in our sense) of the family $\{H_f(D)\}_{f\in\mathscr F}$ of domains of maximal continuation $H_f(D)$ of $f, f \in F$.

Notations and terminologies will be as in [1].

1. Union of Riemann domains

In this note, we consider only the Riemann domains over C^n with base point. As preparation, let us recall some results in [1]. There, Grauert and Fritzsche defined the envelope of holomorphy. Other constructions of envelope of holomorphy are found, for example, in [2] and [4].

Let δ_0 be a fixed point in C^n , and let $\mathfrak{G} = (G, \pi, x_0)$ be a Riemann domain with base point x_0 such that $\pi(x_0) = \delta_0$.

DEFINITION 1. Let $\mathfrak{G}_j = (G_j, \pi_j, x_j)$, j = 1, 2 be Riemann domains over C^n with base point. We say that \mathfrak{G}_1 is contained in \mathfrak{G}_2 and denote it by $\mathfrak{G}_1 < \mathfrak{G}_2$, if there exists a continuous map $\phi \colon G_1 \rightarrow G_2$ satisfying the following condition:

i)
$$\pi_1 = \pi_2 \circ \phi$$

ii)
$$\phi(x_1) = x_2$$

With the relation <, $\{\emptyset_i\}_i \in I$ is a partially orderd set, i. e., the following holds:

ii) If
$$\mathfrak{G}_1 < \mathfrak{G}_2$$
, $\mathfrak{G}_2 < \mathfrak{G}_3$, then $\mathfrak{G}_1 < \mathfrak{G}_3$.

If $\mathfrak{G}_1 \subset \mathfrak{G}_2$ and $\mathfrak{G}_2 \subset \mathfrak{G}_1$, then \mathfrak{G}_1 is holomorphically equivalent to \mathfrak{G}_2 and we write $\mathfrak{G}_1 \simeq \mathfrak{G}_2$. In case \mathfrak{G}_1 , \mathfrak{G}_2 are both schlicht, $\mathfrak{G}_1 \subset \mathfrak{G}_2$ if and only if $G_1 \subset G_2$.

Then, the union $\widetilde{\mathbb{G}}$ of $\{\mathbb{G}_{\iota}\}$ $\iota \in I$ is well defined and satisfies following fundamental properties, see [1]: let \mathbb{G}_{1} , \mathbb{G}_{2} , \mathbb{G}_{3} be Riemann domains with base point, and $\{\mathbb{G}_{\iota}\}_{\iota \in I}$, $\{\mathbb{G}_{\iota'}\}_{\iota' \in I'}$ are any families of Riemann domains, then

(1) if
$$\mathfrak{G}_{\iota} < \mathfrak{G}$$
, for all $\iota \in I$, then $\bigcup \mathfrak{G} < \mathfrak{G}$,

(2) if
$$\mathfrak{G}_1 < \mathfrak{G}_2$$
, then $\mathfrak{G}_1 \cup \mathfrak{G}_2 \simeq \mathfrak{G}_2$,

$$(4) \qquad \qquad \mathbb{S}_1 \cup \mathbb{S}_2 \simeq \mathbb{S}_2 \cup \mathbb{S}_1,$$

(5)
$$\mathbb{S}_1 \cup (\mathbb{S}_2 \cup \mathbb{S}_3) \simeq (\mathbb{S}_1 \cup \mathbb{S}_2) \cup \mathbb{S}_3$$
, and

(6) if
$$I \subset I'$$
, then

$$\bigcup_{i \in I} \mathfrak{G}_i < \bigcup_{i' \in I'} \mathfrak{G}_{i'}$$

2. Intersection of Riemann domains

Let $\mathfrak{F}_0 \in C^n$ be a fixed point in C^n . We consider the Riemann domains $\{\mathfrak{S}_{\iota}\}$ ${\iota \in I}$, $\mathfrak{S}_{\iota} = (G_{\iota}, \pi_{\iota}, x_{\iota})$ over C^n with base point x_{ι} such that $\pi_{\iota}(x_{\iota}) = \mathfrak{F}_0$. Then, for $\{\mathfrak{S}_{\iota}\}_{{\iota \in I}}$ we consider the set $\{\mathfrak{F}_{\lambda}\}_{{\lambda \in \Lambda}}$ such that $\mathfrak{F}_{\lambda} < \mathfrak{S}_{\iota}$ for all ${\iota \in I}$. We put

$$\mathfrak{H}=\underset{\lambda\in\Lambda}{\bigcup}\mathfrak{H}_{\lambda}.$$

It is obvious that $\pi'_{\lambda}(x'_{\lambda}) = \mathfrak{z}_0$ for every $\mathfrak{F}_{\lambda} := (H'_{\lambda}, \pi'_{\lambda}, x'_{\lambda}), \lambda \in \Lambda$. After the method given in [1] we know that \mathfrak{F} is a Riemann domain over C^n with base point. Further, we have the following:

i) Since $\mathfrak{G}_{\lambda} < \mathfrak{G}_{\iota}$ for all $\iota \in I$, from (1) in 1 we have

$$\bigcup_{\lambda \in \Lambda} \mathfrak{H}_{\lambda} < \mathfrak{G}_{\iota} \quad \text{for all } \iota \in I.$$

Hence

$$\mathfrak{H} < \mathfrak{G}_{\iota}$$
 for all $\iota \in I$.

ii) If $\mathfrak{G}^* < \mathfrak{G}_{\iota}$ for all $\iota \in I$, then there exists some $\lambda_0 \in \Lambda$ such that $\mathfrak{G}^* \simeq \mathfrak{H}_{\lambda_0}$. Hence $\mathfrak{G}^* < \mathfrak{H}$ i. e., \mathfrak{H} is the maximal Riemann domain which is contained in \mathfrak{G}_{ι} for every $\iota \in I$.

Considering the properties i) & ii), we call \mathfrak{H} the *intersection* of $\{\mathfrak{G}_{\iota}, \ \iota \in I\}$ and denote it by $\bigcap_{\iota \in I} \mathfrak{G}_{\iota}$. Let $\{\mathfrak{G}_{\iota}\}_{\iota \in I}$ be a family of Riemann domains over C^n with base point. Since $\{\mathfrak{G}_{\iota}, \ \iota \in I\}$ is a lattice with operations \bigcap and \bigcup , and since the properties $(1) \sim (6)$ in 1 holds, it is easily verified that the following $(1)' \sim (6)'$, and, (7), (7)' are also true. $(1)' \sim (6)'$ is dual to $(1) \sim (6)$.

Let \mathfrak{G}_1 , \mathfrak{G}_2 , \mathfrak{G}_3 be Riemann domains and $\{\mathfrak{G}_{\lambda}\}_{\lambda \in \Lambda}$, $\{\mathfrak{G}_{\lambda'}\}_{\lambda' \in \Lambda'}$ are any famillies of Riemann domains, then

(1)' if
$$\mathfrak{G}_{\lambda} > \mathfrak{G}_{1}$$
, for all $\lambda \in \Lambda$, then

$$\bigcap_{\lambda \in \Lambda} \mathfrak{G}_{\lambda} > \mathfrak{G}_{1}$$

(2)' if
$$\mathfrak{G}_1 < \mathfrak{G}_2$$
, then $\mathfrak{G}_1 \cap \mathfrak{G}_2 \simeq \mathfrak{G}_1$,

$$(3)' \qquad \mathfrak{G}_1 \cap \mathfrak{G}_1 \simeq \mathfrak{G}_1,$$

$$(4)' \qquad \mathfrak{G}_1 \cap \mathfrak{G}_2 \simeq \mathfrak{G}_2 \cap \mathfrak{G}_1,$$

$$(5)' \qquad \qquad \emptyset_1 \cap (\emptyset_2 \cap \emptyset_3) \simeq (\emptyset_1 \cap \emptyset_2) \cap \emptyset_3,$$

(6)' if
$$\Lambda \supset \Lambda'$$
, then

$$\underset{\lambda \in \Lambda}{\bigcap} \mathbb{S}_{\lambda} < \underset{\lambda' \in \Lambda'}{\bigcap} \mathbb{S}_{\lambda'}.$$

Also we have

(7)
$$(\mathfrak{G}_1 \cup \mathfrak{G}_2) \cap \mathfrak{G}_3 > (\mathfrak{G}_1 \cap \mathfrak{G}_3) \cup (\mathfrak{G}_2 \cap \mathfrak{G}_3),$$

$$(7)' \qquad (\emptyset_1 \cap \emptyset_2) \cup \emptyset_3 < (\emptyset_1 \cup \emptyset_3) \cap (\emptyset_2 \cup \emptyset_3).$$

REMARK. In case every \mathfrak{G}_{ι} is schlicht, $\bigcup \mathfrak{G}_{\iota}$ is the union in the usual sense, but $\bigcap_{\iota \in I} \mathfrak{G}_{\iota}$ is not necessarily the intersection in the usual sense. It should be pointed out that the intersection $\bigcap_{\iota \in I} \mathfrak{G}_{\iota}$ in our sense is connected and coincides with the connected component which contains base point such that $\pi_{\iota}(x_{\iota}) = \mathrm{id}(x_{\iota}) = \mathrm{i$

When \mathfrak{G}_1 , \mathfrak{G}_2 , \mathfrak{G}_3 are schlicht, in place of (7), (7)' we have

$$(\$) \qquad (\$_1 \cup \$_2) \cap \$_3 \simeq (\$_1 \cap \$_3) \cup (\$_2 \cap \$_3),$$

$$(8)' \qquad (\emptyset_1 \cap \emptyset_2) \cup \emptyset_3 \simeq (\emptyset_1 \cup \emptyset_3) \cap (\emptyset_2 \cup \emptyset_3).$$

3. Envelope of holomorphy

Using the notion of intersection of Riemann domains introduced in 2, we are able to characterize a domain of holomorphy and the envelope of holomorphy.

DEFINITION 2. Let $\mathfrak{G}=(G,\pi,x)$ be a Riemann domin over C^n with base point and let $\mathscr{F}(\neq \phi)$ be a family of holomorphic functions on G. Let $\{\mathfrak{G}_i, i \in I\}$ be the family of all Rieman domains which satisfies the following conditions:

- (1) $S < S_{\iota}$ for all $\iota \in I$,
- (2) if $f \in \mathscr{F}$, there exists some $F_{\iota} \in A(\mathfrak{G}_{\iota})$ such that $F_{\iota} | \mathfrak{G} = f$ for every $\iota \in I$.

 We call the Riemann domain $H_{\mathscr{F}}(\mathfrak{G}) := \bigcup_{\iota \in I} \mathfrak{G}_{\iota}$ the envelope of holomorphy of \mathfrak{G} with respect to \mathscr{F} . In case $\mathscr{F} = A(\mathfrak{G})$, we call $H_{A(\mathfrak{G})}(\mathfrak{G})$ the envelope of holomorphy of \mathfrak{G} and write $H(\mathfrak{G})$. If $\mathscr{F} = \{f\}$, $H_{f}(\mathfrak{G}) := H_{f}(\mathfrak{G})$ is the maximal domain of continuation of f, i, i, the maximal domain to which f can be analytically continued.

PROPOSITION 3. For $\mathfrak{G} = (G, \pi, x)$ and $\mathscr{F} = \{f_k | k \in K, f_k \in A(G)\}$, we have

$$H_{\mathscr{F}}(\mathfrak{G}) = \bigcap_{k \in \mathbb{R}} H_{f_k}(\mathfrak{G}).$$

PROOF. We put $\widetilde{\mathfrak{H}} = \bigcap_{k \in \mathcal{K}} H_{f_k}(\mathfrak{G})$. Then $\widetilde{\mathfrak{H}} = \bigcup_{\lambda \in \Lambda} \widetilde{\mathfrak{H}}_{\lambda}$, where Λ is the set of all λ for which $\widetilde{\mathfrak{H}}_{\lambda} < H_{f_k}(\mathfrak{G})$ for all $k \in K$. Since $\widetilde{\mathfrak{H}}_{\lambda} := (\widetilde{H}_{\lambda}, \ \pi_{\lambda}, \ \widetilde{x}_{\lambda}) \ \lambda \in \Lambda$ is the Riemann domain such that some $F_{k,\lambda} \in A(\widetilde{\mathfrak{H}}_{\lambda})$ exists for every $k \in K$ with $F_{k,\lambda} | G = f_k$, we have

$$\widetilde{\mathfrak{H}}_{\lambda} < H_{\mathscr{F}}(\mathfrak{G})$$
 for all $\lambda \in \Lambda$.

Hence,

$$\bigcup_{\lambda \in \Lambda} \widetilde{\mathfrak{H}}_{\lambda} < H_{\mathscr{F}}(\mathfrak{G}) \quad \text{(see (1) in 1),}$$

which implies

$$\widetilde{\mathfrak{H}} = \bigcap_{k \in K} H_{f_k}(\mathfrak{G}) < H_{\mathscr{F}}(\mathfrak{G}).$$

Next, we prove that $H_{\mathscr{F}}(\mathfrak{G}) < H_{f_k}(\mathfrak{G})$ for all $k \in K$. Put $H_{\mathscr{F}}(\mathfrak{G}) = \bigcup_{\lambda' \in \Lambda'} \hat{\mathfrak{g}}_{\lambda'} = \hat{\mathfrak{g}}$, then for any $\lambda' \in \Lambda'$ all $f_k \in \mathscr{F}$ can be continued to $\hat{\mathfrak{g}}_{\lambda}$. Furthermore, putting

 $H_{f_k}(\mathfrak{G}) = \bigcup_{\mu \in \mathcal{M}} \bar{\mathfrak{g}}_{k,\mu}$, we see that for any $\hat{\mathfrak{g}}_{\lambda'} = (\hat{H}_{\lambda'}, \hat{\pi}_{\lambda'}, \hat{x}_{\lambda'})$, $\lambda' \in \Lambda'$, there exists an $\hat{F}_{k,\lambda'} \in A(\hat{\mathfrak{g}}_{\lambda'})$ such that $\hat{F}_{k,\lambda'} | G = f_k$. Hence, there exists some $\mu_0 \in M$ such that

$$\hat{\mathfrak{F}}_{\lambda'} < \bar{\mathfrak{F}}_{\mu_0}$$

Consequently, for any $k \in K$ we have

$$H_{\mathscr{F}}(\mathfrak{G})<\displaystyle\bigcup_{\lambda'\in \widetilde{\Lambda'}}\overline{\tilde{\mathfrak{g}}}_{\lambda'}<\displaystyle\bigcup_{\mu\in M}\overline{\tilde{\mathfrak{g}}}_{\mu}=H_{f_k}(\mathfrak{G}),$$

which implies

$$H_{\mathcal{F}}(\mathfrak{G}) < \bigcap_{k \in \mathbb{K}} H_{f_k}(\mathfrak{G}).$$

Thus, we proved

$$H_{\mathscr{F}}(\mathfrak{G}) \simeq \underset{k \in \mathbb{K}}{\cap} H_{f_k}(\mathfrak{G}).$$

COROLLARY 4. The intersection of domains of holomorphy is a domain of holomorphy.

PROOF. From Proposition 3 the proof is obvious.

THEOREM 5. If $\mathcal{F} = A(\mathcal{G})$, then

$$H(\mathfrak{G}) \simeq \bigcap_{f \in A(\mathfrak{G})} H_f(\mathfrak{G}).$$

PROOF. It is enough to put $\mathscr{F} = A(\mathfrak{G})$ in Proposition 3.

REMARK. A class of Riemann domains over C^n with base point is a category whose objects are $\{(G, \pi, x)\}$, where $\mathfrak{G}:=(G, \pi, x)$ is a Riemann domain, π is a projection and $x \in G$. A morphism from (G, π, x) to (G', π', x') is a locally topological map ϕ from G to G' such that $\phi(x) = x'$. The intersection $\mathfrak{G} \cap \mathfrak{G}'$ then coincides with the *pull back* for π and π' .

References

- [1] Grauert, H. and Fritzsche, K., Einführung in die Funktionentheorie mehrerer Veränderlicher, Springer-Verlag, Berlin, Heidelberg, New York, 1974.
- [2] Malgrange, B., Lectures on the Theory of Functions of Several Complex Variables, Tata Institute of Fundamental Research, Bombay, 1958, 33-38.
- [3] Mitchell, B., Theory of Categories, Academic Press, New York and London, 1965.

[4] Narasimhan, R., Several Complex Variables, The University of Chicago Press, Chicago and London, 1971.

Department of Mathematics, Faculty of Science, Kumamoto University