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1. Introduction

The nonlinear vibration of a thin elastic plate can be represented by a
system of two nonlinear partial differential equations. For solving this system
by the finite element method, one of the present authors derived a stability
criterion with respect to the time increment 4¢ under a certain condition. The
purpose of this note is to show that this condition is unnecessary to ensure the
stability.

We consider the equations in the cylindrical domain @=(0, T) X £, being £
the shape of the plate. Let f be the Airy’s stress function and w the deflection
of the plate. Then the system of equations is

Wy, — dw,, + Lw=[f~+fo, wl+p,

where 4°and [f, w] denote the biharmonic operator and f,, wyy + fyy Wz — 2 zyWays
respectively. The functions » and f, correspond to given lateral loard and
a stress function derived from given plain-stress problem, respectively. We
assume that the boundary 882, p and f, are sufficiently smooth. The system (1.1)

is solved under the boundary condition f=w= Z—]; = % =0 on 02 and the initial
condition w| ;o= wo, G_L;)I“":wl’ where # is the outward normal to 0.2.

2. Approximating scheme.

We use (%, w) and ||%|| to denote the inner product and the norm in L,(2).
The space H is the completion of the set of all C*-functions with support in £
under the norm |wlz=1"(dw, 2w). By H we denote the finite element subspace
of H spanned by a finite element basis {¢;}((=1,..., K).

The approximating scheme presented in [1] is as follows. The interval [0, 7]
is divided into equal pieces of length 4¢=T/N by the points t=#n4t (#=0,1,...,N).




44 Tetsuhiko MIYOSHI and Makoto ARAKI

Then the approximate solution (f*,w™) at the time level #4¢ is determined by the

following system of equations in H.
@ D Uf", d¢) = — —;~ (" +w™ ™, W], ¢) for all ¢ € H,

(D.Daw", ) — (DD 4", )+ — (4™ + 0™, 4$)
2. 2 2 )
=({f"+ fo,w"l, &)+ ", ) for all ¢ € H,
where D, and D; are the forward and backward difference operators, respectively.

The initial conditions are approximated as
(2. 3> w0=7/i)0, w1=u)u+ u'}ldt,

where w denotes the interpolate of w in H. This scheme is well defined. Precise-
ly, the coefficient matrix to determine w™' is symmetric and positive definite
through all time steps (see [1]).

To analyze the approximating scheme it is conveniet to represent it by a

system of operator equations in H.
We define the following operators C and B by means of the Riesz represen-

tation theorem for bounded linear functional on H:

([u,v], )= (C(u,v),P)u for all p € H,
(, ) = (Bt ) mr for all ¢ € H.

Let P be the projection on H onto H. Then our scheme is represented on H as

follows.
n 1 n4l n-1 ,n
= = PC"  +uw"Hw™)
@. b PB(D,Dw" —D,D;dw™) + —;— W +w" ™
=PC(f"+f5,w™)+PBp".

As well known, the form ([#,v],w) is symmeric, that is,

(2. 5) ([o, v], w) = [v, 1], w) = ([w, u], v).

3. Stability in energy.

For proving the unconditional stability of our scheme, we provide the fol-

lowing lemma.
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LEMMA 1. Let {x,)(#=0,1,...,N) be a sequence of nonnegative numbers satis-

fying the following inequality.
Dt_xﬂgcl Xé + sz%;—ly

where the constants C;, C, are positive, and %, is given. Then, holds the fol-

lowing inequality for all #.
%% <x¥ + (Ci+CT.
PROOF. Consider the positive solution of the equation,
D; x, =C1x;’} + sz;%‘l R X =1x,.
This equation has a unique nonnegativé solution {«,} satisfying
(3. D 2, <%, and x=x<x << .- < Xy
Therefore, the following inequality holds for the sequence {x,)}.
D1, < (Ci+Cp) 4,2

We next consider the equation obtaind by equating the both sides of this inequal-

ity:

D;%,=Cx% where C=C;+C,, %,=nx,.
This equation has a unique nonnegative solution {x7,} satisfying,
3.2 %, <«x, and x=2,<x<x <0 <y
It is easy to see that x'f"g x;'_%l—l-CAzf. Hence we have
3. 3 X< 2F + CT.

The lemma follows from (3.1), (3.2) and (3.3).

Our conclution is then as follows.

THEOREM 1. Let E, be defined by
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Ey= D™+ [ Dao™ [§ + - 4™ P+ 4w + | PC ", ™D
+ - IPC@™, w Dy — 273l — | F3lE+ M,

where M= Max|fol#% and |w|i=|w.|*+ |w,|> Then, holds the following energy
t

inequality.

EX<E*+CT (n=1,2,.., N),
where C=2M‘t1x (”Dz‘ifouH‘i' “p”)

PROOF. Replacing ¢ by (w"*'—w"™")/4¢ in the both sides of the equation (2. 2),

we have the next equality.
(D D", w" —w" ) /a4t — (D Didw", w" Tt —w" ") / 4t
3. o +%(A(w"“+w"‘1), A"t —w") /4t
=4 fo,w ], w1t —w" D/ at+ (", w" T —w" D) /4t
Each term of the left side is written as follows.
(D, D", w"** —w" 1) /4t =D¢|| D" |%
— (D Didw™, w" ' —w" ) /at=D;|Dw|},
i N (P s S P )
On the other hand, by using the first equality of (2. 4) and the relation (2. 5), we
have
(L +fow" ], w* —w" ™) /at
— — Dl PCG™, w0l g+ (L F3, 0], w0 =™/ at

= — Dl PCw™, w |+ DiCPC@", 0™, Fdn

—(PCw",w" ™), D; f)u
= =Di [ T IPC @ wh Dl + - 1PCG, w0 —2f 25— 1313
—(PC@W",w" ™), D: f -

Since (@, w"'—w" ) /at=(p", D"+ Dw"™"), the equality (3. 4) is written as

follows.
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D; LD+ | Dau® 3 + - | + 4w + - | PCCw™, w5
1 n n n n
+ T”PC(W ;w" ) =270 E— 1ol E]
=—(PCW",w" ™), D: f)r+ (", D" + D" ).

Since M is constant, we have

D:E,<|PCw",w" )| | Dif 3+ 12" | IDaw™[ + | Daw™ )
<Q@ID:f i+ 18" DEa-F + 5" Eall %

Hence, by the lemma, we have the following estimation.
EX<Er+cCT,

where C=2 Max (|D;:follz + |2l). The theorem is thus proved.
¢

REMARK: In [1], the stability is proved under the condition

4t < 2/(3»/?)111!40leme |-
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