REMARK ON THE UNCONDITIONAL STABILITY OF A FINITE ELEMENT SCHEME FOR NONLINEAR PLATE PROBLEMS

Tetsuhiko MIYOSHI and Makoto ARAKI

(Received Dec. 21, 1978)

1. Introduction

The nonlinear vibration of a thin elastic plate can be represented by a system of two nonlinear partial differential equations. For solving this system by the finite element method, one of the present authors derived a stability criterion with respect to the time increment Δt under a certain condition. The purpose of this note is to show that this condition is unnecessary to ensure the stability.

We consider the equations in the cylindrical domain $Q=(0,\ T)\times \mathcal{Q}$, being \mathcal{Q} the shape of the plate. Let f be the Airy's stress function and w the deflection of the plate. Then the system of equations is

(1. 1)
$$\begin{cases} \Delta^2 f = -\lceil w, w \rceil \\ w_{tt} - \Delta w_{tt} + \Delta^2 w = \lceil f + f_0, w \rceil + p, \end{cases}$$

where \mathcal{A}^2 and [f, w] denote the biharmonic operator and $f_{xx} w_{yy} + f_{yy} w_{xx} - 2f_{xy}w_{xy}$, respectively. The functions p and f_0 correspond to given lateral loard and a stress function derived from given plain-stress problem, respectively. We assume that the boundary $\partial \mathcal{Q}$, p and f_0 are sufficiently smooth. The system (1.1) is solved under the boundary condition $f = w = \frac{df}{dn} = \frac{dw}{dn} = 0$ on $\partial \mathcal{Q}$ and the initial condition $w \Big|_{t=0} = w_0$, $\frac{\partial w}{\partial t} \Big|_{t=0} = w_1$, where n is the outward normal to $\partial \mathcal{Q}$.

2. Approximating scheme.

We use (u, w) and ||u|| to denote the inner product and the norm in $L_2(\Omega)$. The space H is the completion of the set of all C^{∞} -functions with support in Ω under the norm $||w||_H = \sqrt{(\Delta w, \Delta w)}$. By \hat{H} we denote the finite element subspace of H spanned by a finite element basis $\{\phi_i\}$ $(i=1,\ldots,K)$.

The approximating scheme presented in [1] is as follows. The interval [0, T] is divided into equal pieces of length $\Delta t = T/N$ by the points $t = n\Delta t$ (n = 0, 1, ..., N).

Then the approximate solution (f^n, w^n) at the time level $n\Delta t$ is determined by the following system of equations in \hat{H} .

(2. 1)
$$(\Delta f^n, \Delta \phi) = -\frac{1}{2} ([w^{n+1} + w^{n-1}, w^n], \phi)$$
 for all $\phi \in \hat{H}$,

where D_t and $D_{\bar{t}}$ are the forward and backward difference operators, respectively. The initial conditions are approximated as

(2. 3)
$$w^0 = \dot{w}_0, \ w^1 = \dot{w}_0 + \dot{w}_1 \Delta t,$$

where \dot{w} denotes the interpolate of w in \hat{H} . This scheme is well defined. Precisely, the coefficient matrix to determine w^{n+1} is symmetric and positive definite through all time steps (see [1]).

To analyze the approximating scheme it is conveniet to represent it by a system of operator equations in H.

We define the following operators C and B by means of the Riesz representation theorem for bounded linear functional on H:

$$([u,v],\phi) = (C(u,v),\phi)_H$$
 for all $\phi \in H$,
 $(u,\phi) = (Bu,\phi)_H$ for all $\phi \in H$.

Let P be the projection on H onto \widehat{H} . Then our scheme is represented on H as follows.

$$f^{n} = -\frac{1}{2} PC(w^{n+1} + w^{n-1}, w^{n})$$

$$(2. 4) PB(D_{t}D_{\bar{t}}w^{n} - D_{t}D_{\bar{t}}\Delta w^{n}) + \frac{1}{2} (w^{n+1} + w^{n-1})$$

$$= PC(f^{n} + f_{0}^{n}, w^{n}) + PBp^{n}.$$

As well known, the form ([u, v], w) is symmetric, that is,

$$(2. 5) ([u, v], w) = [v, u], w) = ([w, u], v).$$

3. Stability in energy.

For proving the unconditional stability of our scheme, we provide the following lemma.

LEMMA 1. Let $\{x_n\}$ $(n=0,1,\ldots,N)$ be a sequence of nonnegative numbers satisfying the following inequality.

$$D_{\bar{t}}x_n \leq C_1 x_n^{\frac{1}{2}} + C_2 x_{n-1}^{\frac{1}{2}},$$

where the constants C_1 , C_2 are positive, and x_0 is given. Then, holds the following inequality for all n.

$$x_n^{\frac{1}{2}} \leq x_0^{\frac{1}{2}} + (C_1 + C_2)T.$$

PROOF. Consider the positive solution of the equation,

$$D_{\bar{t}} x'_n = C_1 x'_n^{\frac{1}{2}} + C_2 x'_{n-1}^{\frac{1}{2}}, \qquad x'_0 = x_0.$$

This equation has a unique nonnegative solution $\{x'_n\}$ satisfying

$$(3. 1) x_n \leq x'_n \text{ and } x_0 = x'_0 \leq x'_1 \leq x'_2 \leq \cdots \leq x'_N.$$

Therefore, the following inequality holds for the sequence $\{x'_n\}$.

$$D_{\bar{t}} x'_n \leq (C_1 + C_2) x'_n^{\frac{1}{2}}.$$

We next consider the equation obtaind by equating the both sides of this inequality:

$$D_{\bar{t}} x_n'' = C x_n'^{\frac{1}{2}}$$
 where $C = C_1 + C_2$, $x_0'' = x_0'$.

This equation has a unique nonnegative solution $\{x_n''\}$ satisfying,

$$(3. 2) x_n' \leq x_n'' \text{ and } x_0' = x_0'' \leq x_1'' \leq x_2'' \leq \cdots \leq x_N''.$$

It is easy to see that $x_n^{\prime\prime} \stackrel{1}{=} \leq x_{n-1}^{\prime\prime} + C \Delta t$. Hence we have

$$(3. 3) x_n^{''\frac{1}{2}} \leq x_0^{''\frac{1}{2}} + CT.$$

The lemma follows from (3.1), (3.2) and (3.3).

Our conclution is then as follows.

THEOREM 1. Let E_n be defined by

$$\begin{split} E_n &= \|D_t w^n\|^2 + |D_t w^n|_1^2 + \frac{1}{2} \|\varDelta w^{n+1}\|^2 + \frac{1}{2} \|\varDelta w^n\|^2 + \frac{1}{4} \|PC(w^n, w^{n+1})\|_H^2 \\ &+ \frac{1}{4} \|PC(w^n, w^{n+1}) - 2f_0^n\|_H^2 - \|f_0^n\|_H^2 + M, \end{split}$$

where $M = \max_{t} \|f_0\|_H^2$, and $\|w\|_1^2 = \|w_x\|^2 + \|w_y\|^2$. Then, holds the following energy inequality.

$$E_n^{\frac{1}{2}} \le E_0^{\frac{1}{2}} + CT$$
 $(n=1,2,...,N),$

where $C = 2Max (\|D_{\bar{t}}f_0\|_H + \|p\|)$.

PROOF. Replacing ϕ by $(w^{n+1}-w^{n-1})/4t$ in the both sides of the equation (2. 2), we have the next equality.

$$(D_{t}D_{\bar{t}}w^{n}, w^{n+1} - w^{n-1})/\Delta t - (D_{t}D_{\bar{t}}\Delta w^{n}, w^{n+1} - w^{n-1})/\Delta t$$

$$+ \frac{1}{2}(\Delta(w^{n+1} + w^{n-1}), \Delta(w^{n+1} - w^{n-1}))/\Delta t$$

$$= ([f^{n} + f_{0}^{n}, w^{n}], w^{n+1} - w^{n-1})/\Delta t + (f^{n}, w^{n+1} - w^{n-1})/\Delta t.$$

Each term of the left side is written as follows.

$$\begin{split} (D_t D_{\bar{t}} w^n, w^{n+1} - w^{n-1}) / \varDelta t = & D_{\bar{t}} \| D_t w^n \|^2, \\ & - (D_t D_{\bar{t}} \varDelta w^n, w^{n+1} - w^{n-1}) / \varDelta t = & D_{\bar{t}} | D_t w |_1^2, \\ & \frac{1}{2} \left(\varDelta \left(w^{n+1} + w^{n-1} \right), \ \varDelta (w^{n+1} - w^{n-1}) \right) / \varDelta t = \frac{1}{2} \ D_{\bar{t}} (\| \varDelta w^{n+1} \|^2 + \| \varDelta w^n \|^2). \end{split}$$

On the other hand, by using the first equality of (2.4) and the relation (2.5), we have

$$\begin{split} ([f^{n}+f_{0}^{n},w^{n}],w^{n+1}-w^{n-1})/4t \\ &=-\frac{1}{2}D_{\bar{t}}\|PC(w^{n},w^{n+1})\|_{H}^{2}+([f_{0}^{n},w^{n}],w^{n+1}-w^{n-1})/4t \\ &=-\frac{1}{2}D_{\bar{t}}\|PC(w^{n},w^{n+1})\|_{H}^{2}+D_{\bar{t}}(PC(w^{n},w^{n+1}),f_{0}^{n})_{H} \\ &-(PC(w^{n},w^{n-1}),D_{\bar{t}}f_{0}^{n})_{H} \\ &=-D_{\bar{t}}\left[\frac{1}{4}\|PC(w^{n},w^{n+1})\|_{H}^{2}+\frac{1}{4}\|PC(w^{n},w^{n+1})-2f_{0}^{n}\|_{H}^{2}-\|f_{0}^{n}\|_{H}^{2}\right] \\ &-(PC(w^{n},w^{n-1}),D_{\bar{t}}f_{0}^{n})_{H}. \end{split}$$

Since $(p^n, w^{n+1} - w^{n-1})/4t = (p^n, D_t w^n + D_t w^{n-1})$, the equality (3. 4) is written as follows.

$$\begin{split} D_{\bar{t}} \left[\|D_{t}w^{n}\|^{2} + |D_{t}w^{n}|_{1}^{2} + \frac{1}{2} \|w^{n+1}\|^{2} + \frac{1}{2} \|\Delta w^{n}\|^{2} + \frac{1}{4} \|PC(w^{n}, w^{n+1})\|_{H}^{2} \right. \\ & + \frac{1}{4} \|PC(w^{n}, w^{n+1}) - 2f_{0}^{n}\|_{H}^{2} - \|f_{0}^{n}\|_{H}^{2}] \\ &= - \left(PC(w^{n}, w^{n-1}), D_{\bar{t}} f_{0}^{n} \right)_{H} + \left(p^{n}, D_{t}w^{n} + D_{t}w^{n-1} \right). \end{split}$$

Since M is constant, we have

$$D_{\bar{t}}E_{n} \leq \|PC(w^{n}, w^{n-1})\|_{H} \|D_{\bar{t}}f_{0}^{n}\|_{H} + \|p^{n}\|(\|D_{t}w^{n}\| + \|D_{t}w^{n-1}\|)$$

$$\leq (2\|D_{\bar{t}}f_{0}^{n}\|_{H} + \|p^{n}\|)E_{n-1}^{\frac{1}{2}} + p^{n}\|E_{n}\|^{\frac{1}{2}}.$$

Hence, by the lemma, we have the following estimation.

$$E_n^{\frac{1}{2}} \leq E_0^{\frac{1}{2}} + CT$$
,

where C=2 Max $(\|D_{\bar{i}}f_0\|_H+\|p\|)$. The theorem is thus proved.

REMARK: In [1], the stability is proved under the condition

$$\Delta t < 2/(3\sqrt{3}) Max |D^{\alpha} f_0^n|.$$

Reference

[1] T. Miyoshi: An unconditionally stable implicit finite element scheme for solving nonlinear dynamical problems of elastic plates, FUNCTIONAL ANALYSIS AND NUMERICAL ANALYSIS. Japan-France Seminar, Tokyo and Kyoto, 1976; H. Fujita (Ed.), Japan Society for the Promotion of Science, 1978.

Department of Mathematics Faculty of Science Kumamoto University

Ariake Technical College