## ON FONG'S REDUCTIONS

Atumi WATANABE

(Received Dec. 22, 1978)

P. Fong gave many interresting results on modular representations of p-solvable groups, p a prime. In his work two reductions (theorems (2B) and (2D) in Fong [3]) play an important rôle. On the second reduction (Theorem (2D) in [3], W. Feit improves it in [2] ((1.1) and (1.2) of Chapter X). Our paper concerns the reductions. In § 1, we shall supply the gap of the proof of (1.1) and give a remark to (1.1) applying our argument. In § 2, we shall give a remark to Theorem (3C) in [3] by using the reductions.

## § 1

(1.1) in [2] is described as follows:

Let G be a finite group and let  $H \triangleleft G$ . Let  $\zeta$  be an irreducible character of H. Assume that  $G = T(\zeta)$ , the inertia group of  $\zeta$ . Let F be an algebraically closed field such that char  $F \nmid |H|$ . Let V be an irreducible F[H]-module which affords  $\zeta$ . Then there exist a finite group  $\widetilde{G}$  and an exact sequence

$$(1) \qquad \langle 1 \rangle \longrightarrow Z \longrightarrow \tilde{G} \xrightarrow{f} G \longrightarrow \langle 1 \rangle$$

which satisfy the following conditions (i) and (ii).

- (i) Z is a cyclic group in the center of  $\widetilde{G}$  and  $|Z| \, ||\, H|^2$ . Also  $\widetilde{G}$  contains a normal subgroup  $\widetilde{H}$  such that  $Z\widetilde{H} = Z \times \widetilde{H} = f^{-1}(H)$ . The group  $\widetilde{G}$  depends only on G and  $\zeta$ , in particular it is independent of the choice of F.
- (ii) Let  $F_1$  be the subfield of F generated by a primitive  $|H|^2$ -th root of unity. There exists an  $F_1[\tilde{G}]$ -module  $\tilde{V}_1$  such that if  $\tilde{V} = \tilde{V}_1 \otimes_{F_1} F$  then  $f(\tilde{V}_{\tilde{H}}) \cong V$ .

Further the following holds for the group  $\widetilde{G}$ . If W is an irreducible F[G]-module such that V is a constituent of  $W_H$ , then  $W \cong \widetilde{V} \otimes \widetilde{W}$  for some absolutely irreducible  $F[\widetilde{G}/\widetilde{H}]$ -module  $\widetilde{W}$ . Let  $\Delta(F)$  be the set of all Brauer characters afforded by irreducible F[G]-modules W such that V is a constituent of  $W_H$ . Let  $\widetilde{\Delta}(F)$  be the set of all Brauer characters afforded by irreducible  $F[\widetilde{G}/\widetilde{H}]$ -modules U such that Z is in the kernel of  $\widetilde{V} \otimes U$ . Then the map sending W to  $\widetilde{W}$  induces a one to one mapping from  $\Delta(F)$  onto  $\widetilde{\Delta}(F)$ .

We recall the part of the proof of (1.1), which we discuss in this section. Let F' be a field with  $F_1 \subseteq F' \subseteq F$ . Let V' be an irreducible F'[H]-module which affords  $\zeta$  and A be a representation with underlying module V'. Let  $S = \{\det A(y) \mid y \in H\}$ . For  $x \in G$  let  $N_x$  be the set of all linear transformations z on V' such that  $z^{-1}A(y)z = A(x^{-1}yx)$  for all  $y \in H$  and such that  $\det z \in S$ . Then

$$(*)$$
  $N_r \neq \phi$ 

for each  $x \in G$ . The proof of (\*) is not complete. We have showed in [4] that (\*) is true when  $F_1$  is the subfield of F generated by a primitive  $\zeta(1)|H|-th$  root of unity. Using the following Lemma, here, we show (\*) remains valid if  $F_1$  is the subfield of F generated by a primitive  $(d, 2\bar{n})h-th$  root of unity, where  $d = \zeta(1), h = |H|$  and  $\bar{n}$  is the exponent of G/H.

LEMMA Let G be a group of finite order g and F be an algebraically closed field with char  $F \nmid g$ . Let T be an irreducible representation of G over F with degree d and s be the order of det T, that is, s the smallest natural number such that  $(\det T(x))^s = 1$  for all  $x \in G$ . Then we have  $ds \mid 2g$ .

PROOF We prove by induction on g. Let G' be the commutator subgroup of G. If G'=G or <1>, then the lemma is trivial. We assume that G' is a proper subgroup of G, then there exists a normal subgroup N of G such that the index |G:N| of N in G is a prime, say I. Let  $T_0$  be an irreeducible constituent of  $T_N$ , the restriction of T to N, and  $S_0$  be the order of G.

If  $T_N$  is irreducible, then  $T_N = T_0$  and

$$(\det T(x))^l = \det T_0(x^l)$$
 (for all  $x \in G$ ).

Hence

$$(\det T(x))^{ls_0} = (\det T_0(x^l))^{s_0} = 1$$
 (for all  $x \in G$ ).

Thus, we have  $s \mid ls_0$ . Therefore, by the induction hypothesis, we see  $ds \mid 2g$ . If  $T_N$  is not irreducible then, by Clifford's theorem, we see that  $T = T_0^G$ .

Therefore, for  $x \in G$ , there exists  $y_i \in N$  (i=1,2,...,l) such that

$$\det T(x) = \pm \det T_0(y_1) \det T_0(y_2) \cdots \det T_0(y_l).$$

Hence we have

(2) 
$$(\det T(x))^{s_0} = (\pm 1)^{s_0}.$$

If  $s_0$  is even, then  $(\det T(x))^{s_0}=1$  for all  $x \in G$ , that is,  $s \mid s_0$ . Hence we see  $ds \mid 2g$  by the induction hyothesis. If  $s_0$  is odd, then we can see that  $\deg T_0 \cdot s_0 = (d/l)s_0 \mid |N|$  by the induction hypothesis. On the other hand, from (2), we see  $(\det T(x))^{2s_0}=1$  for all  $x \in G$ , hence  $s \mid 2s_0$ . Therefore, we see  $ds \mid 2g$ . This completes the proof.

REMARK Since  $N_x$  for x=1 can be taken as Z of exact sequence (1), by Lemma, we may replace  $|Z| | h^2$  in (i) of (1. 1) by |Z| | (d, 2)h. In particular, if d is odd the |Z| | h.

PROOF OF (\*) We may assume that char F=0 and A is a matrix representation over  $F_0$ , where  $F_0$  is the subfield of F generated by a primitive h-th root of unity. Let x be a fixed element of G. Since A and  $A^{(x)}$  are equivalent in  $F_0$ , there exists  $Z_0 \in GL(d, F_0)$  such that

(3) 
$$Z_0^{-1}A(y)Z_0 = A^{(x)}(y) = A(x^{-1}yx)$$
 (for all  $y \in H$ ).

We set  $z = \lambda Z_0$ ,  $\lambda^d = (\det Z_0)^{-1}$ . We have

$$\det z = 1,$$

$$(5) z^{-1}A(y) z = A(x^{-1}yx) (for all y \in H),$$

(6) 
$$z^{d} = (\det Z_{0})^{-1}Z_{0}^{d} \in GL(d, F_{0}).$$

If we denote by  $\bar{x}$  the element of the residue class group G/H represented by x and by  $o(\bar{x})$  the order of  $\bar{x}$ , then

$$z^{-o(\bar{x})}A(y)\;z^{o(\bar{x})}\!=\!A(x^{-o(\bar{x})}yx^{o(\bar{x})})\!=\!A(x^{o(\bar{x})})^{-1}A(y)A(x^{[o(\bar{x})})$$

for all  $y \in H$ . Hence by Schur's lemma we may write

$$z^{o(\bar{x})} = \eta A(x^{o(\bar{x})})$$
  $(\eta \in F).$ 

From (4),  $\eta^{a|S|} = 1$ . Since, by Lemma,  $\eta$  is a (d, 2)h-th root of unity, we have  $\eta \in F_1$ ,

$$z^{o(\bar{z})} \in GL(d, F_1),$$

(8) 
$$z^{2o(\bar{x})h} = I$$
 (identity matrix).

From (6) and (7), we see that if  $o(\bar{x})$  and d are relatively prime, then  $z \in GL(d, F_1)$  and so  $N_x$  is not empty.

We consider the group  $\langle z, A(y) | y \in H \rangle$  generated by z and  $A(y), y \in H$ . By (5) and (8), the order of the group is finite and the exponent of it divides  $2o(\bar{x})h$ , for  $\eta^{2h}=1$ . Hence, by Brauer's theorem ([1, Theorem 1]) there exists a non-singular matrix P over F such that  $P^{-1}zP$ ,  $P^{-1}A(y)P$  ( $y \in H$ ) are matrices over  $F_2$ , where  $F_2$  is the subfield of F generated by a primitive  $2o(\bar{x})h-th$  root  $2o(\bar{x})h\sqrt{1}$  of unity. Hence  $P^{-1}AP$  is a representation of H over  $F_2$ . Hence there exists  $Q \in GL(d, F_2)$  such that

$$Q^{-1}(P^{-1}A(y)P) Q = A(y)$$
 (for all  $y \in H$ ).

By Schur's lemma, PQ is a scalar matrix and

$$z = (PQ)^{-1}z(PQ) = Q^{-1}(P^{-1}zP)Q \in GL(d, F_2).$$

Hence  $\lambda \in F_2$ .

Case  $I(2 \nmid d \text{ or } 4 \mid h)$  To show that  $N_x \neq \phi$ , we may assume  $o(\bar{x}) = q^a$ , q a prime. Further we may assume  $q \mid d$ , since  $N_x \neq \phi$  when  $(o(\bar{x}), d) = 1$ . In this case  $F_2 = F_0(\frac{2o(\bar{x})h}{\sqrt{1}})$  is a cyclic extension over  $F_0$  with degree  $(h, 2)o(\bar{x})$ . Hence, if we set  $(F_0(\lambda): F_0) = m$ , then

$$m \mid (h, 2) o(\bar{x}), \quad F_0(\lambda) = F_0(^{mh}\sqrt{1}).$$

On the other hand,  $m \mid d$ , since  $\lambda^d$ ,  $\sqrt[d]{1} \in F_0$ . Hence,  $mh \mid (d, 2\bar{n}) \ h$  and  $F_0(\lambda) \subseteq F_1$ . Therefore,  $z \in GL(d, F_1)$  and  $z \in N_x$ . This completes the proof in this case.

Case II  $(2 \mid d \text{ and } 4 \nmid h)$  Let  $y_0$  be an involution of H. In this case,  $\langle y_0 \rangle$  is a 2-Sylow subgroup of H. By Burnside's theorem, H has a normal 2-complement  $H_0$ . Since  $2 \mid d$  and  $H_0$  is a 2'-group, by Clifford's theorem, there exists an irreducible character  $\zeta_0$  of  $H_0$  such that  $\zeta = \zeta_0^H$  and  $\zeta_{H_0} = \zeta_0 + \zeta_0^{(y_0)}$ . Let  $A_0$  be a matrix representation of  $H_0$  over  $F_0$  which affords  $\zeta_0$ . We may assume that

$$(9) A(y) = \begin{pmatrix} A_0(y) & 0 \\ 0 & A_0(y_0^{-1}yy_0) \end{pmatrix} (y \in H_0), A(y_0) = \begin{pmatrix} 0 & I_0 \\ I_0 & 0 \end{pmatrix},$$

where  $I_0$  is the identity matrix of degree d/2.

Since  $\langle y_0 \rangle$  is a 2-Sylow subgroup of H,  $G=H \cdot N_G(\langle y_0 \rangle) = H \cdot C_G(y_0)$ . Hence we may assume  $x \in C_G(y_0)$ , because  $N_x \neq \phi$  is evident for  $x \in H$ . Since the inertia group  $T(\zeta)$  is G,  $\zeta_0^{(x)} = \zeta_0$  or  $\zeta_0^{(y_0)}$ . Hence we may also assume that  $\zeta_0^{(x)} = \zeta_0$ , replacing x by  $xy_0$  if  $\zeta_0^{(x)} = \zeta_0^{(y_0)}$ .

We set  $\tilde{x} = xH_0 ((< x, H_0 > /H_0))$  and  $|H_0| = h_0$ . Let  $F_1'$  be the subfield of F generated by a primitive  $(d/2, 2o(\tilde{x}))h_0$ -th root of unity. From Case I, in which

 $\langle x, H_0 \rangle$ ,  $H_0$  and  $\zeta_0$  are taken as G, H and  $\zeta$ , there exists a non-singular matrix Z' over  $F_1$  such that

(10) 
$$(Z')^{-1}A_0(y) Z' = A_0(x^{-1}yx)$$
 (for all  $y \in H_0$ ), det  $Z' = 1$ .

Since d/2 is odd and  $o(\bar{x}) | o(\tilde{x}) | 2o(\bar{x})$ , we have

$$(d/2, 2o(\tilde{x}))h_0 = (d/2, o(\tilde{x}))h_0 | (d, 2\bar{n})h,$$

hence  $F_1' \subseteq F_1$ . If we set

$$Z_1 = \begin{pmatrix} Z' & 0 \\ 0 & Z' \end{pmatrix}$$

then  $Z_1 \in GL(d, F_1)$ . From (9), (10) and the hypothesis  $x \in C_G(y_0)$ , we see det  $Z_1$  =1 and

$$Z_1^{-1}A(y)Z_1 = A(x^{-1}yx)$$
 (for all  $y \in H$ ).

Hence  $N_x \neq \phi$ , as required. This completes the proof.

## § 2

Let p be a fixed prime and G be a p-solvable group of finite order. Let B be a p-block with defect group D and  $p^c$  be the index of the center Z(D) in D. For an ordinary irreducible character  $\chi \in B$ , denote by  $h(\chi)$  the height of  $\chi$ . P. Fong showed that

$$h(\gamma) \leq c$$

holds for every  $\chi \in B$  ([3, Theorem (3C)]). To the Fong's result we add the following.

PROPOSITION Let p be a prime and G be a p-solvable group of finite order g. Let B be a p-block with defect group D and  $p^c$  be the index of Z(D) in D. If

$$h(\chi) = c$$
 (for some  $\chi \in B$ ),

then D is abelian.

PROOF We prove by induction on g. The proposition is trivial for p'-groups. By reduction theorems (2B) and (2D) in [3], we may assume that B is a block with maximum defect, that is, D is a p-Sylow subgroup of G. Let H be a maximal

normal subgroup of G and b be a block of H covered by B. b is of maximum defect and has a defect group  $D_0 = D \cap H$ . If  $p \nmid |G:H|$  then, by the induction hypothesis, we can easily see that D is abelian. So we may assume |G:H| = p. Let  $\zeta$  be an irreducible constituent of  $\chi_H$  belonging to b.

First we show  $Z(D) \not \equiv H$ . Assume  $Z(D) \not \equiv H$ . Then  $Z(D) \not \equiv Z(D_0)$ . Hence  $\nu(|D:Z(D)| > \nu(|D_0:Z(D_0)|)$ , where if n is a non-zero integer then  $p^{\nu(n)}$  is the heighest power of p which divides n. On the other hand, if  $\chi_H$  is irreducible, then  $\chi_H = \zeta$  and we have, by [3, Theorem (3C)],

$$\nu(|D_0:Z(D_0)|) \ge h(\zeta) = \nu(\zeta(1)) = \nu(\chi(1)) = h(\chi),$$

therefore

$$\nu(|D:Z(D)|)>h(\chi).$$

This contradicts the assumption of Proposition. If  $\chi_H$  is not irreducible, then  $\chi = \zeta^G$  and

$$\nu(|D_0:Z(D_0)|) \ge h(\zeta) = \nu(\zeta(1)) = \nu(|D_0:Z(D)|) \ge \nu(|D_0:Z(D_0)|).$$

Hence, we have

$$\nu(|D_0:Z(D_0)|)=h(\zeta), \quad Z(D_0)=Z(D).$$

By the induction hypothesis,  $D_0$  is abelian and  $Z(D_0) = D_0$ . Therefore D is abelian, which yields a contradiction. Hence  $Z(D) \nsubseteq H$ . Therefore by [3, Lemma (3B)],  $\chi_H$  is irreducible and

$$\nu(|D_0: Z(D_0)|) \ge h(\zeta) = h(\chi) = \nu(|D: Z(D)|)$$
  
=  $\nu(|D_0: Z(D) \cap D_0|) \ge \nu(|D_0: Z(D_0)|).$ 

Hence the equalities

$$h(\zeta) = \nu(|D_0: Z(D_0)|), \quad Z(D) \cap D_0 = Z(D_0)$$

hold. By the induction hypothesis,  $D_0$  is abelian and  $D_0 = Z(D_0) \subseteq Z(D)$ . Hence D is abelian. This completes the proof.

## References

- [1] R. Brauer, Applications of induced characters. Amer. J. Math. 69 (1947), 709-716.
- W. Feit, Representations of finite groups Part II. (mimeographed note), Math. Dept., Yale Univ., New Haven Connecticut, (1975).
- [3] P. Fong, On the characters of p-solvable groups. Trans. Amer. Math. Soc. 98 (1961), 263-284.
- [4] K. Iizuka and A. Watanabe, A remark on the representations of finite groups V. Mem. Fac. Gen. Ed., Kumamoto Univ., 14(1979), 1-8 (to appear).

Department of Mathematics Faculty of Science Kumamoto University