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P. Fong gave many interresting results on modular representations of p-
solvable groups, p a prime. In his work two reductions (theorems (2B) and (2D)
in Fong [3]) play an important réle. On the second reduction (Theorem (2D) in
[3], W. Feit improves it in [2] ((1.1) and (1. 2) of Chapter X). Our paper
concerns the reductions. In § 1, we shall supply the gap of the proof of (1. 1) and
give a remark to (1. 1) applying our argument. In §2, we shall give a remark to
Theorem (3C) in [3] by using the reductions.

§ 1

(1.1) in [2] is described as follows:

Let G be a finite group and let H<]G. Let £ be an irreducible character of H.
Assume that G=T({), the inertia group of {. Let F be an algebraically closed
field such that char FY|H|. Let V be an irreducible F[H]-module which affords
. Then there exist a finite group G and an exact sequence

(1) <A>—Z—GL6—<1>

which satisfy the following conditions (i) and (ii).

(i) Zis a cyclic group in the center of G and |Z| ||HI%. Also G contains a
normal subgroup H such that ZFI=Z><Ia~T=f"1(H). The group & depends only on
G and ¢, in particular it is independent of the choice of F.

(ii) Let F; be the subfield of F generated by a primitive |H|*-th root of
unity. There exists an F.[G]-module V, such that if I7=I71®F1 F then f(ﬁg)%V.

Further the following holds for the group G. If W is an irreducible F[Gl-
module such that V is a constituent of Wy, then W“=JI7®W for some absolutely
irreducible F[é/ﬁ]—module W. Let A(F) be the set of all Brauer characters
afforded by irreducible F [G]-modules W such that V is a constituent of Wg. Let
4 (F) be the set of all Brauer characters afforded by irreducible F[é/f]]—modules
U such that Z is in the kernel of I7®U. Then the map sending W to W induces
a one to one mapping from 4(F) onto Z(F).
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We recall the part of the proof of (1. 1), which we discuss in this section.
Let F' be a field with F;&F'CF. Let V' be an irreducible F/[H]-module which
affords ¢ and A be a representation with underlying module V'. Let S= {det A(»)|
y€ H}. For x€ G let N, be the set of all linear transformations z on V' such that
zTA(»z=A(x"yx) for all y€ H and such that det z€ S. Then

(%) N:# ¢

for each x € G. The proof of () is not complete. We have showed in [4] that
() is true when F, is the subfield of F generated by a primitive ¢(1) |H |~th root
of unity. Using the following Lemma, here, we show (*) remains valid if F; is
the subfield of F' generated by a primitive (d, 2@)h-th root of unity, where d
={(1), = |H| and 7 is the exponent of G/H.

LEMMA Let G be a group of finite order g and F be an algebraically closed
field with char Fyg. Let T be an irreducible representation of G over F with degree
d and s be the order of det T, that is, s the smallest natural number such that
(det T(x))'=1 for all x€ G. Then we have ds | 2g.

PROOF We prove by induction on g Let G’ be the commutator subgroup of
G. If G'=G or <1>, then the lemma is trivial. We assume that G’ is a proper
subgroup of G, then there exists a normal subgroup N of G such that the index
|G: N| of N in G is a prime, say I. Let T, be an irreeducible constituent of T,
the restriction of T to NN, and s, be the order of det 7.

If Ty is irreducible, then Ty=T, and

(det T(x)) ' =det To(x" (for all x€ G).
Hence
(det T () 0= (det To(x))0=1 (for all x € G).

Thus, we have s | Is,, Therefore, by the induction hypothesis, we see ds|2g.
If Ty is not irreducible then, by Clifford’s theorem, we see that T=T,°%
Therefore, for x € G, there exists ;€ N (:=1,2,..., [) such that

det T'(x) = £ det To(y1) det To(3,)- - det To(y).

Hence we have

2> (det T(x)o=(£1)%.
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If s, is even, then (det T'(x))%=1 for all x€ G, that is, s | s, Hence we see ds | 2g
by the induction hyothesis. If s, is odd, then we can see that deg Ty~ sy="(d/I)s,
|[IN| by the induction hypothesis. On the other hand, from (2), we see
(det T(x))*=1 for all x€ G, hence s|2s,. Therefore, we see ds|2g This
completes the proof.

REMARK Since N, for =1 can be taken as Z of exact sequence (1), by Lemma,
we may replace |Z|| ¥ in (i) of (1. 1) by |Z||(@, 2h. In particular, if d is odd
the |Z||h.

PROOF OF (*) We may assume that char F =0 and A is a matrix represen-
tation over F, where F, is the subfield of F generated by a primitive A-tk root
of unity. Let x be a fixed element of G. Since A and A" are equivalent in F,,
there exists Z, € GL (d, F,) such that

(3) Zy AN Zy=AP(y) =A(x"yx) (for all y € H).

We set z=21Z,, 1*=(det Z)™>. We have

(4) detz=1,
(5) 2TA(Y) z=A(x " yx) (for all y € H),
(6) 2'=(det Z)'Z," € GL (d, Fy).

If we denote by % the element of the residue class group G/H represented by x

and by o(%) the order of %, then
2D A(y) 220 = A(x "D yxo D) = A(x°P) A9 A(x )
for all y € H. Hence by Schur’s lemma we may write
22D =7 A(x°) (€ F).

From (4), »"¥=1. Since, by Lemma, y is a (d, 2)h-th root of unity, we have
7 E Fl’

(7) #9 ¢ GL (d, F,

(8) 22 =T (identity matrix).

From (6) and (7), we see that if o( %) and d are relatively prime, then z € GL(d, F1)

and so N, is not empty.
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We consider the group <2, A(y)|y€ H> generated by z and A(y), y€ H.
By (5) and (8), the order of the group is finite and the exponent of it divides
20(%)h, for y*=1. Hence, by:Brauer’s theorem ([1, Theorem 1]) there exists
a non-singular matrix P over F such that P™'zP, P'A(y)P (y€ H) are matrices
over F,, where F, is the subfield of F generated by a primitive 20(x)k-th root
2% /1" of unity. Hence PT'AP is a representation of H over F, Hence there
exists Q € GL (d, F,) such that

QI (PTAMP) Q=AW (for all y € HD.
By Schur’s lemma, PQ is a scalar matrix and
z=(PQ)'2(PQ)=Q (P ™2P)Q € GL(d, F>,).

Hence A€ F,.

Case I (24d or 4|k) To show that N,7#¢, we may assume 0(X)=¢" ¢ a prime.
Further we may assume ¢ | d, since N,7¢ when (0(%), d)=1. In this case F,
=Fo(*®"%/71) is a cyclic extension over F, with degree (%, 2)o(%X). Hence, if we
set (Fy(A): Fy)=m, then

m| (B 2)0(%), Fo(D)=F,("71).

On the other hand, m | d, since 2% %1 € F,. Hence, mh|(d, 27) h and Fy()F,.
Therefore, z€ GL(d, F,) and z€ N,. This completes the proof in this case.

Case II (2|d and 4fh) Let y, be an involution of H. In this case, <> is a
2-Sylow subgroup of H. By Burnside’s theorem, H has a normal 2-complement
H,. Since 2|d and H, is a 2'-group, by Clifford’s theorem, there exists an irreducible
character {, of H, such that (=0 and (z,=&+C"Y?. Let A, be a matrix repre-
sentation of H, over F, which affords {,. We may assume that

Ao(» 0

' Ao<y0—1yyo>) e, AGo=() I">,

9 A =
(9) S ( Lo

where I, is the identity matrix of degree d/2.

Since <y,> is a 2-Sylow subgroup of H, G=H-+- Ng(< 9 >)=H-+ Cgz(y).
Hence we may assume % € Cz(3,), because N,#¢ is evident for x € H. Since the
inertia group T°(0) is G, & =¢, or £,'Y?. Hence we may also assume that '™ =¢,
replacing x by xy, if =g, 79.

We set ¥=xH,(¢<x, Hy,>/H,) and |Hy|=h, Let F,/ be the subfield of F
generated by a primitive (d/2, 20(%))h,th root of unity. From Case I, in which
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<x, Hy>, H, and &, are taken as G, H and {, there exists a non-singular matrix
Z' over F{ such that

10 (ZNA(y) Z'=Ay(x"lyx)  (for all y € Hy), det Z'=1.
Since d/2 is odd and 0(%) | o(%) | 20(%), we have
(@/2, 200Z)he=(d/2, 0(X)Nho| (d, 27},

hence F/CF, If we set

Z 0

z=(y )

0o Z

then Z; € GL(d, F;). From (9), (10) and the hypothesis x € Cz(), we see det Z;

=1 and
Z AN Zi=A(x" yx) (for all y € H).

Hence N, 7 ¢, as required. This completes the proof.

§ 2

Let p be a fixed prime and G be a p-solvable group of finite order. Let B
be a p-block with defect group D and p° be the index of the center Z(D) in D.
For an ordinary irreducible character yx € B, denote by A(x) the height of x. P.
Fong showed that

() Zc

holds for every y € B ([3, Theorem (3C)]). To the Fong’s result we add the

following.

PROPOSITION Let p be a prime and G be a p-solvable group of finite order g.
Let B be a p-block with defect group D and p° be the index of Z(D) in D. If

() =c¢ (for some y € B),
then D is abelian.

PROOF We prove by induction on g. The proposition is trivial for p'-groups.
By reduction theorems (2B) and (2D) in [3], we may assume that B is a block
with maximum defect, that is, D is a p-Sylow subgroup of G. Let H be a maximal
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normal subgroup of G and b be a block of H covered by B. b is of maximum defect
and has a defect group Dy=DNH. If p{|G : H| then, by the induction hypothesis,
we can eei_éily see that D is abelian. So we may assume |G : H|=p. Let { be an
irreducible constituent of 2z belonging to b.

. First we show Z(D)JH. Assume Z(D)ZH. Then Z(D)EZ(D,). Hence
v(|D: Z(D)|>v(|Dy: Z(Dy|), where if n is a non-zero integer then p"™ is the
heéighest power of » which divides #. On the other hand, if yz is irreducible, then
2z =C and we have, by [3, Theorem (3C)],

) ‘_VCIDU 2 Z(D) D= =v (W) =v(xA)) =r(0),
therefore :
v(|D : Z(D)YD>h(p).

This contradicts the assumption of Proposition. If ¥z is not irreducible, then x

=¢% and

v(|Dy : ZD) D=L =v (A =v(Dy : ZD)D= v (Do : Z(Do) .

Hence, we have
v(|Dy : ZD) D=1, Z(Dy)=Z(D).

By the induction hypothesis, D, is abelian and Z(D) =D, Therefore D is abelian,
which yields a contradiction. Hence Z(D)gﬁH. Therefore by [3, Lemma (3B)],

%z 1s irreducible and

v(|Dy : ZWD) D= =h(})=v(|D: Z(D)])
=V(ID0 : Z<D)ﬂD0DZV(IDo : Z(D())D.

Hence the equalities
rQ)=v(|Dy : ZWD|), Z(D)NDy=Z(Dy)

hold. By the induction hypothesis, D, is abelian and Dy=Z(Dy)&Z(D). Hence

D is abelian. This completes the proof.
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