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1. Introduction.

In this paper we consider the orientation preserving homeomorphisms of
the manifold obtained from the 2-sphere by removing the interiors of n disjoint
subdisks, where the boundary curves will be denoted by Ci, C, ..., C,. H(M,)
will denote the group of homeomorphisms of M, onto itself topologized by the
compact open topology. The arc-component of the identity H,(M,) is a normal
subgroup of H(M,) and H(M,)/H,(M,) =m, LH(M,)] is the group of the arc-
components of H(M,), which is called the isotopy group of H(A,). The isotopy
groups for the subspaces of H(M,) are similarly defined. The equivalence relation
defined by H,(M,) is called isotopy.

We denote by & [m(M,, x,)] the group of automorphisms of the homotopy
group m(M,, %,). A homeomorphism % e H(M,, x,), the isotropy group at the
point x, ¢ M,, induces an automorphism hy in 7 [n; (M, x,)]. Thus H(M,. x,)
has a representation a: h— hs: as a group of automorphisms of m(M,, x,).
Furthermore, if 2 ¢ H,(M,, %,), then an arc from % to the identity in H(M,, x,)
provides a homotopy of %(y) with v where [y] ¢ m(M,, ,), and hence h. is the
identity automorphism of 7,(M,, %,). Thus « induces a representation

Qs L ﬂo[H(Mn, xg)] —> ME”-'I(M'M xo):]

of the isotopy group m[H(M,, x,)] as a subgroup of automorphisms of = (M,, x,).
Thus we can define a homomorphism

qS: HOEH(Mn’xo)] =2 M[TZ'].(M:,,, xo)]

by ¢([2]) =hy e & [m(M,, x.)], where h* () =[h(r)] ¢ m(M,, x,) for any 7 in a
homotopy class [r] ¢ m(M,, x,). The domain of the homomorphism ¢ will be
taken to be the isotopy groups of various subspaces of the orientation preserving
homeomorphisms fixing the base point x,. Throughout this paper we assume that
the base point x, is on the boundary curve C, and H (M) = {heH; (M) | h=e
on C,}. By using the homomorphism ¢, we study the isotopy groups of certain
subspaces of H(AM,).
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2. Preliminaries

We state preliminary definitions and lemmas which will be needed in the
next section.
M, will denote a manifold obtained from the 2-sphere by removing the interiors
of n disjoint subdisks. H* (M) ={h ¢ H(M,) | & is orientation preserving on M}
H:_(M,) ={h ¢ HM,) | h=e on certain ! boundary curves and #(C;)=C; for
other #—¢ curves}. The notation "~ " will mean the homotopy relation and Z

the group of integers.

DEFINITION 1.1. An isotopy of a space X is a collection {G:}, t ¢ I [0, 1], of
homemorphisms of X onto itself such that the mapping G: X X I— X defined by
G(x, 1) =G,(x) is continuous. An isotopy which moves no point on Bd(X) is
called a B-isotopy. & =~ g will denote that % is isotopic to g. The imbeddings
fo» f1: X —Y are ambient isotopic if there is a level preserving homeomorphism
G: Y xI— Y xI such that G(y, 0)=(y, 0) for all y ¢ ¥ and (fi(x), 1) =G(fo(%), 1D
for all x ¢ X.

DEFINITION 1.2. An isotopy {Gi, 0t <1, is called invertible if the
collection {G;'}, 0 < ¢< 1, of the inverse homeomorphisms is also an isotopy.

LEMMA 1.3. (Crowell [21). Every isotopy G:;, 0<t=1, of a locally

compact Hausdorff space is invertible.

LEMMA 1.4. (Epstein [3]). Let M be a 2-manifold with boundary. Let «
and B be two arcs in M such that

Bd(]\l)ﬂa=Bd(a)=Bd(E)=Bd(M)ﬂB, ¢

and which are homotopic keeping the end points fixed. Then they are ambient

isotopic by a B-isotopy.

Let A=SX I and H?(A)={heH(A) | h=e on Bd(A)}. H. Gluck [ 4] defined
the winding number for a homeomorphism 7% ¢ H?(A) as follows. Let  be the
isomorphism of m;(S%, 0) with Z which takes the class of the path f(¢)=1¢ onto
1. Let a be any path in S*X I from (0, 0) to (0, 1) and Pi: S*x I — S' the natural
projection. Then Py(a) is a closed path in S* based at 0. Hence [P:(a)] is an
element of m(S%, 0) and 3([P:(e)]) =w(a) is an integer. The integer w(ha) —o(a)
is independent of the path a for any % H*(A).
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DEFINITION 1.5. Let % be a homeomorphism in H?(A) and « a path in A
from (0, 0) to (0, 1). Then the integer W h;Al=w(ha) —w(a) is called the
winding number of % on A.

We note that W defines a homomorphism W: H?*(A) — Z. But it is shown
that the kernel of W is the arc~component of the identity H2(A) and thus W

is in fact an isomorphism of H?(A) onto Z[ 4 ].

DEFINITION 1.6. Let A; be an annulus in I»##(M,) around the boundary curve
C;. Then there is a homeomorphism % of the annulus A; onto itself such that
Wlh; Al=1and h=e on Bd(A4,). This homeomorphism can be extended to M,
by the identity on M,—A,;. We call the extended homeomorphism an A,-homeo-
morphism and denote it by By,

3. Isotopy groups and automorphisms of fundamental group

THEOREM 3.1. Let % be a homeomorphism in H™(M,). Then % induces the
identity automorphism /%, =e, of the homotopy group m(M,, x,) if and only if %
is B-isotopic to a product of the homeomorphisms hAi A<i<n-—-1.

PROOF: For the n—1 generators of m(M,, x,), we take the closed paths 7;
(1<7<n—1) which are obtained by tracing the arcs %, a;, @; 2., @, b,, b, b; and b, x,
with ;M\ r;N [Unt(M,)]=¢ for i+ 7 as in Figure L

%o a; by a; bi ar 12
My
B
, C
M, k+1
T i Tk
a; by a b; a b
Figure 1.




4 J. P. LEE

Now assuming that % is B—isotopic to a product of %4,(1<i<n-—1), we
show that ks =ey ¢ S [m(Mn, %,)]. It is sufficient to consider the product of the
homeomorphisms 74;. Define the annuli A; around the correspon_ding boundary
holes C; for 1< i <n—1 so small that the annuli A; do nbtrﬁé"ef any of the
generators 7; and Bd(M,). Then it is clear that ks, (ry)=r; for 1<, 7 <n—1 and
thus the product induces the identity automorphism. Thus kz=ex in & [ (M,
%o)].

Conversely, letting % be a homeomorphism in H™(M,) such that hi=es, We
show by an induction on n that 7 is B—isotopic to a product of %,,(1< i <n—1).
We first note that the theorem follows trivially for the case n=2. Now assuming
that our theorem is true for n=%, we prove it for n=~k+1 where the base point
%, is assumed to be on the boundary curve Cy,: as in Figure I. By our assumption

we have h(y;) =2 7; keeping the parts x,a; and b;%, held fixed for 1<z <k. Denote

e=ag ax\J ax bx U by by {and Fi=1%Ubgap. Then h(ry)= +% keeping the end

points a; and b; held fixed and by Lemma 1.4 these two arcs are ambient isotopic
by a B—isotopy, so there is an isotopy G.: My,1— My, 0< 1 <1, such that Gy=e
on My.1 and Gi'h=e on 7. Now let M, be the closed annulus defined by C; and
77, and Mi=(My.—M;)\Uri Then GI'h| My is a homeomorphism of M, such
that Gr'h| My eH*(M:). Now observe that (Gr'h)s is the identity automorphism
of (M3, %,). We first note that G h(r) C My, for 1< i <k—1, since each riC My
and Gk | My ¢ H*(M3). Let B be a narrow band around the arc 7z such that
BN [r:{ UG h(y)]=0 for 1<i<k—1. Let gbea homeomorphism from M;,:\U
[Int (Cy)] onto M} such that g(M;\UBU [Int (C:)]1)=B and g=e on My1— (M,
\UB)=M,—B. Then since ;== G h(ry) on My.\Jnt (Cp)] for 1<i<k—1, we
have g(r;)=gGi'h(r:) on g(M;..1\J Unt (CO)=M;. But since g=e on M;—B,
7:~=Gr'h(yy) on My for 1<i<k—1 and hence (G'h)sis the identity automorphism
of m(Mi, %,). Thus by our assumption Gr'h| M; is B-isotopic to a product of Ay,
(1<i<k—1) on M;. On the other hand, Grh| M, is also a homeomorphism of M,
such that Gr'h| M; ¢ H*(My). Thus Gr'h|M; is B-isotopic to a homeomorphism
supported on an annulus Ay around the boundary hole C; such that A, C Int (My).
Hence G'% is a homeomorphism of My..=M;\JM; which is B-isotopic to a
product of %,,(1<Li<k) on M., But since G['k is B-isotopic to % by Lemma 1.3,
% is also B-isotopic to a product of hAi(lgigk). Thus the theorem is proved

for any integer n>1.

COROLLARY 3.2. The kernel of the homomorphism ¢ is Z""!, if the domain
of ¢ is taken to be ol H (M)].
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PROOF: By Theorem 3.1 we know that only the homeomorphisms %, which
are B-isotopic to the products of the homeomorphisms hy,(1<i<n-—1), induce
the identity automorphism of m(M,, x,). But each ks, generates the isotopy
classes Z classified by the winding numbed W[k; C;] for 1<i<n—1, and thus
the kernel of the homomorphism ¢ is Z"%.

COROLLARY 8.3. Let % be a homeomorphism in H"(M,). Then % is isotopic
to the identity in H,_,(M,) if and only if % is B—isotopic to a product of the
homeomorphisms 7z,,(1<7<n-—1).

PROOF: Assume that % is B—isotopic to a product of the homeomorphisms hAi
(1<:<n-—1). Each %, in the product can be defor med to the identity by
rotating the corresponding boundary curve C; through 0 to 2 (—m;) = where m;=
Wlhk; C] for 1<i<n-—1. Thus % is isotopic to the identity in H._,(M,).

Conversely, since Z is isotopic to the identity, an arc from % to the identity
in H;_,(M,) provides a homotopy of %(y) with y for any loop 7 in [7] e m(M,, Xo).
Thus we have hz=e. in o [7;(M,, %,)] and the corollary is proved by Theorem
3.1.

LEMMA 3.4. The homomorphism § is an isomorphism of m[HL_,(M,)] into
.M[:Tl’l(Mm xa)]-

PROOF: We need to show that the kernel of ¢ is the isotopy class [e] in
wo Hy_(M,)]. By Theorem 3.1 it is clear that the kernel of ¢ is the collection
of the classes [/] of the homeomorphisms % which are isotopic to the products of
the homeomorphisms %,,(1<7<n-—1) by the istopy paths in H,_,(M,). But by
Corollary 3.3, any of such products can be deformed to the identity and hence
every h such that [2] ¢ ker ¢ is isotopic to the identity in H._,(M,). Thus ker
¢={[e]) Cm[H:-,(M,)] and the homomorphism ¢ is a monomorphism, which
implies that ¢ is an isomorphism onto ¢(m[H%_,(M)]).

THEOREM 3.5. For the two different domains m[H"(M,)] and m[HL_,(M,)],
the homomorphism ¢ induces an isomorphism; ([ H"(M,)]) =p(mo[HY - . (MDD
in Jyl:ﬂ:l(]‘ln: xa):]-

PROOF: We observe that
molH"(M,)]/m[ K1=2m[H _(M,)] (A

where K is the collection of the homeomorphisms in H"(M,) which are B-isotopic
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to the products of the homeomorphisms /z,,(1< i <n—1). Define a homomorphism
¢: w[H" (M,)] = mo[Hn_1(My)]

by ¢([A]*)=[hl,, where [#]* and [%], are the isotopy classes of the homeomo-
rphism 7% in m[H"(M,)] and [ HL_,(M,)] respectively. Then ¢ is an epimo-
rphism and ker ¢ =n[K] by Corollary 3.3. Thus the relation (A) follows by the
isomorphism induced by ¢. But by Theorem 3.1, only the homeomorphisms % in
K induce the identity automorphism of the homotopy group 7:(M;, x,), and thus

mol H"(M,)]/mo[ K12 p(moLH " (M) 1) (B)
On the other hand, by Lemma 3.4 we have
ol (M) ] 22 (ol H -, (M) ©

Combining the expressions (A), (B) and (C), the theorem is established.

LEMMA 3.6. Let %z be a homeomorphism in H"(M,). Then % is isotopic to
the identity in H;(M,) if and only if % is B-isotopic to a product of the home-
omorphisms hAi(lgiﬁn).

PROOF: It is easy to see that a product of the homeomorphisms hy (1< <n)
is isotopic to the identity in H,(M,), since each hy, can be deformed to _the
identity by rotating the corresponding boundary curve C; through 0 to 2(—m;) =«
where m;=WI[h; C.

To prove the converse, let  be a product of A;-homeomorphisms of the form

TR In_q 2,0
h=CH R, . RN g

where g is a homeomorphism which cannot be factored in such a way as to contain
only the homeomorphisms h,, to some powers. Since each %y, can be deformed

to the identity, we have
h=(hi h%,. . Wi L), g~ g

in Hi(M,). Thus it is enough to consider only the homeomorphism g. Now
assume that g= e in Hi(M,). Then the isotopy G:, 0<¢ <1, between g and e in
H;(M,) produces a rotation of the boundary curves, since G, must keep each of
the boundary curves held fixed setwise. Now we construct an isotopy H; which
agrees with G, on C, and is the identity outside the annulus A, for 0<¢ <1, where
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Hy=H,=e. Then H;'G,, 0<t¢<1, is an isotopy.in H._,(M,) between H;'G,=e
and H;'Gi=g. Thus the fact g~ e in H;(M,) would imply that g~ e in H._,
(M,). Corollary 3.3 then implies that g must be a product of the homeomorphism
4, (1<i<n-1). This is a contradiction to our assumption and g (and thus %) is
not isotopic to the identity in H,(M,). Hence we can see that only the products
of k4,(1<i<n) are isotopic to the identity in H;(M,), and the proof is complete.

THEOREM 8.7. n[Hb: .(M,)] = m[H;(M,)] x Z*, where 0<¢<n.
PROOF: Define a homomorphism
g2 7o [Hoos (M) — o [H S (M)

by ¢([#]*)=[kly, where [A]* and [k], are the isotopy classes of the homeomo-
rphism % in m[H;,_.(M,)] and m[Hf(M,)] respectively. Then ¢ is an epimorphism
and the kernel of ¢ is the collection of the classes [4] of the homeomorphisms %
isotopic to the products of k4, (1<7<n) by the isotopy paths in H%_.(M,), since
H;,_ (M) CH}; (M,) and such products are isotopic to the identity in H, (M, CH
(M,) by Lemma 3.6, We note that the isotopy classes of the kernel of ¢ in H_,
(M) are Z° classified by the winding numbers {W[k; C,]|[%] ¢ ker ¢} for each
of the t boundary holes C;. Thus n[H%:_:(M,)1/Z" = my [H (M,)].

Now define a normal subgroup N of the isotopy group m [H'_.(M,)], N= {[A]
e m[H, «(M)]1| Wlh; C] =0 for the ¢ holes C;}. We note that every isotopy
class (%] in mo[H(M,)] contains a homeomorphism %, <H’_.(M,) such that W lh,;
C:]1=0 for each of the ¢ boundary holes C;, since the isotopy in H(M,) is allowed
to rotate each of the boundary curves. But [%,] belongs to the normal subgroup
N and thus the restricted homomorphism ¢'=¢ | N is an epimorphism. Further
we can see that ¢/ is a monomorphism. By the above arguments, the kernel of ¢’
is the collection of the classes [%] in N where the homeomorphism % are isotopic
to the products of %,,(1<7<n) by the isotopy paths in H%_,(M,). But every %
such that [%]  ker ¢/ does not contain any kg, in its isotopic product since W [h;
C.1=0, where the annuli A; are determined around each of the ¢ boundary holes,
and thus it is isotopic to the identity in H,_.(M,). Thus ker ¢/ = [¢] in N and ¢
induces an isomorphism ¢’ of the normal subgroup N onto =, [H;(M,)]. Hence
the proof is complete.

THEOREM 3.8. 7 [H"(M,)]=2ker ¢ Xp(mo[HL_(M,)]), where the kernel of
¢ is defined on the domain =, [H"(M,)].
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PROOF: 1, [H™(M,)] =2 Z" X my [H; (M,)] (by Theorem 3.7)
= 7" X A{Z X mo [Ha (M1}
=~ 77X (o [Ha -1 (M)} (by Theorem 3.7)
= 2" X (o [H -1 (MDD (by Lemma 3.4)
= ker ¢ qu(ﬁo[Hi-—l(Mn)]) (by Lemma (3.2))
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