Kumamoto J. Sci. (Math.) Vol. 14, 107~113 March (1981)

REMARK ON MEASURABILITY FOR FLOWS

Yoshitaka YOKOI

(Received November 7, 1980)

1. Introduction.

Let $(\Omega, \mathscr{F}, \mu)$ be a complete measure space with $\mu(\Omega) < \infty$. Consider a flow $\{T_t\}$ defined on $(\Omega, \mathscr{F}, \mu)$, i. e., a one-parameter group of measure preserving transformations T_t of Ω onto itself with the real parameter t-set R. A flow $\{T_t\}$ is said to be measurable if the (ω, t) -set defined by $\{(\omega, t) \in \Omega \times R; \ T_t \omega \in A\}$ is a $(\mu \times \lambda)$ -measurable set for every $A \in \mathscr{F}$. Where $\mu \times \lambda$ is the product measure of μ with the ordinary Lebesgue measure λ on the real line R. We note that the σ -algebra of all $(\mu \times \lambda)$ -measurable sets is the completion of the product σ -algebra $\mathscr{F} \times \mathscr{B}$ for the product measure $\mu \times \lambda$, where \mathscr{B} is the σ -algebra of all Borel sets of the real line R.

The main assertion of this note is to remark the following property for a measurable flow. That is, for every measurable flow $\{T_t\}$ on a complete finite measure space $(\mathcal{Q}, \mathscr{F}, \mu)$ there exists a σ -subalgebra \mathscr{F}_0 of \mathscr{F} which satisfies that the mapping $(\omega, t) \longrightarrow T_t \omega$ is a measurable mapping of the measurable space $(\mathcal{Q} \times R, \mathscr{F}_0 \times \mathscr{B})$ onto the measurable space $(\mathcal{Q}, \mathscr{F}_0)$ and that for any set $A \in \mathscr{F}$ there exists a set $A_0 \in \mathscr{F}_0$ such that $\mu(A \ominus A_0) = 0$. Where $A \ominus B$ denotes the symmetric difference of A and B.

We shall deduce this property mainly from the representation theorem for a measurable proper flow in [1] and [2].

As an example of the consequence of this property, we shall show that the set $\bigcup_{t\in I} T_t A$ is universally measurable for every set $A\in \mathscr{F}_0$ and for every interval I of the real line R.

2. Definitions and notation.

DEFINITION 1. A measurable space (X, \mathscr{A}) is a system of a set X and a σ -algebra \mathscr{A} of subsets of X. An \mathscr{A} -measurable set is a set in \mathscr{A} . A measure $\mu(A)$ on (X, \mathscr{A}) is a countably additive and non-negative set function defined for every set A of \mathscr{A} . (X, \mathscr{A}, μ) is called a measure space. A finite measure space is a

108 Y. YOKOI

space with $\mu(X) < \infty$. (X, \mathscr{A}, μ) is σ -finite if X is a countable union of \mathscr{A} -measurable sets of finite measure. (X, \mathscr{A}, μ) is completed or \mathscr{A} is completed for μ if whenever A is in \mathscr{A} and $\mu(A) = 0$ then every subset of A is also in \mathscr{A} . We recall that if (X, \mathscr{A}, μ) is a finite or σ -finite measure space, the σ -algebra \mathscr{A}^* of all μ -measurable subsets of X is completed for μ . We shall say that \mathscr{A}^* is the completion of \mathscr{A} for μ .

Throughout this note $(R, \mathcal{A}, \lambda)$ will denote the measure space of the real line R, the Borel σ -algebra \mathcal{A} determined by all open intervals of R and the ordinary Lebesgue measure λ on R.

Let $\{(X_i, \mathscr{A}_i, \mu_i); i=1,2,\cdots,n\}$ be a family of finite or σ -finite measure spaces. $(X_1 \times \cdots \times X_n, \mathscr{A}_1 \times \cdots \times \mathscr{A}_n, \mu_1 \times \cdots \times \mu_n)$ will denote the product measure space. $(\mathscr{A}_1 \times \cdots \times \mathscr{A}_n)^*$ will denote the completion of $\mathscr{A}_1 \times \cdots \times \mathscr{A}_n$ for $\mu_1 \times \cdots \times \mu_n$.

DEFINITION 2. Let (Ω, \mathcal{F}) be a measurable space and let A be any subset of Ω . A trace σ -algebra of \mathcal{F} on A, $\mathcal{F} \cap A$, is the class $\{F \cap A; F \in \mathcal{F}\}$.

It is evident that if a set A is \mathscr{F} -measurable and if μ is a measure on (Ω, \mathscr{F}) , then the restriction of μ to $\mathscr{F} \cap A$ is also a measure on $(A, \mathscr{A} \cap A)$.

DEFINITION 3. Let (X_1, \mathscr{A}_1) and (X_2, \mathscr{A}_2) be two measurable spaces. A mapping, S, of X_1 into X_2 is said to be $(\mathscr{A}_1/\mathscr{A}_2)$ -measurable if $S^{-1}\mathscr{A}_2 \subset \mathscr{A}_1$.

DEFINITION 4. Let $(X_1, \mathscr{A}_1, \mu_1)$ and $(X_2, \mathscr{A}_2, \mu_2)$ be two measure spaces. A measure preserving transformation, S, is a 1:1 mapping of X_1 onto X_2 with the property that $S^{-1}\mathscr{A}_2 \subset \mathscr{A}_1$, $S\mathscr{A}_1 \subset \mathscr{A}_2$ and $\mu_1(A_1) = \mu_2(SA_1)$ for every $A_1 \in \mathscr{A}_1$.

We shall define a flow according to [2] and [4].

DEFINITION 5. A *flow* is a one-parameter family, $\{T_t\}$, of measure preserving transformations of a complete finite measure space $(\Omega, \mathcal{F}, \mu)$ onto itself, which has the group property: $T_{t+s} = T_t \cdot T_s$ for all t and s in R.

In this note, when we say "a flow on $(\Omega, \mathcal{F}, \mu)$ ", we assume that $(\Omega, \mathcal{F}, \mu)$ is a complete finite measure space.

DEFINITION 6. Let $\{T_t\}$ be a flow on $(\Omega, \mathscr{F}, \mu)$. The set $A \subset \Omega$ is *invariant*, if $A \in \mathscr{F}$ and $T_t A \subset A$ for any $t \in R$.

If A is an invariant set of positive measure, the restriction of $\{T_t\}$ to $(A, \mathscr{F} \cap A, \mu)$ is also a flow.

DEFINITION 7. Let $\{T_t\}$ be a flow on $(\Omega_1, \mathcal{F}_1, \mu_1)$ and $\{S_t\}$ be a flow on $(\Omega_2, \mathcal{F}_2, \mu_2)$. $\{T_t\}$ is isomrphic to $\{S_t\}$ if, for i=1,2, it is possible to split Ω_i into two disjoint subsets Ω_i' and Ω_i'' in such a way that:

- 1) Ω_i' and Ω_i'' are in \mathscr{F}_i and $\Omega_i = \Omega_i' \cup \Omega_i''$, i = 1, 2.
- (2) Ω_i' and Ω_i'' are invariant, i=1, 2.
- 3) $\mu_i(\Omega_i^{"}) = 0$, i = 1, 2.
- 4) There exists a measure preserving transformation, V, of $(\Omega_1', \mathscr{F}_1 \cap \Omega_1', \mu_1)$ onto $(\Omega_2', \mathscr{F}_2 \cap \Omega_2', \mu_2)$ such that $VT_t = S_t V$ for all $t \in R$.

DEFINITION 8. Let $\{T_t\}$ be a flow on $(\mathcal{Q}, \mathcal{F}, \mu)$ and S be a mapping of $\mathcal{Q} \times R$ onto \mathcal{Q} defined by $S(\omega, t) = T_t \omega$ for every (ω, t) in $\mathcal{Q} \times R$. The flow $\{T_t\}$ is measurable if S is $((\mathcal{F} \times \mathcal{G})^*/\mathcal{F})$ -measurable.

In [9], if a flow is measurable then it is said to be *L-measurable*, and if the mapping S is $(\mathscr{F} \times \mathscr{B}/\mathscr{F})$ -measurable then $\{T_t\}$ is said to be *B-measurable*. It is difficult to find examples, except trivial ones, of flows which are *B*-measurable, when we emphasize that $(\mathcal{Q}, \mathscr{F}, \mu)$ is completed for μ .

However we shall show, in what follows, that for every measurable flow $\{T_t\}$ on $(\varOmega, \mathscr{F}, \mu)$ there exists a σ -subalgebra \mathscr{F}_0 of \mathscr{F} with the properties that the mapping S is $(\mathscr{F}_0 \times \mathscr{B}/\mathscr{F}_0)$ -measurable and that for any set $A \in \mathscr{F}$ there exists a set $A_0 \in \mathscr{F}_0$ such that $\mu(A \ominus A_0) = 0$.

DEFINITION 9. ([2]) A flow $\{T_t\}$ on $(\mathcal{Q}, \mathcal{F}, \mu)$ is proper if every \mathcal{F} -measurable set of positive measure contains an \mathcal{F} -measurble set A such that $\mu((\mathcal{Q}\backslash A)\cap T_{t_0}A)>0$ for some $t_0\in R$; it is completely improper if $\mu(A\ominus T_tA)=0$ for every set $A\in \mathcal{F}$ and for every $t\in R$.

DEFINITION 10. ([1]) Let (M, \mathfrak{M}, m) be a complete finite measure space, T be a measure preserving transformation of M onto itself and f(P) be a real valued m-integrable function with f(P)>c>0 for some constant c and for all $P\in M$. Let \mathcal{Q} be the set of points (P,u) for which $0\leq u < f(P)$, and let \mathscr{F} be the σ -algebra $(\mathfrak{M}\times\mathscr{F})^*\cap \mathcal{Q}$ and \mathscr{F}_0 be the σ -algebra $(\mathfrak{M}\times\mathscr{F})\cap \mathcal{Q}$. Then, \mathcal{Q} is $(\mathfrak{M}\times\mathscr{F})$ -measurable and $(\mathcal{Q}, \mathscr{F}, m \times \lambda)$ is the completion of $(\mathcal{Q}, \mathscr{F}_0, m \times \lambda)$.

Define a one-parameter familiy, $\{S_t\}$, of transformations of $\mathcal Q$ onto itself by

(2.1)
$$S_{t}(P,u) = (P,t+u) \text{ for } 0 \leq t+u < f(P),$$

$$S_{t}(P,u) = (T^{n}P,t+u-f(P)-\cdots-f(T^{n-1}P) < f(T^{n}P) \text{ and } n > 0,$$

$$S_{t}(P,u) = (T^{-n}P,t+u+f(T^{-1}P)+\cdots+f(T^{-n}P) < f(T^{-n}P) \text{ and } n > 0,$$

$$\text{for } 0 \leq t+u+f(T^{-1}P)+\cdots+f(T^{-n}P) < f(T^{-n}P) \text{ and } n > 0,$$

$$\text{where } (P,u) \in \Omega \text{ and } t \in R.$$

Then $\{S_t\}$ is a flow on $(\Omega, \mathcal{F}, m \times \lambda)$. The proof of this fact is seen in [1], [5] and [6]. We call this flow, $\{S_t\}$, the flow built on the measure preserving transformation T under the function f(P) or briefly the flow under the function f(P).

We denote this flow by $(f, T, M, \mathfrak{M}, m)$.

3. Measurable flows.

LEMMA 1. (E. Hopf [4]) Let $\{T_t\}$ be a measuarble flow on $(\Omega, \mathcal{F}, \mu)$, and let A be an \mathcal{F} -measurable set such that $\mu(A \ominus T_t A) = 0$ for every $t \in R$. Then there exists an invariant set A_0 such that $\mu(A \ominus A_0) = 0$.

THEOREM 1. (W. Ambrose and S. Kakutani [2]) Let $\{T_t\}$ be a measurable flow on $(\Omega, \mathcal{F}, \mu)$. Then there exist disjoint sets, Ω_1 and Ω_2 , such that $\{T_t\}$ is completely improper on Ω_1 and proper on Ω_2 and that $\Omega = \Omega_1 \cup \Omega_2$.

4. Completely improper frows.

THEOREM 2. Let $\{T_t\}$ be a measurable completely improper flow on $(\Omega, \mathcal{F}, \mu)$, and let \mathcal{F}_0 be the σ -algebra of all invariant subsets of Ω . Then the mapping $S(\omega,t)=T_t\omega$ is $(\mathcal{F}_0\times\mathcal{B}/\mathcal{F}_0)$ -measurable and for any set $A\in\mathcal{F}$ there exists a set $A_0\in\mathcal{F}_0$ such that $\mu(A\ominus A_0)=0$.

PROOF. That the mapping S is $(\mathscr{F}_0 \times \mathscr{B}/\mathscr{F}_0)$ -measurable follows from $S^{-1}A = A \times R$ for $A \in \mathscr{F}_0$.

The latter part is an immediate consequence of LEMMA 1.

REMARK. The completion for μ of the class \mathscr{F}_0 of all invariant subsets of Ω is the class of sets of the form $A_0 \cup N$, where $A_0 \in \mathscr{F}_0$ and N is a subset of an invariant null set. However it may happen that \mathscr{F} contains null sets each of which is not contained in any invariant null set.

5. Proper flows.

THEOREM 3. (Representation theorem for proper flows [2]) Let $\{T_t\}$ be a measurable proper flow on $(\Omega, \mathcal{F}, \mu)$. Then Ω is devided into at most countable invariant subsets $\Omega_n(n=1,2,\cdots)$ of positive measure in such a way that each restriction of $\{T_t\}$ to $(\Omega_n, \mathcal{F} \cap \Omega_n, \mu)$ is isomorphic to a flow under a function respectively.

THEOREM 4. Let $\{S_t\}$ be a flow under a function (f,T,M,\mathfrak{M},m) , and let $(\Omega,\mathcal{F},m\times\lambda)$ and $(\Omega,\mathcal{F}_0,m\times\lambda)$ be the measure spaces in DEFINITION 10. Then the mapping $S(P,u,t)=S_t(P,u)$ of $\Omega\times R$ onto Ω is $(\mathcal{F}_0\times\mathcal{B}/\mathcal{F}_0)$ -measurable and \mathcal{F} is the completion of \mathcal{F}_0 for $m\times\lambda$.

PROOF. This follows from that Ω is $(\mathfrak{M} \times \mathscr{B})$ -measurable, the class, $\mathscr{F}_0 = (\mathfrak{M} \times \mathscr{B}) \cap \Omega$, is determined by all $(\mathfrak{M} \times \mathscr{B})$ -measurable rectangles contained in Ω and that (P, u, t)-functions

$$t+u+f(T^kP)+f(T^{k+1}P)+\cdots+f(T^{k+j}P),$$

 $(k=\cdots,-1,0,+1,\cdots; j=1,2,\cdots)$

are $(\mathfrak{M} \times \mathfrak{A} \times \mathfrak{A})$ -measurable.

LEMMA 2. Let $\{T_t\}$ be a measurable flow on $(\Omega_1, \mathcal{F}_1, \mu_1)$, and suppose that $\{T_t\}$ is isomorphic to a flow $\{S_t\}$ on $(\Omega_2, \mathcal{F}_2, \mu_2)$. If \mathcal{F}_2 contains a σ -subalgebra \mathscr{A}_2 with the properties that \mathscr{F}_2 is the completion of \mathscr{A}_2 for μ_2 and that the mapping $S(\omega_2,t)=S_t\omega_2$ is $(\mathscr{A}_2\times\mathscr{B}/\mathscr{A}_2)$ -measurable, then there exists a σ -subalgebra \mathscr{A}_1 of \mathscr{F}_1 with the properties that \mathscr{F}_1 is the completion of \mathscr{A}_1 for μ_1 and that the mapping $T(\omega_1,t)=T_t\omega_1$ is $(\mathscr{A}_1\times\mathscr{B}/\mathscr{A}_1)$ -measurable.

PROOF. Recalling DEFINITION 7, we take the class $(V^{-1}(\mathscr{L}_2 \cap \Omega_2')) \cup (\mathscr{F}_1 \cap \Omega_1'')$ for \mathscr{F}_1 . It is clear that \mathscr{L}_1 is the required one.

From THEOREM 3, 4 and LEMMA 2 we can deduce the following theorem.

THEOREM 5. Let $\{T_t\}$ be a measurable proper flow on $(\Omega, \mathcal{F}, \mu)$. Then there exists a σ -subalgebra \mathcal{F}_0 of \mathcal{F} with the properties that the mapping $S(\omega, t) = T_t \omega$ is $(\mathcal{F}_0 \times \mathcal{B}/\mathcal{F}_0)$ -measurable and that \mathcal{F} is the completion of \mathcal{F}_0 for μ .

Moreover, from THEOREM 1, 2 and 5 it follows:

THEOREM 6. Let $\{T_t\}$ be a measurable flow on $(\Omega, \mathcal{F}, \mu)$. Then there exists a σ -subalgebra \mathscr{F}_0 of \mathscr{F} with the properties that the mapping $S(\omega,t)\!=\!T_t\omega$ is $(\mathscr{F}_0 imes\mathscr{B}/\mathscr{F}_0)$ -measurable and that for any $A\in\mathscr{F}$ there exists a set $A_0\in\mathscr{F}_0$ such that $\mu(A \ominus A_0) = 0$.

More precisely, if Ω_2 is the part of maximal measure on which $\{T_t\}$ is proper, then $\mathscr{F} \cap \Omega_2$ is the completion of $\mathscr{F}_0 \cap \Omega_2$ for μ .

An application.

Let $\{T_t\}$ be a measurable flow on $(\varOmega,\mathscr{F},\mu)$ and let \mathscr{F}_0 be the σ -algebra. which emerges in THEOREM 6. For any set $A \in \mathscr{F}_0$ and any interval I of R, the $\text{set } A(I) = \bigcup_{t \in I} T_t A \text{ is the projection of the } (\omega, t) - \text{set } A^*(I) = \{(T_t \omega, t); \ \omega \in A, \ t \in I\}$ on Ω .

Because the mapping (ω,t) \longrightarrow $(T_t\omega,t)$ is $(\mathscr{F}_0\times\mathscr{B}/\mathscr{F}_0\times\mathscr{B})$ -measurable the set $A^*(I)$ is a set in $\mathscr{F}_0 \times \mathscr{B}$.

On one hand, the σ -algebra ${\mathscr B}$ is determined by all compact subsets of R and consequently the projection of $(\mathscr{F}_0 \times \mathscr{B})$ -measurable set on \mathscr{Q} belongs to the Souslin (or analytic) class $(\mathscr{F}_0)_{\mathcal{S}}$ generated by \mathscr{F}_0 . From the capacity theorem. it follows that $(\mathscr{F}_0)_{\mathcal{S}}$ is contained in the completion $(\mathscr{F}_0)^*$ of \mathscr{F}_0 for μ . Clearly a set B which is measurable with respect to every finite measure on $(\varOmega,\mathscr{F}_0)$ belongs to $(\mathscr{F}_0)^*$ and $(\mathscr{F}_0)^*$ is contained in \mathscr{F} . It is an immediate consequence from these that the set $A(I) = \bigcup_{t \in I} T_t A$ for $A \in \mathscr{F}_0$ is universally measurable, given $(\Omega, \mathcal{F}_0).$

References

- [1] W. Ambrose, Representation of ergodic flows, Ann. Math., 42 (1941), 723-739.
- [2] W. Ambrose and S. Kakutani, Structure and continuity of measurable flows, Duke-Math. Jour., 9 (1942), 25-42.
- [3] C. Dellacherie and P. A. Meyer, Probabilities and potential, North-Holland Mathematics studies 29, North-Holland publishing company, Amsterdam-New York-Oxford, 1978.
- [4] E. Hopf, Ergoden Theorie, Berlin, 1937.
- [5] K. Jacobs, Neuere Methoden und Ergebnisse der Ergoden Theorie, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F. Heft 29, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960.
- [6] J. de Sam Lazaro et P. A. Meyer, Question de théorie des flots (I), (II), Lecture notes: in mathematics 465, Springer-Verlag, Berlin-Heidlberg-New York, 1975, 1-29.

- [7] J. Neveu, Mathematical foundations of the calculus of probability, Translated by A. Feinstein, Holden-Day, Inc., San Francisco-London-Amsterdam, 1965.
- [8] V. A. Rohlin, Selected topics from the metric theory of dynamical systems, Amer. Math. Soc. Transl., Ser. 2, 49 (1966), 171-240.
- [9] H. Totoki, Time changes of flows, Mem. Fac. Sci. Kyushu Univ., Ser. A, 20, No. 1, (1966).

Department of Mathematics Faculty of General Education Kumamoto University