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1. Introduction

By a left invariant complex structure on a real Lie group G of even dimension
we mean such a complex structure on G that the left multiplication of each
elememt in G is holomorphic. When G is compact, H. C. Wang ([4]) already

treated them systematically. For a non-compact group, a remarkable example is

b
d

a pair of complex numbers (¢+3/—=15, c+3/—1d). Then the group GL(2, R) is

a complex manifold as a subset of C? under this identification. We can easily

given by Professor A. Morimoto. For each element (? ) in GL(2, R), we associate

examine that this complex structure is left invariant. A. Morimoto ([2]) also
proved that every reductive real Lie group of even dimension has at least one left

invariant complex structure.

In this note we will treat those complex structures on the general linear
group GL(2,R). Namely, we classify left invariant complex structures on GL¥
(2,R). Using this classification, we will prove (1) Left invarinat complex stru-
ctures on GL*(2, R) are parametrized by R, (2) With each of these complex stru-
ctures, the group GL*(2,R) is biholomorphic to & X C* as a complex manifold,
2¢ being the upper half plane, and, hence, (3) It is Stein.

In the last section, we will give a remark on left invariant complex structu-
res on the compact real form of GL(2,C).

The discussions on some class of left invariant complex structures on a
semi-simple Lie group and the classification of left invariant complex structures

on another groups will be given in [3].

2. Preliminaries

To begin with let us fix notations and prepare definitions.

Let G denote a connected real Lie group of even dimension and g be its Lie
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algebra which is identified with the tangent space of G at the unit element e.
The complexification of g is denoted by g° and ¢ is the complex conjugation with

respect to g.

DEFINITION 1. A complex structure on G is said to be left invariant (I. i.)
when the left multiplication of each element in G is holomorphic.

If we denote by J the structure tensor at e¢ of a l. i. complex structure on G,
then J is a linear transformation on g satisfying
1 Fr==T
@ (X, YI+JJX,Y]1+JIX,JY]1-[JX,JY]=0
for every X,Y in g. The condition (2) is the integrability condition. Conversely
every J satisfying (1) and (2) determines a l. i. complex structure on G. So, we
say the tensor J with above conditions a l. i. complex structure on G.

Given a 1. i. complex structure / we associate a complex subspace m of q¢
by the equation

m={X++4/—1JX; X€g}.

Then it is seen that

PROPOSITION 1. m is @ complex subalgebra of o° satisfying
3 mom=0, m+om=g°.
Conversely, each complex subal gebra m satisfying (3) arises from some l. i. complex

structure.

With this proposition we can call a complex subalgebra satisfying the condi-

tion (3) a left invariant complex subalgebra of g with respect to g.

DEFINITION 2. We say l. i. complex structures J, and J, are equivalent, if

there exists an automorphism x of g such that x/,=],x.

Then the equivalence in terms of 1. i. complex subalgebras are stated as foll-

OWwWS.

PROPOSITION 2. Let m; be complex subalgebras corresponding to l. i. compex
structures J;, i=1, 2. Then J, and ], are equivalent if and only if there exists an

automorphism x of §¢ such that xo=ox and xn, =1,

With these definitions and propositions, to classify 1. i. complex structures on

G, it is sufficient to give all equivalence classes of l. i. complex subalgebras of g°.
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3. Classification of 1.i. complex subalgeras of gl(2, C)

Let g=gl(2, R) denote the Lie algebra of GL(2,R). It is decomposed as g=c
+81(2,R), ¢ being the center. Let § be one of Cartan subalgebras of 3((2, R).
"Then, denoting h=c+Y, g¢ =gl(2, C) has a root decomposition with respect to §°

in the following manner. First, we fix a basis X; of g:

«(4) X1=%(1 1>’ X2=%<_1 1>, Xs:%(1 1), X“=%<1 —~1>.

‘)'=R(X,} is the fundamental Cartan subalgebra of g. Setting

“(®)  H=2y/=1X, A=X+v-1X, A=X—y-1X,

we have

«(6) [H,A]=24, [H,A]=-24, [A,A]=H.

-Denoting by C one non-zero element of ¢, g¢ has a root decomposition
g° =59 +p

where ¢ =C{C,H}, p=C{A, A}. We have obviously

(7 o(C)=C, o(H)=—H, s(A)=A, s(A)=A.

Now let us begin to classify I. i. complex subalgebras n.
LEMMA 1. dim (3° Nm) <1 and dim (pNm)<1.

PROOF. If m contains p, then mD8I(2,C) contradicting (3). If mDY°, then
“m=0° since m is 2-dimensional. But §°+s(§°)=4§° by (7), m cannot be a I. i.

~complex subalgebra by (3).

LEMMA 2. When dim (§° \m) =1, m is one of following algebras.
(D C{H+dC,A), Re d#0,

(D C{H+dC,A). Re d#0,

PROOF. Denote a non-zero element of §¢ N\m by H, which is written as cH+
-dC. By conditions (3) and (7) we see ¢ % 0, hence we can set c=1. Take X an
element of m linearly indepedent of H,. It is written as X=H,+X'; H, € 5°Nm,
X €pNm. X is non-zero by Lemma 1. Setting X' =aA+bA we have [H;, X]=
2 (@éA—bA). Hence [H,, X]=FX for some constant 2€ C and 2= +2 according as
b=0or a=0. In the case =0, we have a0, =2 and H,=H+dC, X=aA, and,
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in the case =0, we have b5%0, k= —2 and H,=H+dC, X=bA. In each case, mr
satisfies (3) when Re d#0. This proves Lemma 2.

LEMMA 3.. When dim (mN\)°) =0, m is one of following algebras

"D CH+eA ~%A, bC+aA + %fi}; 231, Re b#0:

PROOF. First consider the case dim (p\m)=1. In this case we may choose-
X=cH+dC+aA+bA and Y=pA+qA_ as a basis of m. We may consider two:
cases (1) p=1 and (2) g=1. We can set ¢=0, b7+ 0 in the case (1) and b5=0,
a0 in the case (2). Then, for the case (1), [X, Y]=2c(A—qA_)—bH. If ¢=0,.
bH must belong to m, which contradicts to dim (§°\m)=0. Therefore c#0.
Choosing X so as ¢=1, we get an element in m: [X, Y]+bX—2Y=(b2-—4q)fI+
bdC. But this must be zero, since m is 2-dimensional. Hence d=0 and b*=4q,
which means m=C{H+ A, A—I—(b2/4)/1} in the case (1). In the case (2), we see
m=C{H+dA, (42/4)A+§}. But, in both cases, m does not satisfy (3) by (7).

Consider, next, the case dim (p\m)=0. Choose X=H+ gA+bA and Y=C+
cA+dA as a basis of m. Then [X, Y]=(ad—bc)H+2c‘A—2de. Since, by the
assumption, ad —bc 7 0, we must have [X,Y]=(ad—bc)X. Solving this equation
we see b= —1/a and c=a’d. Hence m is one of subalgebras listed in (II). In
order for m to satisfy the condition (3) it is necessary and sufficient that Re b+
# 0 and aa #1.

Next let us compute the equivalence classes of (1), (I) and (ID.

LEMMA 4. Every automorphism x of ¢ which satisfies xo=ox has the follo--
wing form: z(C)=kC, x(H)=pH-+qA—qA, x(A)=rH+sA+ tA, x(A)=—7H+
A SA, where k is a real and p, q, v, s, t are complex numbers satisfying p=ss—
1, q=2(rt+s7), st=—7", s+ —2rr=1.

PROOF. Since C is a center element, x(C)=£kC for some k€ C. k is real by"
a(C)=C. Since C{H,A,Zi} is the semi-simple part, x has the form: x(H)=pH+
gA+qA, x(A)=rH+sA+1A, x(A)=rH+sA-+1A. We have, by (7), ¢' =7, p=
P, ¥ =7, s'=1,  =35. The equalities in (6) give the relations in Lemma between.

these numbers.

PROPOSITION 3. Any al gebra in (II) is equivalent to some algebra in (I)-
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PROOF. Let uy, be an algebra in (II) with parameter (a,b). Define an auto-
“morphism x setting k= —1, r=1I, s=Ila and t=—I/a, where I=|a|/(1—aa).

Define, also, m=((az)®*—1)/(1—aa)®. Then we see that x(4A)=I(H+aA “%fb

and x(H+dC)=m(H+aA —iﬁ)—(dc-f—aA—l- %ff). This means xm,=m, for m,
a

the algebra in (1) with parameter d=b.

REMARK. Obviously any algebra in (I) is transformed into one in (1)
“under the conjugation o, i. e. the complex structure corresponding to an algebra
in (I) is conjugate to that corresponding to some algebra in (I). So, we can
exclude the case (I) from onsideration. Moreover note that, by our definition of

equivalence, any algebra in (1) is equivalent to some in (I).

THEOREM 1. Ewvery equivalence class of left imvariant complex structures on g
is represented by one and only one 1. i. complex subalgebra C{A,H+dC} for Re
1/d)= —1.

PROOF. It remains to examine the equivalence between algebras in (1I).
Let m=C{A,H+d,C}, m;=C(A, H+ d,C} be algebras in (I). If m; and m, are
equivalent under an automorphism x, then, using the form of x in Lemma 4, we
see easily that »=¢=0, hence ¢g=0 and p=1. This means that x(4A)=sA4 and
- x(H+ D,C)=H+ kd,C, which gives an equivalence between m; and m, for d,= kd,.
Hence, choosing a real number % appropriately, we may take d, as Re (1/d,) = —1.
It is obvious that algebras with different values of Im (1/d) are not equivalent

“to each other.

REMARK. The example by Morimoto in Introduction corresponds to the
complex subalgebra with parameter d when Im (1/d)=0.

-4. Left invariant complex structures on GL*'(2,R)

In this section we will investigate some properties of left invariant complex
structures on GL*(2, R).

Let, generally, G be a real Lie group with a left invariant complex structure
and H be a closed subgroup. Denote by g (resp. §) the Lie algebra of G(resp. H).
The complex structure tensor on g is denoted, as before, by J which is integrable.
~Assume g has a vector space decomposition g=DbY+p such that
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©) [adh,J1|,=0 for any A€ b,

then it is easily seen that the quotient space G/H becomes 2a complex manifold”
with the complex structure induced from J, and the right multiplication of an
element of H on G/H is biholomorphic.

Let us turn to our case G=GL*(2,R). In the previous section we proved
every l. i. complex subalgebras of g°=g((2, C) is written as C{A,H+ dC} which
turns out to be C{X;+ Vv —1X, dX,+ v/ —1X,} in terms of X; defined by equations
(4). Setting h=R{X,, X,) and p=R{X;, X,} we can see the decomposition g=H+p-
satisfies (8) and (9). Here, we denote by & the upper half plane in C. Every
element of G acts on & by a linear fractional transformation and the quotient
space G/H, where H is the closed Lie sugroup associated with §, is identified with
27. Since & has a unique complex structure, G/H is biholomorphic to &#. The
fibre of the projection =: G—G/H is a complex submanifold. Since H is home--
omorphic to c*, H must be biholomorphic to Cc*. Therefore we have proved

THEROEM 2. With any left invariant complex structure the complex manifold -
GL* (2, R) is a holomorphic fibre bundle over & with a general fibre C*, hence, it
is biholomorphic to C*x 5. Especially it is Stein.

Now we will examine the above identification GL*(Z,R)zC*X% more

closely. For that purpose we fix a coordinate system of GL*(2, R) as follows.

Every element g= (fcl x2> of GL*(2,R) can be written uniquely by the express--

3 X4
ion

_(uw O\ [y = cos 6 sin ¢
e &= (0 u) (0 1) (—sin 6 cos 0>,
when parameters take values in

an >0, y>0, x€R and 0<6 < 2r.

Hence, the quadruple (u,0,x,5) gives a global coordinate system. (cf. S. Lang:
[1]). This system is related with the system (x;) by equations

x= (X% + 2,%:) /(x5 + 5D
(12) y= (@ — %o%s) /(X5 + 5D

ue? 18 =x,— 1/ —1%.

The projection = is given by n(g)=x+ /—1y. For the sake of simplicity we:
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will identify elements X; in g with left invariant vector fields on GL*(2, R).
Then, using new coordinates, they are written as in

LEMMA 5.

X,= (u/2) 55; . X=1/2) aia

_ . 0 _ 0 0 . 0
(13) X, =(—u/2)sin20 y = (1/2)c05206—0 +y<c052¢9 55 +sin2 _67>
Xi=(—u/2)cos26 . + (1/2)sin26 L +y (—Sin2ﬁ g + cos26 i)
0u 00 0x 0y /.

PROOF. see [1].
By this Lemma we have

-+ A =g 2V-10] _ /S —_— 4+ =)+ — + e
X3 vV 1X4 e 1 { (1/2)('1/ 1z 5 T 66) y(a v 1 5 )}

— 0 — 0
/S = i Vs
dX,+ 7 1X, (1/2) (du o +3 1 50 )

Let us recall a function f on GL*(2,R) is holomorphic if and only if
X+ =1 X) f=dX,++/=1X,)f=0. Hence, the projection z=x+1/"1 y is
holomorphic. Now set 1/d= —1+4+/=Ty. Then we see

LEMMA 6. The function w defined by

w:u—li»)/l_—v- yV-:vaZ e‘/:ﬂ

is holomorphic.
Also we see

PROPOSITION 4. The mapping ¢ = (m,w) from GL*(2, R) to 5= x C* is biholo-

morphic.

PROOF. It is enough to note that the jacobian of ¢ is nowhere zero, which
is verified by computation.
Due to the identification of GL*(2,R) and &= x C* by ¢, the left multiplica-

tion of an element g= (‘CZ Z) is an automorphism of 2# X C*, which we write by

0,(g), v being the parameter defined above. Denote by (z,w) the coordinate of
2 X C*. Then we have

PROPOSITION 5. (1) The action of 0,(g) on 57 x C* is 0,(g)(z,w)=((az+b)/
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(cz+ad), (det @)V~"2 (cz+d) ™ 'w).
(2) If v#Y, then 0, and O, are not conjugate in the automorphism group of S X
"

PROOF. First note that the mapping ¢ is given by the following equations
in terms of the coordinate system x=(x;) of G:

z=(n—v—=1x%)/(%—v =10,
w=(det x)"112/(x,+ 1 =1 x3).
Then, using these equalities, the above expression of #,(g) is easily seen. Next,

assume that there exists an automorphism ¢ of 27 X C* satisfying ¢0,(g) =0, (g)
¢ for every g. Writing this equality explicitly using (1), we see y=y.

5. Left invariant complex structures on U (2)

It is well known that g{(2,C) has two real forms. One is gl(2, R) considered
above and the other is u(2), the Lie algebra of the group U(2) of 2X2 unitary
matrices. As a topological manifold U(2) is homeomorphic to S'x S The
manifold S'x S on the other hand, has a complex structure realized as a usual
Hopf surface: the quotient space of C*— {0} by the group generated by a transfo-
rmation z—> az, for z € C* — {0} and a complex number a whose absolute value is
not equal to one. And this structure is invariant under the natural action as a
group manifold. But, we can see that these are all 1. i. complex structures on

U(2) in the following way.

We take, as a basis of u(2), four elements:

i _1(y/ =1 _1(y/ =1 _1< 1 _1( v/ =1
@ r=1("" ) n=-2(" o) v () v s A

and set

(5)  h=2y/"1Y, B=+/—1 (Y;+1/=1Yp, B=1y/—1 ¥,:—+/=1YD.

Then we have

(6)  [h,Bl=2B, [k, Bl= —2B, [B, Bl=h.

Denoting the element Y, by C, the conjugation z of gi{(2,C) with respect to u(2)
is given by

(™' «(C)=C, «(h)=—h, «(B)= —B, «(B)= —B.

With these identities, Lemma 1 and Lemma 2 hold also for u(2) replacing H, A,
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A by h, B, Erespectively. Lemma 3 holds without the condition adZ1. Lemma
4 needes some modification. But Proposition 3 is also true. And, hence, we can
prove Theorem 1 for u(2) which says that the 1. i. complex subalgebras for 1(2)
are C{B, h+dC}).

Now let us set h=R{Y,,V,} and p=R{Y,;Y,. We see that the decomposi-
tion u(2) =9+ p satisfies (8 and (9). The subgroup T of U(2) corresponding to b
is a complex torus. And the quotient space U(2)/7, which is simply connected
and compact, must be the complex projective space. Therefore, the space U(2),
as a complex manifold, is the holomorphic torus bundle over the projective space
which is a Hopf surface in the above sense.

REMARK. The reasonings in 4 and in 5 show that there is a complete duality
between . i. complex structures on u(2) and those on gl(2, R). This duality is
due to the low dimensionality of Lie algebras. We will discuss on the matter of
this kind in [3] for higher dimensional case.

References

L1J Lang, S. SLy(R), Addison-Wesley, 1975.

[2] Morimoto, A. Siructures complexes invariantes sur les groupes d: Lie semisimples,
C. R. (1956), 1101-1103.

[37] Sasaki, T. Regular invariant complex struciures on a real semisimple Lie group of
even dimension, to appear.

[4] Wang, H. C. Closed manifolds with homogeneous complex struciure, Amer. J. Math.
76 (1954), 1-32.

Department of Mathematics
Faculty of Science
Kumamoto University



