A RELATION BETWEEN AN ASYMPTOTIC PROBABILITY AND THE MAXIMAL EGIENVALUE OF A RECURRENT POTENTIAL KERNEL

Yoichi ŌSHIMA

(Received March 20, 1979)

1. Introduction

For certain transient Markov processes, a relation between the minimal eigenvalue of negative of the generator and an asymptotic behavior of the transition probability for large time is given by M. Kac [4] and generalized by Donsker-Varadhan [2]. Their results contain that, if L is the generator of a recurrent Markov process on a compact space E and V(x) a nonnegative function on E then, under some additional hypothesis, the minimal eigenvalue σ_1 of -L+V is given by

(1.1)
$$\sigma_{1} = -\lim_{t \to \infty} \frac{1}{t} \log E^{x} \left[\exp\left\{-\int_{0}^{t} V(X_{s}) ds\right\} \right]$$
$$= -\lim_{t \to \infty} \frac{1}{t} \log Q_{t} 1(x),$$

where Q_t is the transition probability of the Markov process corresponding to L-V.

If V=0 then the relation (1.1) is trivial. But if we restrict the domain of L to the space of null charges then a relation between the minimal eigenvalue of -L and an asymptotic behavior of the transition probability P_t of the Markov process X corresponding to L holds. More explicitly, suppose that the resolvent $(G^p)_{p>0}$ of X is strong Feller and symmetric relative to the invariant measure μ . If we denote $\mathscr H$ the space of all square integrable functions relative to μ such that $<\mu$, f>=0 then, under the additional hypothesis H2 in section 3, the minimal eigenvalue σ_1 of -L restricted to $\mathscr H$ is given by

(1.2)
$$\sigma_{1} = -\lim_{t \to \infty} \frac{1}{t} \log \langle \mu, \| P_{t} - \mu \| (x) \rangle$$

where $||P_t - \mu||(x)$ is the total variation of the signed measure $P_t(x, \cdot) - \mu(\cdot)$ (theorem 2). Under rather weaker hypothesis H1, the corresponding result for the resolvent holds (theorem 1).

The statements and proofs of theorems 1 and 2 are given by the maximal eigenvalue λ_1 of an operator G on \mathcal{H} induced by a potential kernel of X. The eigenvalues σ_1 and λ_1 are related by $\sigma_1=1/\lambda_1$.

2. Preliminaries

Let E be a compact metric space and X a recurrent Hunt process on E with strong Feller resolvent. Denote $(P_t)_{t>0}$ and $(G^p)_{p>0}$ the transition function and resolvent of X, respectively. Let μ be the probability invariant measure of X then it is everywhere dense positive on E. We shall assume that our resolvent (G^p) is symmetric relative to μ , that is, for all p>0 and bounded measurable functions f and g

$$(2.1) (G^p f, g) = (f, G^p g),$$

where (\cdot, \cdot) is the inner product relative to μ .

For all p > 0 and $x \in E$, since the measures $G^p(x, \cdot)$ and μ are equivalent, there exists a jointly measurable function $g^p(x, y)$ $(p > 0, x, y \in E)$ such that $G^p(x, dy) = g^p(y, y) \mu(dy)$, $g^p(x, y) = g^p(y, x)$ and $g^p(\cdot, y)$ is p-excessive.

Let G(x, dy) be a potential kernel of X defined by

(2.2)
$$G(y, dy) = \sum_{n=1}^{\infty} \{ (G^1)^n - \mu \} (x, dy).$$

Under our present hypothesis, (2.2) is well defined. In our previous paper [4], it is shown that there exists unique jointly measurable function g(x, y) (x, y)

- (i) $\int |g(x, y)| \mu(dy)$ is bounded.
- (ii) Set $\Gamma = \{(x, y): |g(x, y)| < \infty\}$ then, for all $x \in E$, the complement Γ_x^c of x-section Γ_x of Γ is polar.
- (iii) g(x, y) = g(x, y) and $G(x, dy) = g(x, y) \mu (dy)$.
- (iv) For all $(x, y) \in \Gamma$, $\int |g(x, z)| g^{1}(z, y) \mu(dz) < \infty$ and
- (2.3) $g(x, y) = g^{1}(x, y) + Gg^{1}(x, y) 1$ = $g^{1}(x, y) + g^{1}\hat{G}(x, y) - 1$,

where $\hat{G}(dz, y) = G(y, dz)$.

Denote $L^2(\mu)$ the set of all square integrable functions relative to μ and

$$\mathcal{H} = \{ f \in L^2(\mu) : \langle \mu, f \rangle = 0 \}.$$

Then ${\mathscr H}$ is a closed linear subspace of the Hilbert space L^2 (μ).

LEMMA 1. The kernels G^p and G define the bounded linear operators on \mathcal{H} .

PROOF. Let $f \in \mathcal{H} \cap b\mathcal{C}$ then, by Schwarz's inequality

$$\begin{split} & \int (Gf)^2(x)\mu(dx) = \int \{\int g(x, y)f(y)\mu(dy)\}^2\mu(dx) \\ & \leq \int \{\int |g(x, y)|\mu(dy)\int |g(x, y)|f(y)^2\mu(dy)\}\mu(dx). \end{split}$$

Since $\int |g(x, y)| \mu(dy)$ is bounded, $\sup_{x} \int |g(x, y)| \mu(dy) = \alpha < \infty$. Hence

$$\int (Gf)^{2}(x)\mu(dx) \leq \alpha \int \int |g(x, y)| f(y)^{2}\mu(dy)\mu(dx)$$

$$\leq \alpha^{2} \int f(y)^{2}\mu(dy),$$

so that G defines a bounded linear operator on $L^2(\mu)$. The equality $<\mu$, Gf>=0 is obvious. We shall use the same notation for this extended operator. Therefore $Gf\in \mathcal{H}$. Similarly $G^pf\in \mathcal{H}$ for all p>0 and $f\in \mathcal{H}$.

As is well known, (G^p) is a strongly continuous resolvent on $L^2(\mu)$, and hence on \mathscr{H} , that is $\lim_{p\to\infty}pG^ph=h$ for all $h\in\mathscr{H}$. Hence, if $G^pf=0$ for some p>0 and $f\in\mathscr{H}$ then, by the resolvent equation, $G^pf=0$ for all p>0, so that, by the strong continuity of G^p , f=0. Hence the generator

$$(2.4) Lg = pg - (G^p)^{-1}g, g \in \mathcal{D}(L) = G^p(\mathcal{H})$$

is well defined.

LEMMA 2.
$$-L = (G)^{-1}$$

PROOF. It is enough to show that $\mathcal{D}(L) = G(\mathcal{H}), -LGf = f$ for all $f \in \mathcal{H}$ and -GLg = g for all $g \in \mathcal{D}(L)$.

If $g \in \mathcal{D}(L)$ then $g = G^p f$ for some $f \in \mathcal{H}$. From (2.2),

$$g = G(I - pG^p) f \in G(\mathcal{H})$$

and

$$GLg = G(pg-f) = -G(f-pG^pf) = -g.$$

Similarly, since $(I-pG^p)Gf=G^pf$ for all $f\in\mathcal{H}$, $G(\mathcal{H})\subseteq\mathcal{D}(L)$ and -LGf=f for all $f\in\mathcal{H}$.

3. Main results

In this section, except the last part, we shall assume that E is compact and X is a recurrent Hunt process with strong Feller symmetric resolvent.

Denote $\Pi(x, dy)$ and $\pi(x, y)$ for $G^1(x, dy)$ and $g^1(x, y)$, respectively. We shall omit the trivial case that $\pi(x, y) = 1$ for all $x, y \in E$. Let g be the potential kernel function in section 2. We shall impose an additional hypothesis on π .

Hypothesis H1. $\sup_{x \in E} \int \pi(x, y)^2 \mu(dy) < \infty$.

LEMMA 3. Hypothesis H1 is equivalent to

(3.1)
$$\sup_{x \in E} \int g(x, y)^2 \mu(dy) < \infty.$$

PROOF. Suppose that (3.1) holds. Then, since $\mu(\Gamma_x)=0$ for all $x\in E$ and

$$g(x, y) = \pi(x, y) + \int \pi(x, z)g(z, y) \ \mu(dz) - 1$$

for all $(x, y) \in \Gamma$ by (2.3),

$$\int \pi(x, y)^2 \mu(dy) = \int \{g(x, y) - \Pi g(x, y) + 1\}^2 \mu(dy).$$

Hence, for the proof of Hl, it ie enough to show that

(3.2)
$$\sup_{x \in \mathbb{Z}} \int \{ \Pi g(x, y) \}^2 \, \mu(dy) < \infty.$$

This follows easily from Schwarz's inequality, in fact,

$$\sup_{x \in E} \int \{ \prod g(x, y) \}^2 \ \mu(dy) \leq \sup_{x \in E} \int \{ \pi(x, z) \ \mu(dz) \int \pi(x, z) \ g(z, y)^2 \ \mu(dz) \} \ \mu(dy)$$

$$= \sup_{x \in E} \int \int \pi(x, z) \ g(z, y)^2 \ \mu(dz) \ \mu(dy) \leq \sup_{z \in E} \int g(z, y)^2 \ \mu(dy) < \infty .$$

Conversely, if H1 holds then the proof of (3.1) is similar by noting that, for all $(x, y) \in \Gamma$

$$g(x, y) = \pi(x, y) + \int g(x, z) \pi(z, y) \mu(dz) - 1$$

and $\sup_{x \in K} \int |g(x, z)| \mu(dz) < \infty$.

LEMMA 4. Under the hypothesis H1, the operator G and G^p on \mathcal{H} are symmetric compact operators. Moreover, they are strictly positive definite on \mathcal{H} .

PROOF. Since G and G^1 define the Hilbert-Schmidt type operators, the compactness of G and G^1 are obvious. By the resolvent equation, G^p is also compact.

Symmetry is contained in the hypothesis on X. From [7, lemma 6.3], G is strictly positive difinite. Similarly G^p is strictly positive difinite.

From lemma 5, as is well known, the operator G on \mathscr{H} has at most countable positive eigenvalues with no accumulation points except zero. Let $\lambda_1 \geq \lambda_2 \geq \cdots > 0$ be the eigenvalues of G and $\varphi_1, \varphi_2, \cdots$ be the corresponding normalized eigenfunctions in \mathscr{H} . Then $\{\varphi_n\}_{n\geq 1}$ is a complete orthonormal system on \mathscr{H} .

REMARK. If we consider G as an operator on $L^2(\mu)$ into $\mathscr H$ then it has zero as an eigenvalue and the only corresponding eigenfunction is constant.

LEMMA 5. For all $n \ge 1$, ψ_n has a bounded continuous version.

PROOF. Since
$$\psi_n \in \mathscr{H}$$
 and $G\psi_n = \lambda_n \ \psi_n$, $\lambda_n \ ess \ sup \ |\psi_n(x)| = \ ess \ sup \ |G\psi_n|(x)$ $= \ ess \ sup \ |\int g(x, y) \ \psi_n(y) \ \mu(dy)| \le sup \ \{\int g(x, y)^2 \ \mu(dy)\}^{1/2} < \infty$.

Hence ψ_n is essentially bounded and hence $G\psi_n$ is bounded. Thus, from the strong Feller property of G_p , $G\psi_n = G^p(pG\psi_n + \psi_n)$ is continuons.

THEOREM 1. Under the hypothesis H1,

(3.3)
$$\log (\lambda_1/1 + \lambda_1) = \lim_{n \to \infty} \log \langle \mu, || \Pi^n - \mu || (x) \rangle.$$

where $\|\Pi^n - \mu\|$ (x) is the total variation of the signed measure $\Pi^n(x, \cdot) - \mu(\cdot)$.

PROOF. Since $G\psi_1 = \lambda_1 \psi_1$ and $(I - II) G\psi_1 = II\psi_1$,

Therefore, integrating by μ ,

$$(\lambda_1/1 + \lambda_1)^n < \mu$$
, $|\psi_1| > = < \mu$, $|II^n \psi_1| >$.

Since $\psi_1 \neq 0$, $\langle \mu, |\psi_1| \rangle > 0$ and

$$n \log(\lambda_1/1 + \lambda_1) + \log < \mu, \ |\psi_1| > = \log < \mu, \ |\Pi^n \psi_1| >$$

$$= \log < \mu, \ |\int \{ \Pi^n(x, dy) - \mu(dy) \} \psi_1(y) | >$$

$$\leq \log(ess \sup |\psi_1|) + \log < \mu, \| \Pi^n - \mu\|(x) >.$$

Dividing by n and letting $n \to \infty$ we have

$$log(\lambda_1/1+\lambda_1) \leq \lim_{n\to\infty} \inf \frac{1}{n} log < \mu, \|H^n-\mu\|(y)>.$$

For the proof of the converse statement, we shall define $\pi^n(x, y)$ inductively by

$$\pi^{1}(x, y) = \pi(x, y), \ \pi^{n}(x, y) = \Pi^{n-1} \pi(x, y),$$

then, by Schwarz's inequality

$$<\mu, \|H^{n} - \mu\|(x)>^{2} = \{\int \mu(dx) \int |\pi^{n}(x, y) - 1| \mu(dy)\}^{2}$$

$$\leq \int \int |\pi^{n}(x, y) - 1|^{2} \mu(dx) \mu(dy)$$

$$= \int \int |H^{n-1}(\pi - 1) (x, y)|^{2} \mu(dx) \mu(dy).$$

Set $f_y(z) = \pi(z, y) - 1$ then

$$< \mu, \ \| H^{n} - \mu \| (x) >^{2} \le \int \int |H^{n-1} f_{y}(x)|^{2} \ \mu(dx) \ \mu(dy)$$

$$= \int (H^{n-1} f_{y}, \ H^{n-1} f_{y}) \ \mu(dy) = \int (f_{y}, \ H^{2n-2} f_{y}) \ \mu(dy)$$

$$= \int \{ (f_{y}, \ H^{2n-2} f_{y}) / \| f_{y} \|_{2}^{2} \| f_{y} \|_{2}^{2} \ \mu(dy),$$

where $\|\cdot\|_2$ is the norm in $L^2(\mu)$. Since $(\lambda_1/1+\lambda_1)^{2n-2}$ is the maximal eigenvalue of the operator I^{2n-2} on \mathcal{H} , from a classical variational formla,

(3.5)
$$(\lambda_1/1 + \lambda_1)^{2^{n-2}} = \sup_{f \in \mathscr{X}} (f, \Pi^{2^{n-2}}f) / \|f\|_2^2.$$

From the definition of f_y , $f_y \neq 0$,

$$\|f_y\|_2^2 \! = \! \int \{\pi(z, y) - 1\}^2 \; \mu(dz) \! \le \! \int \! \pi(z, y)^2 \; \mu(dz) - 1 \! < \infty$$

and $<\mu$, $f_y>=0$, that is, $f_y\in\mathscr{H}$. Moreover, from the hypothesis H1,

Hence,

$$<\mu$$
, $||II^n - \mu|| >^2 \le \int \{ \sup_{f \in \mathscr{X}} (f, ||I^{2n-2}f|) / ||f||_2^2 \} ||f_y||_2^2 \mu(dy)$
 $\le (\lambda_1/1 + \lambda_1)^{2n-2} \int ||f_y||_2^2 \mu(dy).$

Hence we have

$$2 \log < \mu, \|\Pi^n - \mu\|(x) > \leq (2n-2) \log (\lambda_1/1 + \lambda_1) + \log \{\int \|f_y\|_2^2 \mu(dy) \}.$$

Therefore

$$\lim \sup_{n\to\infty} \frac{1}{n} \log <\mu, \|H^n-\mu\|(x)> \leq \log(\lambda_1/1+\lambda_1).$$

Thus we have the result.

To give a connection between λ_1 and the asymptotic behavior of P_t as $t \to \infty$, we must impose stronger hypothesis than H1.

HYPOTHESIS H2. For all $x \in E$ and t > 0 there exists a jointly measurable density $p_t(x, y)$ of $P_t(x, dy)$ relative to $\mu(dy)$ satisfying $p_t(x, y) = p_t(y, x)$ and

$$\sup_{x\in \mathbb{Z}} p_t(x, x) < \infty.$$

Clearly, (3.7) is equivalent to

(3.8)
$$\sup_{x \in E} \int p_{t/2}(x, y)^2 \, \mu(dy) < \infty.$$

Under the hypothesis H2

$$g^{p}(x, y) = \int_0^\infty e^{-pt} p_t(x, y) dt$$

satisfies the hypothesis H1. Let λ_n and $\psi_n(n=1,2,\cdots)$ be the eigenvalues and the corresponding normalized eigenfunctions of G, as before.

THEOREM 2. Under the hypothesis H2,

(3.9)
$$-1/\lambda_1 = \lim_{t \to \infty} (1/t) \log \langle \mu, \| P_t - \mu \| (x) \rangle.$$

PROOF. The proof is similar to the proof of theorem 1, so that we shall only outline it. Since $P_t\phi_1=exp(-t/\lambda_1)\phi_1$,

$$\begin{aligned} -(t/\lambda_1) + log &< \mu, \ |\psi_1| > = log < \mu, \ |P_t\psi_1| > \\ &\leq log(ess \ sup |\psi_1|) + log < \mu, \ \|P_t - \mu\|(x) >. \end{aligned}$$

Hence

$$-(1/\lambda_1) \leq \lim_{t \to \infty} \inf(1/t) \log < \mu, \ \|P_t - \mu\|(x) > .$$

Conversely, if we set $f_y(z) = p_s(z, y) - 1 \in \mathcal{H}$ for fixed s(s < t) then

$$\langle \mu, \| P_t - \mu \| (x) \rangle^2 \leq \int \| P_{t-s} f \|_2^2 \, \mu(dy)$$

$$\leq \sup_{f \in \mathcal{X}} (\| P_{t-s} f \|_2^2 / \| f \|_2^2) \, \int \| f_y \|_2^2 \, \mu(dy)$$

$$\leq \exp\{ -2(t-s)/\lambda_1 \} \, \int \| f_y \|_2^2 \, \mu(dy).$$

Y. OSHIMA

Since $\int ||f_y||_2^2 \mu(dy) < \infty$, we have

16

$$\lim_{t\to\infty}\sup(1/t)\,\log<\mu,\,\|P_t-\mu\|(x)>\leq -1/\lambda_1.$$

REMARK 1. From lemma 2, $1/\lambda_1$ is the smallest eigenvalue of -L.

REMARK 2. If μ is not a probability measure then the results of theorems 1 and 2 hold by replacing $\mu/\mu(E)$ for μ .

Finally, we shal remark some easy consequences for the case with non-compact state space. Let E be a separable metric space and X be a recurrent Hunt process with symmetric strong Feller resolvent (G^p) . Then there exists a potential kernel function g(x, y) (see [4], section 4). Let A be an arbitrary fixed non-negative finite continuous additive functional of X and (K^p) be the resolvent of the time changed process Y of X by A. Then the restriction of g(x, y) to $supp(A) \times supp(A)$ is a potential kernel function of Y. Denote ν_A the measure associated with A then it vanishes outside of supp(A).

HYPOTHESIS H1'.
$$\nu_A(E)$$
 $< \infty$ and $\sup_{x \in supp(A)} \int_{x} g(x,y)^2 \nu_A(dy) < \infty$.

Note that, under the hypothesis H1', $\int |g(x,y)| \nu_A(dy)$ is bounded on supp (A). Since the potential kernel function is unique up to difference of a locally bounded function of the form $f_1(x)+f_2(y)$ ([4], theorem 4.1), hypothesis H1' is independent of the choice of the potential kernel function. Suppose, for simplicity, that $\nu_A(E)=1$ and

$$\int G(x, y) \nu_A(dy) = 0.$$

This is possible by replacing μ and g by $\mu/\nu_A(E)$ and

$$\begin{split} g(x, \ y) \ \nu_A(E) - \int g(x, \ z) \ \nu_A(dz) - \int g(y, \ z) \ \nu_A(dz) \\ + \ 1/\nu_A(E) \cdot \int \int g(z, \ u) \ \nu_A(dz) \ \nu_A(du), \end{split}$$

respectively. After this modification, we have

THEOREM 1.' Under the hypothesis H1', the maximal eigenvalue λ_1 of the operator K_A defined by

$$K_A f(x) = \int g(x, y) f(y) \nu_A(dy)$$

on $\mathcal{H}_A = \{ f \in L^2(\nu_A) : \langle \nu_A, f \rangle = 0 \}$ is given by the formula

$$(3.3)' \qquad log(\lambda_1/1+\lambda_1) = \lim_{\substack{n\to\infty\\n\to\infty}} log < \nu_A, \ \|(K_A^1)^n - \nu_A\| \ (x)>,$$

where, $K_A^1(s, dy)$ is the kernel defined by

$$K_A^1 f(x) = E^x \left[\int_0^\infty exp(-A_t) f(X_t) dA_t \right].$$

References

- [1] M. D. Donsker and S. R. S. Varadhan: Asymptotic evaluation of certain Markov process expectations for large time I, Comm.pure Appl. Math. 27 (1975), 1-47.
- [2] M. Fukushima: Dirichlet forms and markov processes, Kinokuniya, 1975 (Japanese).
- [3] M. Kac: On some connections between probability theory and differential and integral equations, Proc. Second Berkeley Symposium on Math. Stat. and Probability, University of California Press, 1951, 189-215.
- [4] Y. Oshima: On the equilibrium measure of recurrent Markov processes, Osaka J. Math. 15 (1978), 283-310.

Department of Mathematics, Faculty of engineering, Kumamoto University