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1. Introduction

For certain transient Markov processes, a relation between the minimal
eigenvalue of negative of the generator and an asymptotic behavior of the
transition probability for large time is given by M. Kac [4] and generalized by
.Donsker -Varadhan [2]. Their results contain that, if L is the generator of a
recurrent Markov process on a compact space E and V(%) a nonnegative function
on E then, under some additional hypothesis, the minimal eigenvalue o; of ~L+V

is given by
LD — lim%log E*[exp{—§, V(X,)ds)]
>0
.1
=—lim ' log Q,1(x),
t—>c0

where @, is the transition probability of the Markov process corresponding to
L-V.

If V=0 then the relation (1.1) is trivial. But if we restrict the domain of L
to the space of null charges then a relation between the minimal eigenvalue of
—L and an asymptotic behavior of the transition probability P, of the Markov
process X corresponding to L holds. More explicitly, suppose that the resolvent
(G")p>o of X is strong Feller and symmetric relative to the invariant measure e
If we denote 5# the space of all square integrable functions relative to « such
that <, f> = 0 then, under the additional thypothesis H2 in section 3, the
minimal eigenvalue o; of —L restricted to &7 is given by

1.2 o= = lim 3 1og < s | Pi— ]l (22>

where || P,—x[[(#) is the total variation of the signed measure P,(%, « )—u( - )
(theorem 2). Under rather weaker hypothesis H1, the corresponding result for
the resolvent holds (theorem 1). '
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The statements and proofs of theorems 1 and 2 are given by the maximal
eigenvalue 2; of an operator G on & induced by a potential kernel of X. The
eigenvalues o; and % are related by o1=1/.

2. Preliminaries

Let E be a compact metric space and X a recurrent Hunt process on E with
strong Feller resolvent. Denote (P:):>o and (G™)p>o the transition function and
resolvent of X, respectively. Let z be the probability invariant measure of X
then it is everywhere dense positive on E. We shall assume that our resolvent
(G?) is symmetric relative to u, that is, for all p>0 and bounded measurable
functions f and g

(2.1) (Gf, & = (f, G°2,

where (-, -) is the inner product relative to s.

For all p > 0and x € E, since the measures G?(x,+) and u are equivalent,
there exists a jointly measurable function g”(x, ) (» >0, %, y €E) such that
G?(x, dy)= g°(y, ») r (dy), g°(x, y)= g"(y, %) and gP(-, y) is p-excessive.

Let G(x, dy) be a potential kernel of X defined by

(2.2) Gy, dy) = nﬁ;l ((GY" =} (x, dy).

Under our present hypothesis, (2. 2) is well defined. In our previous paper
[ 41, it is shown that there exists unique jointly measurable function g(x, y) (%, y
¢ E), called the potential kermel function, satisfying

(i) § 1 gCx, y) | u(@y) is bounded.
(i) Set I'={(x, y): | g(x, | <o)} then, for all x € E, the complement I';,
of x-section I'y of I is polar.
(iii) g(x, »)=g(x, y) and G, dy)=g(x, y) p (dy).
(iv)  Forall (%, 9) €T, §| glx, 21 2'(z ») » (d2) < o« and
2.3) g =g N+tGgx »N—1
=g N+gG6 ) —1,
where G(dz, v)=G(y, dz).

Denote L2(z) the set of all square integrable functions relative to u and

#={fe L (p): < uf>=0}L
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Then 2# is a closed linear subspace of the Hilbert space L* (u).

LEMMA 1. The kernels G and G define the bounded linear operators on 7.
PROOF. Let f € £ Nb% then, by Schwarz's inequality

SCGFY () u(dx) =§1§ gCx ) () u(dn)}2p(dx)
<§{§1gx w|u@§|glx »|f2ud)} ndx).

Since §|g(x )| n(dy) is bounded, sup §|g(x »)|u(dy) =a< .
Hence

SGHY D p(dn) <af§|gx »| F(9Puld)p(ds)
<§ fF(*uiady),

so that G defines a bounded linear operator on L2(x). The equality < g, Gf >=0
is obvious. We shall use the same notation for this extended operator. Therefore
Gf €2¢. Similarly G°f € &# for all >0 and f € 57.

As is well known, (G*) is a strongly continuous resolvent on L*(y), and

hence on 57, that is lim pG"h="h for all k€ 5#. Hence, if G?f =0 for some >0

P>

and f € &# then, by the resolvent equation, G?f =0 for all >0, so that, by the
strong continuity of G”, f=0. Hence the generator

2.0 - Lg=pg—(GNg g€ 2(L)=G"(s»)

is well defined.
LEMMA 2. —L=(&*

PROOF. It is enough to show that (L)=G(s#), —LGf=f for all f € 57
and —GLg=g for all g€ o(L).
If g€ 2(L) then g=G"f for some f € . From (2.2),

g=GUI—pG") f € G(s7)
and
GLg=G(pg—f)=—G(f—pG’f)=—g.

Similarly, since (/—pG")Gf=G*f for all f € 57, G(s#) <=2 (L) and —LGf=f
for all f € s~.
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3. Main results

In this section, except the last part, we shall assume that E is compact and
X is a recurrent Hunt process with strong Feller symmetric resolvent.

Denote II(x, dy) and =(x, ) for G'(x, dy) and g'(x, ¥), respectively. We shall
omit the trivial case that z(x, y) =1forall x, y €E. Let gbe the potential kernel
function in section 2. We shall impose an additional hypothesis on 7.

HypOTHESIS HI. sug Sz(x, ¥)? pldy)<oo.
z€

LEMMA 3. Hypothesis H1 is equivalent to

3.0 sup §g(x, 9)° pdy) <oo.

PROOF. Suppose that (3.1) holds. Then, since p(Ip)=0 for all x € E and
g(x, ) =% N+ §n(x gz 9 pldDd—1
for all (x, ») €I by (2.3),
§r(x, )* p(dy)=§{gx »)—Mg(x y+11* pay).
Hence, for the proof of Hl, it ie enough to show that

(3.2) sup §{mg(x, M)? uldy)<oo.

This follows easily from Schwarz's inequality, in fact,
sup §{Ig(x ) play) < sup § (2%, 2) u(d2) §a(x, 2) g(z, 9)° p(d2)} n(dy)
=sup §§n(x, 2) gz, ¥)* u(dz) p(@y) = sup §g(z, 90" u(dy) <eo.

Conversely, if H1 holds then the proof of (3. 1) is similar by noting that, for
all (%, y) €T

g%, N=nlx, N+§gx 2 n(z, y) uldz)—1
and széj;' §lglx, 2)|uldz) <o

LEMMA 4. Under the hypothesis H1, the operator G and G? on ¥ are symme-
tric compact operators. Moreover, they are strictly positive definite on 2.

PROOF. Since G and G define the Hilbert-Schmidt type operators, the com-
pactness of G and G" are obvious. By the resolvent equation, G? is also compact.
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Symmetry is contained in the hypothesis on X. From [7, lemma 6. 3], G is strictly
positive difinite. Similarly G” is strictly positive difinite.

From lemma 5, as is well known, the operator G on & has at most countable
positive eigenvalues with no accumulation points except zero. Let 4,=> ,=>«- >0
be the eigenvalues of G and ¢y, ¢,, +-- be the corresponding normalized eigenfunct-
ions in &°. Then {g,}axis a complete orthonormal system on 2.

REMARK. If we consider G as an operator on L*(x) into & then it has zero
as an eigenvalue and the only corresponding eigenfunction is constant.

LEMMA 5. For all n>1, ¢, has a bounded continuous version.

PROOF. Since ¢'n. E &7 and G¢r,,,=/7-n ¢'ns
An €ss sup |¢n(x)| = ess sup |Ggnl ()
=ess sup |§g(x, 9) ¢a(3) p(@0)|<sup (§g(x, y)? u(dy)}2< oo,

Hence ¢, is essentially bounded and hence G¢, is bounded. Thus, from the strong
Feller property of G,, G¢,=G"(pG¢, + ¢,) is continuons.

THEOREM 1. Under the hypothesis H1,

3.3 log (11/1+21)=li7{i log < | I"—pl (£>.

where || II" — pl| (x) is the total variation of the signed measure II'(x, -) — ().
PROOF. Since G¢1=2,¢; and (J—1II) G¢,= I,
G4 I"¢y= (/14 20", for all n>1.
Therefore, integrating by 4,
/1+ 20" <y || > =<p, | I >.
Since ¢170, <u, |¢1]> > 0 and

n log(/1+ ) +log< p, || > =log<p, |II"¢1| >
=log<p, |S{I"(x, dy)—p(@n}e:(9)| >
< log(ess sup|d1|)+log< u| I"— p](x)>.

Dividing by » and letting # — o we have
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i @ 1 n
log(2/1+ ) < lim inf P log<p, |I"—pl(3)>.

For the proof of the converse statement, we shall define 7"(x, y) inductively
by

7 (x, W =nr(x, ¥, z"(x, P=I""" n(x ),

then, by Schwarz's inequality

< o | = pll () > = {§ u(dx) § |7" (%, ) —1] n(@N)?
< §§ 17", ) —1)%u(dx) w(dy)
= §§1 I (= —1) (x, | u(dxn) p(@y).

Set f,(2)=n(z, ¥)—1 then

< o | IT"—pl (> SS§ 1T (0| pw(dx) w(@y)
=S(Hn—1 fy’ Hn—lfy) ﬂ(dy)=s<fy’ Hzn—zfy) /l(dyD
=§{(fys "D/ IBNS NG 1@,

where || ||, is the norm in L?(x). Since (1/1+2)*"? is the maximal eigenvalue of

the operator II*"~* on &#, from a classical variational formla,
(3.5 (/14 )" =sup (f, I"7F /S
From the definition of fy, f, # 0,
I £ 2= § (n(z, ) —1)° p(dD=(n(z, »)* pldz) = 1<
and < u, f,>=0, that is, f, € . Moreover, from the hypothesis HI,
(3.6) SNFNE n(@y) < oo
Hence,

< us Hﬂ"—ﬂll>zéf{fseusg(f, O/ IRz w(dy)
< /1+ 20772 SN f e nl@p).

Hence we have
2 log < u,|| II" — pl|(2) > < (2n—2) log (A/1+ 4) +log{§IIf,ll; #(@y)}.

Therefore
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tim sup - log< u |I"—pl()>< log(a/1+ .

Thus we have the result.

To give a connection between 4; and the asymptotic behavior of P; as { — oo,
we must impose stronger hypothesis than H1.

HYPOTHESIS H2. For all x € E and t > 0 there exists a jointly measurable
density p.(x, y) of P,(x, dy) relative to n(dy) satisfying p.(x, ¥)=p,(y, x) and

3.7 sup p.(x, x) < oo.
TER
Clearly, (8.7) is equivalent to
(3.8 sup § De0(x, 3)? n(dy) < oo.
Under the hypothesis H2

g7 = |7 e px padt

satisfies the hypothesis H1. Let 2, and ¢,(%2=1,2,---) be the eigenvalues and the

corresponding normalized eigenfunctions of G, as before.
THEOREM 2. Under the hypothesis H2,

GB.9 -1/ = Lim /8 log<p |1Pe—pll (£)>.

PROOF. The proof is similar to the proof of theorem 1, so that we shall only
outline it. Since Pypr=exp (—i/2)¢,

=@/ ) +log < p, 91| > =log < p, |Pigpr| >
= log(ess sup|¢:|)+log < u, ||Pi—pll(x)>.
Hence
-/ < li@jgf(l/t) log < u, |Pr—pll(x)>.
Conversely, if we set f,(2) =p,(z, ) —1€ & for fixed s(s<?) then

<ts |1Pe=pll () > < SlIPess fIIE p(dp)
= %‘ﬁ(”P‘-S FIRZLAID SIfIE (@)

S exp(—2@—s)/2) § £, 15 wl@y.
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Since § ||, |3 #(dy) <oo, we have

li"}_)fouﬁ(l/i) log<u, |Pi—pll(D><—1/4.

REMARK 1. From lemma 2, 1/2; is the smallest eigenvalue of — L.

REMARK 2. If z is not a probability measure then the results of theorems 1
and 2 hold by replacing u/u(E) for ..

Finally, we shal remark some easy consequences for the case with non-
compact state space. Let E be a separable metric space and X be a recurrent
Hunt process with symmetric strong Feller resolvent (G?). Then there exists a
potential kernel function g(x, ») (see [4], section 4). Let A be an arbitrary
fixed non-negative finite continuous additive functional of X and (K?) be the
resolvent of the time changed process ¥ of X by A. Then the restriction of
2(x, ¥) to supp (A)xsupp (A) is a potential kernel function of Y. Denote v4
the measure associated with A then it vanishes outside of supp(A).

HYPOTHESIS H1'. v (E) < and sup §glxy)’ vi(d@y)< .

xEsupp(A4)

Note that, under the hypothesis H1, §|g(x, »)|v4(dy) is bounded on supp
(A). Since the potential kernel function is unique up to difference of a locally
bounded function of the form fi(x)+f2(») ([ 4], theorem 4. 1), hypothesis H1 is
independent of the choice of the potential kernel function. Suppose, for simplici-
ty, that v4(E)=1 and

§ G(x, ) va(dy)=0.
This is possible by replacing # and g by u/v4(E) and

g(x, ) va(E)—§ glx, 2) va(dz)—§ g(9, 2 v4(d2)
+1/va(E) - §§ g(z, w) va(d2) va(du),

respectively. After this modification, we have

THEOREM 1.” Under the hypothesis H1', the maximal eigenvalue i of the
operator K, defined by

K f @)= gx 3 f(3) val@y)

on 22 4= {fE€ L vy): <vyu f>=0} is given by the formula
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3.3) log(A/1+21) = lim log<v 4, (K" —vall (D>,
where, K4(s, dy) is the kernel defined by

Kl f)=E" [[7 exp(—A) F(X) dA].
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