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Introduction

In [1], Duvaut-Lions presented an idea to formulate the plasticity problems
mathematically. They also gave a proof of the existence and uniqueness of the
solution to the elastic-perfectly plastic problems. The key of their formulation
is in deleting, by introducing an inequality representing the orthogonality condition
of the plastic strain increments, the distinction of two different states ‘‘elastic,
plastic’”, which causes all mathematical difficulties in plasticity theory.

One of the important techniques of [1] in proving the existence of the
solution is the penalty method, in which the elastic-plastic problem is regarded
as a limit problem of a sequence of problems with viscosity. This method has
great generality and, in a certain sense, is even natural for proving the existence
and uniqueness of the solution.

Although the inequalify as in [1] may be inevitable for the mathematical
treatment of the plasticity problems, the use of the penalty method in constructing
the solution is not necessarily convenient when we want to discuss about some
problems. One example of such case arises in the derivation and analysis of
the numerical methods, since the plasticity problems in engineering are treated
usually in the classical form.

In a previous paper [3] we presented another approach to the plasticity
problems, which is based on a simple ‘‘discretization”. The purpose of this paper
is to apply its basic idea to the general problems of plasticity. We again consider
the dynamic elastic-plastic problem. We first introduce a finite element scheme,
which is a system of ordinaly differential equations with hysteresis and called the
semidiscrete system. This system can be regarded as a discrete model of the
original problem. We show that the ‘‘classical”’ elastic-plastic problem can be
well-posed for this system. Since the solution of this system is smooth enough to
get some energy inequalities including the higher derivatives, we can attain, by
passing to the limit, to the desired solution of the original elastic-plastic problem
which is governed by the partial differential equations.

Qur results can be used immediately as a theoretical background of some
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numerical methods to compute the solution. We refer to [4] for the numerical
approach to the present problem, in particular for the stability analysis of the

approximating schemes.

1. An incremental formulation of the dynamic elastic-plastic problem

The problem considered in this paper is formulated, originally, as follows.
For simplicity, we consider the two-dimensional case. Let £ be a domain in
(%1, %) plane and 7 the bounded time interval (0, 7). Let = (21, 42), e = Ce11, €23, £10)5
0="{(011, 032, 012) (6n=015) and a=(ay, am, a1,) be the displacement, the strain, the
stress and the parameter representing the center of the yield surface. Also, Uy
and # are used to denote the derivative on x; and on time # The notation *
denotes the transpose of a vector. Hence a™b denotes the inner product of vectors.
The inner product and the norm of (vector) functions in L?*(£2) are denoted by
(o, B) and |lall, respectively. We use these notations for both the single and
vector functions, unless ambiguity occurs. '

The dynamic elastic-plastic problem with Mises’ yield condition and Ziegler’s
hardening rule is to solve the following equations under the given initial-boundary
conditions (see [5], [6]).

(1.1) pul—z O'ij,j=b1; in TX.Q,
= D¢
1.2 { if flo—a)<a,
a=0
6=(D—D"):
1.3 { of*s if f(o—a)=5 and 8f*s> 0, |
a=(oc— a) 7 i

where p is positive constant and {b;} are given smooth functions with piecewise

analytic first derivative with respect to £. The function f is given by
1.4 FAo)=0chi+ ok~ o1 o2+ 0%,

The yield surface is thus given in the form f?(¢— a)=35> for a positive constant
. The 3X 3 matrices D and D’, and the vector 8f =0f(s— «) are given as follows.

(1.5) D=

1—2

1 v O
vy 1 0
0 0
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,_ DOfOf*D
1.6 7+0f*Daf

_(o8f af aof
a.mn of = <60‘11 > 0oy, 0Ooia >

Here v is the Poisson’s ratio and » corresponds to the modulus of strain-hardening.
We assume that 5 is a positive constant, for simplicity. The strain is assumed to
be small, i.e., e=(e1r €2 e12)= (U115 2,2 U1+ 4z1). Also we assume that the
initial displacement is 0 and that a certain part Io of the boundary (I: closed and
length (I)> 0) is fixed (#;=0) and the remaining part is free (; oij cos(n,%;)=

0). Our purpose is to show the existence of a (weak) solution to this problem.

2. Semidiscrete system

To get some a priori estimates of the solution, we examine the simplest finite
element approximation to the present problem. We assume that £ is a closed
polygonal region. This is only for avoiding the technical complexity in passing
to the limit. By 0 we denote a triangulation of 2. We require that the end points
of I, is always the node of 0 and the ratio of the maximum and the minimum side
length of all triangles (=elements) is uniformly bounded as the former tends to
zero. Let {pp} be the piecewise linear finite element basis which takes 1 at the
node p. The approximate value of u; at time £ is sought in the form

@.1n u,() =§Pu£’ @ ¢p»

where P is the set of the nodes in O—TI,. The unkowns {#f (@) are determined

by solving the following Galerkin system.

(2. 2) (pun fﬂp) + 2 (diﬁ wp,j) = (bb 4713) p E P’
7
d=D:é
2.3) { 0 for elastic element: f(o—a) < 7,
a=
< s
.8 ¢=D-D)¢ . for plastic element:
' a=(c—a) 6J;.6 flo—a)=3d and 87 %> 0.

The strain-displacement relation and the initial condition are the same as in §1.
We assume that the given initial speed is smooth in x, vanishes on I, and is

interpolated by {¢p}.
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We shall call (2.2) ~(2.4) the semidiscrete system. The first step is to seek
a solution (#,0,a) of this system. we require that ¢ and « are continuous with
integrable first derivative with respect to ¢z. We first show that this problem
can be well posed as an initial-value problem for the unknown (#,0,a). Then
the existence of a unique solution follows at once.

Now, for any element, the elastic stress-strain relation (2.3) is taken as far as
f(@)<é holds. Suppose that f(¢) =5 holds at #=1¢, for some elements. Then the
plastic stress-strain relation (2.4) may or may not apply to these elements after
. The situation is very delicate. We can take both relations beyond ¢=1, if we
only require a solution of a suitable initial value problem. However, what we
want is a solution which is physically admissible. In other words, if we employ
the plastic (resp. elastic) rule, then the obtained solution must behave like a
plastic (resp. elastic) solution.

This means that, before posing the initial-value problem at ¢=14,, we have to
know the behavior of the solution in a certain neighborhood of =4, or at least,
at £=#+0. Is this however, possible ? In what follows we shall show that this
is in fact possible. The state of the element (i. e., elastic or plastic) at %+ for
small §(C>0) is determined by the information of the solution before # and, of
course, that of b.

Consider an element of which the stress ¢ just reached to the yield surface
at =14, Assume that ¢ is analytic in £(>4). If 8f*(a)d]lo+o< 0 and a=const.=0
for ¢> 14, then there is a positive constant ¢ such that during the interval Iy= (%,
f+0), it holds that

f@<a

If 6f*(a)a‘|:o+o> 0, and if a satisfies (2.4), then, for some §>0 the followings
hold in ;.

af*(a—a)d> 0, fio— @) =5~

These will be evident, since

Fld— = S;% Fo() de=2 Stf of* (e de
if =0, and 8f*(6—a)(6— &)= 0 otherwise. This observation suggests that for
the yielded element satisfying 6f*(a)d[to+o;é0 we must choose its stress-strain
relation for #>> 4, according to the sign of this quantity. (For the time being, we
assume that this sign can be determined in advance.) However, if 6f*(a)d],0+u=0
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this rule can not apply and the problem to pose an initial-value problem at z=/,
is still pending. In this case it is needed to examine the higher derivatives of

8%(e)6. Generally, we have

LEMMA 1. Assume that ¢ and « for an elemeni satify flo—a)=3 and
¥ (c—a)d=0 at t=1,+0. Assume further that ¢ and a are analytic in t(>1y).
Expand 8f*(o— )¢ in the Taylor series:

g(i)Eaf*(a— ai=>gP— ",
k=1
Let k(£ ) be such integer (if it exists) that

2.5) g £ 0, gP=0 (B < ko).

Then there is a positive constant 8 such that in Iy= (t, to+ o) it holds that
(1) if g < 0 and a=ay= const., then

2.6) flo—ap) < 4,

(2) if g>0 and a satisfies the second equality of (2.4), then, for some 6>0,
the followings hold in I;.

@.7 aff(e—a)s > 0, flo—a)=a.

PROOF. If the assumption of (1) is satisfied, then during a certain interval
8f *(o— ag) ¢ <0 holds, since ¢ is analytic. Hence the first assertion follows. 2>

will be evident, since 8 (6—a) (6 — &)= 0.

This observation shows that the sign of gi*® is essential to determine the
next state beyond t=1,. We shall show below that the sign of this quantity can
be in fact determined independently of the choice of the next state, for any
element yielded at ¢=#. In what follows 3 denotes of (6—a).

(1) The sign of 8f*d|50+0 is independent of the choice of the next state beyond
4. Because, if it is elastic, this quantity is equal to af*DéItDJro and, if plastic, to

w,p. _ DOfOfD
(2. 8) af (DE W*W E) !L‘0+0
*
=6f*Dé|t0+0(1_0) <0= of"Dof )

7+0f *Dof

Hence the independence follows from the continuity of é&.
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For the element satisfying 6f*dl;0+o7& 0, therefore, only one choice of the
next state is admissible. We suppose that the next state is already chosen for
this kind of elements and exclude them from the object of our consideration.

(2) Let & be the set of all elements of £ and &, be the set of elements for
which 8f*dl,0+0=0 holds in (1). It is evident that for the elements in &, hold

(a)  0f*De|;0= 0,
(b) 6¢+0 is independent of the next state of the elements in &,.

For the elements of &,, the sign of (8f*d);lto+o is determined independently of the
choice of the next state of the elements in &,. To see this, we first note that

@F*D&)¢liw0  (if elastic)

af*s tltg+o =
O )¢l eyeo { (6f*Dé)c|c0+u(1_'0> (if plastic).

By (b) and the continuity of ¢ and &, (af*Dé)tlth,o is determined independently
of the next state, which proves our assertion. We thus suppose that the next
state is already determined for the elements of &, except those for which
(af*d)t|to+n= 0 holds.

(3) To generalize this argument, let &, be the set of the elements for which
f(o—a)=35 holds and the sign of all derivatives (37%6)®(i<k) are determined
and vanish at £=14+0 independently of the next state of &,. The next state of
& — & is assumed to be already determined independently of that of &;.

Now, assume that for all elements of &, hold

(A)  @fFDOP|;0=0  (G<H),

(B) a(i+1)|;0+o(i<k) are determined independently of the next state of &,
and another extra condition

C) u‘i+2’l¢0+0(i<k) are ‘determined independently of the next state of &,.

Then, we have

(3.) for all elements of &, the sign of (6f*d)("“’|;u+o is independent of the next
state of &;. (Hence the next state can be determined for such element of &, that
this quantity does not vanish.)

(8,) for such element of &, that (8/*6)%**|, .o =0 holds (note that the totality
of elements satisfying this condition is, by definition, equal to &.,;), (A), (B)
and (C) hold, replacing % by 2+1.
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PROOF OF (3.). There are two possibilities according to the choice of the next
state.

@F* DO, 10

(6f*0")(k+1) — {
ito+0 (6f*Dé)(k+1) |t0+0(1_6)-

By (B) and (C), (0*D&)**?|, .o is independent of the next state of &;.

PROOF OF (3,). By (3.), (Bf*®**™|, 0= 0 implies @f*D“*P ;.0 =0, which
proves (A) for 2+1. To prove (B), we note that either

k+2 k+2
D = DD

or, since 6=D&—D/y 0f- 9f%s in plastic state,
ck+2y ck+2) o s k+l-T) N
c = De — 7 [E} £:1C-(0F)¢ @f )]
=0

holds for #>1%,. The second term of the right side of the last equation vanishes
at t=#,~ 0. Hence by (C) of the assumption, (B) holds for 2+1. Now we have

2.9 (szi(k+3): §0p) +Z(Jij(k+1): @p,j) = (bi(k+1)7 éﬂp)-
7

The next state for the element of & — &, is already determined and thus & .40
(i<k-+1) for such element is independent of the next state of &.1. The quantity
a("“’]tﬁo for the element of &,.; is, of course, independent of the next state of
&, SO that (2.9) implies that u‘k”)ltow is determined independently of the next

state of &,.1, as we desired.

For the set &,, the conditions (A), (B) and (C) hold as we proved in (2)
(condition (C) follows from the continuity of #®). The set &, is thus well defined
and hold conditions (A), (B) and (C). Then the next state will be chosen for
some elements of &, as we desired. This procedure can be continued untill the
next state is determined for all elements, except the special case that (6f*6'>(k)l¢0+0
—0 for all £ In such case we define that the element is plastic. The reason is as
follows. Let &. be the set of elements of such pathological character. We solve
the initial value problem choosing the state as above for & — & and plastic for &c.
Near #,, the solution is analytic and behaves as plastic (resp. elastic) one, if its
state is chosen as plastic (resp. elastic). This is independent of the choice of the
next state for &.. Also, by the analyticity of o, the stress ¢ of &, moves (or

settles) on a fixed yield surface, which meets the requirements of the solution.



PLASTICITY THEORY 25

REMARK. In the above discussion, we considered only the case of vielding
(the change of the state from elastic to plastic). The whole results, however, are
valid to the case of unloading (i. e., from plastic to elastic). Hence, considering
Theorem 3 below, our initial value problem is completely posed in 7 and has a
unique C*-class (w. r.t. time) solution z.

REMARK. Take an arbitrary #, € 7. Then there are three cases:

(1) No change of the state occurs in a certain neighborhood of #, for any
element.

(2) There are some elements for which the change of the state occurs at t=1.
(3) {4 is an accumulation point of the %, in the case (2).

It is important that, in the case (3), there is a positive ¢ such that there is
no point of (2) during (&, % +0). This follows from the (piecewise) analyticity
of the solution.

Before deriving the energy inequalities we shall introduce another repre-
sentation of the problem, which is essentially the same to that in [1] or [2].

THEOREM 2. Let X° be the characteristic function of the element e and u, e, o
and « be of the following form.
u(t) = EZ " ()¢, (e,0,a) (1) =] (%, 6% a) (DX
PEP

ecy

Then the initial value problem of the semidiscrete system is equivalent to the fol-
lowing problem: Seek (u,o,a) which is continuous with respect to t and has integrable
©®, 6, &) such that

.10 (otis, @) + 20 (044 09,50 = (bs, o) for any p € P,
@.11D) (e—Cs,7—0) <0 for any 7 € K,
2.12) &=%S"'(¢—Cd,

where C=D7", 6 € K and

K= {z=3)7°(#)X*; z° is continuous in T and f(z—a) <4}.

S is a symmetric, positive definite matrix which connects 0f and o—a by f0f=S(c—
a). The u-< relation and the initial value for (u, o, @) are the same as for the

semidiscrete system.

PROOF. When the plastic state continues, 8f is a vector which is pararell to




26 T. MIYOSHI

the normal of the yield surface at the stress point. Therefore, the solution of
the semidiscrete system satisfies (2.10) ~(2.12). It is thus only necessary to prove
the uniqueness of the solution.

Substituting (2.12) into (2.11), we have (S&,v—0) <0. Here = is written as
r=a+30 for a suitable 0 satisfying f?(6) < 1. If another solution (#,d’,a) exists,

then we have two inequalities
(Sa, a+660—0) <0, (S&,a +50—4") <0.

Replacing 6 by (¢/—a/)/é and (6—a)/5 in the first and the second inequality,
respectively, we have

(Bla—a'), a—al—[e—a 1) <0.
Hence by (2.10)
lla— 'l +9llo— Nz + lla— 15 <0,
where |l#|l? and |lo||% (A; matrix) denote >)(o#;, ;) and (Ag, o), respectively.

This proves the uniqueness.

3. Enmergy inequalities for the semidiscrete system

In the previous section we was able to pose an initial value problem for the
semidiscrete system. Also, we, know that, for any ¢ € T, there is a >0 such
that the solution is analytic in (¢,£+06). Therefore we can easily get a priori
estimates of the solution and its higher derivatives, which are independent of the
triangulation.

Let (#,0,a) be the solution of the semidiscrete system. Introduce E,(¥) by
o112 1 2 2
Eo(8) =|lall + 5 llall’s +1lollE .

THEOREM 3. Ey(1) is bounded uniformly on the triangulation of 2.

PROOF. By Theorem 2 we have

0= — (0,8 + % (0, Sé) + (o, Co)

]
2

2 Tl + = s + ol = By ) + - (o=, S,

The last term is non-negative, because by (2.11) and (2.12) we have
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(‘7— T, Sd) > 0’

and we can put =« in this inequality. Since (#,0,) is continuous, the bound-
edness follows from the Gronwall’s lemma.

To derive an estimate of the higher derivatives we prepare

LEMMA 4. Assume that at t=1, the stress point o leaves the yield surface
{z €E% fi(c—a)=35%. Then it holds that

af*e=0 at t=14,+0.

PROOF. There are three cases.
(1). In a certain neighborhood of %, %, is the only ¢ such that f(o(¢)—a(f)) =4
holds. In this case we have

0>0f™*|,,[o(ty £ &) — o ()]
for small § > 0. Therefore we have
3.1 | 0 %6 | tyro=0F*De ;.0 <0,
3.2 07 "6 | 14-0=0F*De |1, o> 0.

Hence, by the contunuity of &, 8f%s has to vanish at t=1+0. i
(2). The element is plastic for ¢ € ({,— ¢, 1,) and elastic for ¢ € (4, th+0) (6>0).
In this case, we remember that 8/ ¢> 0 holds in plastic state. Assume that

3.3 8F% 6100 > 0.
The stress-strain relation in plastic state is given by

/ 3k

Therefore, since

%
orte—orpe(1- S22,
(3.3) implies 8f*Dz >0 at t=14,—0. On the other hand, by (3.1) 8/*Ds must be
non-positive at #=#+0. This contradicts to the fact that & is continuous.
Hence 6f*d],0_0=0 and thus 6f*d]¢0+0=0.
(3). The case that 4, is an accumulation point of # at which the state change
occurs for some elements. We first note that the element is elastic for # € (o, 8+ 0)
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for some &>0, since o leaves the yield surface at t=1#. Hence 8f*d|;0+0=
6f*Dél;°+o holds. Now, by the assumption, the unloading points accumulate to .
Therefore 8f*D:—0 as t—4,—0. This implies af*¢—0 as t o5 —0, i. e., af*a|,°_0
=6f*Dél:0_o=0, and thus 6f*d];°+o=0 by the continuity of é& The lemma is thus

proved.

THEOREM 5. The quantities
By + 0= [lall 2+ % llélls + 11650 (2 2 0)

are uniformly bounded on the triangulation of L.

PROOF. Take an interval T;= (%,%) on which no change of the state occurs

for any element. In T;, we have

1

L G+ Dl 168 - G, + o (0= SH=0.

The last term is non-negative. To see this, we note that for each element holds

a=0 or
o= @ ar.af*e+af -3 (s
Sa 7 of-0f ¢+af e @f ).
In this case we have the identity
a 1 .
—d’i— 6f—- 7 S(U’ a).
Hence, taking into account 0 *(6— &) =0 in plastic state, we get
(6—&)*Sa = % (6—&)*S(e—a)-af 6> 0.
Therefore the following inequality holds.
z
) 2 S: (b, i) di+Ey(t+0) > Ei(—0).
0

In what follows we show E;(t,—0)> Ei({,+0) for any % € T.

By E:(#) we denote the restriction of E;(#) on the element e, that is,
E\(D) =§ EI(®).
(1) Assume that %, is not the accumulation point of such ¢ that the state change
occurs at ¢ for some elements. Let T;_; be the preceeding interval on which no
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change of the state occurs. %, is hence the right and the left coordinate of T;_;
and T, respectively.
(a) The case that e is elastic on T;_; and plastic on T;. On T;Xe, it holds that

llls = (@f, ST0f) (0 *)*= (9 *9)* areale),
(Co,6) = (& — %Sa, D=, — % (Sé, )
=& (D=DN&) ~ = OF*)* area(e),
so that on the same region holds
7 el +11ls = ;, =D &),
Therefore, taking into account the fact u € C*(T), we have

E{(t+0) = lall; Go+ 0+ (¢, (D—D") &) (#+0)
= [iill} lo— O + (&, (D—D" &) (f,—0)
< a2 (Go—0) + (&, D& (l—0)=E} ({,—0).

(b) The case that e is plastic on T, and elastic on T;. By Lemma 4 it holds
that 8f¥6=0 at t=1#,+ 0. Therefore, on e ||&||(%,—0) =0 and ¢(ly—0)=D:(t,—0) =
D4+ 0)=¢(%+0), so that
E7 (40 =T[llall; +16lE] o+ 0
= Dl + =+ llalls + 16112 G — )
=E:(t0_0).

(c) Assume finally that % is an accumulation point. Samely as in the proof of
Lemma 4, it is proved that 8f*6=08f*De=0 at t=1%+0. Hence we have

Ei(to— 0 = [lullz + (&, D1t —0).

If the element is elastic for #>> 4, clearly Ei(t,+0)=FE{({,—0). If it is plastic,
then

E{(+ 0 =[llill; + (¢, (D— D8], +0)
=[llall; + (¢, DO % +0)
=FE; ({,—0).

By the above observation it is proved that in any situation the function E%(#) is
non-increasing at t=14,. Therefore we have by (3.4)
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t
2 St‘ G, D) dt+ Ex(ty— 0> Ey(1— 0),
0
and finally
z
2 S (b, )di+E;(0)> E,(¢—0)> E((+0)
0

for any ¢ € T, from which the boundedness of E.(t+0) follows.

4. An existence theorem

The solution of the semidiscrete system converges to the solution of (a weak
form) of the original system (1.1)~(1.3). Although the proof is standard, we
shall sketch the outline. Let 2} (2,Io) be the W;(2) completion of the set of
functions belonging to C*(2) and vanishing on I, (in what follows, C2(2, I
denote this set of C® functions). When a € L*(T;L*(2)), we define K=K, by

K= {r € L>(T; L*(®)); a.e. on T, f?(r—a) <5” a.e. on 2}.

THEOREM 6. The following problem has a unique solution, which is a limit of
the solution of the semidiscrete system: Seek (u,o,a) € L(T; LX(2)) satisfying the

following conditions a. e. on T.

4.1 Cotis, @) + >3 (045, 0,9 = (b, ) for all ¢ € ;3 (2, 1),
4.2) (¢—Cs,7—0) <0 for all = €K,
(4.3 a=y9S*(—Cd,

where o € K and (u, ) € L*(T; 252, I), (i, ¢, &) € L*(T; L*(). The u-< relation
and the initial condition are the same as for the system 1.1D)~a.3).

PROOF. Let (#, % @ be the solution of the semidiscrete system. These

functions thus satisfy the following conditions.

(4- 4) (pai) @p) +E (J‘iji WP,J‘) = (bw (ﬂﬂ) fOr al]- P E Ps
> /

(4.5) (:2—Cs, £—3) <0 for all 7€ K,

(4.6) &=7S"1(¢—C8),

where
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R=1{#=>]z*()x%; =%(%) is continuous in T and i —a®) <5%).

]
Now, by the a priori estimates derived in the preceeding section, we have

Nl 11211, llall ) _ 3

. . . uniformly bounded in L¥(T; L*(2)),

llall, 5], Il

as the size of the triangles tends to zero. Also the boundedness of ||z]| and 1&]]
implies the boundedness of ||#;,,|| and ||#;, ;|| by the Korn’s inequality. Hence there
are (u, ) € L*(T; 2 (2,I) and (e,0,a) € L¥(T; L*(2)) such that, for a suitable

subsequence,

—
,& — e, 0,a - weakly™ in L=(T; L2(2))

&—é&,0,a

X

my

N

>

m
S

3

Clearly #, ¢ and « satisfy the initial conditions. To prove (4.1) ~(4.3) and s € K,
we start from (4.1). Take an arbitrary ¢ € C°(7 X 2) such that ol =¢limo=0|t-r
=0. Since ¢ can be approximated by {¢,} in the norm of WL(T X 2), we have

T T
“7 S Lotier o)+ 3 (o1 0, )1 = S (b5, ) dt.

For t € T define Ts =[t—6/2, t+4/2] (6>>0). Take ¢ € C*(@, ) and put

d) @ in T&!
0 otherwise.

Then it is easy to see that, for small §, the equality (4.7) holds for ¢. Hence,
deviding the both sides by ¢ and using Lebesgue’s theorem we have, a. e. on T,

Cotis, @) + 21 (045, 0,) = (b;,3)  for all € C(Q, Iy).

(4.1) is thus proved by passing to the limit in this equality.
The equality (4.3) is proved by passing to the limit in (4.6). To prove
(4.5), we first note that = € K can be written in the form

T=a+ ¢

for a suitable § € L™(T'; L*(2)), where 6 satisfies a.e. on T f>(f) <&* a. e. on 2.
For this § we can find & =3 6°(¢)x° € K such that
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e — 5”L2(2-xn) — 0.

To constructuct such 3, mollify 6 and interpolate the resulting function by using
{%°}. Substituting =&+ 58 into (4.5) and integrating with respect to £, we have
1 ~[12 & z P & 2 2 2

0> —llalls (T + -\ (S&&dt—\ (¢—Cs,8) dt.
27 7 Jo 0
The last term of the right side is written as follows by (4.1).

—{e—comar= 2y + Lysis e — { @ mar
: & g, 0 = ? u —2— allc , y s

Hence, if necessary taking a subsequence in passing to the lim, we have

0> o lels @ + £ (" st + L + Lo e

— S: (b, %) dt

1(7 T
=7S (S‘d,f—a)dl=g (¢—Cos,7—0) dt.
0 0

(4.2) is thus proved in the same way as before. Finally the proof of ¢ € K. Let
S (z,¢) be defined by

1
f @) =tnen+ To2022 — — (Tu@an+ Typ1y) + 37y, P12.
2

Then f*(z)=f(z,7), and (§of*(@dx)'® and ||7]| are equivalent as the norm in
L*(2). Let X be the characteristic function of an arbitrary measurable set in
TXQ. If € L™(T; L*(2)), then clearly Xz is so too. Since X(z—a) is regarded
also as a weakly convergent sequence in L*(T'X £2), we have

0>@S:39x[f2(5— &) — 3] dxdt > S:SQX[fZ(d—d)—&ZJ dxdt

and thus
filo—a) <& a.e.on TX 2,

from which ¢ € K follows. Therefore (%,0,a) is a solution of the present problem.
The uniqueness of the solution is proved by just the same way as for the semi-
discrete system. Hence the whole sequence (#, # &) converges to the solution.
This completes the proof.
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