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1. Introduction.

In the theory of operator algebras it is interesting and important to study the
tensor products of von Neumann algebras. It is not only interesting for the study
of the tensor product von Neumann algebras themselves but also indispensable
for the elucidation of the structure of von Neumann algebras which is one of the
important problems in the theory of operator algebras. There are some methods
to construct von Neumann algebras from given von Neumann algebras. One of
those is the method by virtue of the tensor products. The study of more compli-
cated von Neumann algebras constructed by these methods helps us to elucidate
the structure of ‘general von Neumann algebras. Now, the recent developments
in the theory of operator algebras show the importance of the study of the group
actions on von Neumann algebras ([37, [4], [12], [15], [16], etc.). A group
action is a continuous action of a locally compact abelian group on a von
Neumann algebra. The Tomita’s modular automorphism group is a group action
which is a one-parameter automorphism group induced by the modular operator
and plays important roles in the study of von Neumann algebras of type III. For
example, Connes gave the classification of factors of type III to those of type III,
(0<21<1) by using the spectral analysis of the modular automorphism groups,
and Takesaki showed the structure theorem by which a factor of type IIl was
determined by the pair of a semi-finite von Neumann algebra and the dual action
of the modular automorphism group. On the other hand, as well known, the
theories of operator algebras and ergodic transformation groups are closely relat-
ed. Many important examples of von Neumann algebras were given by virtue of
the group measure space construction and conversely the study of general von
Neumann algebras gave some methods to the study of ergodic non-singular
transformation groups. For example, Krieger gave the weak equivalence clas-
sification of ergodic non-singular transformations without o-finite invariant equiv-
alent measures and proved that the weak equivalence between ergodic non-

singular transformations is equivalent to the isomorphism between the correspond-

* ‘This is the doctoral thzsis at Kyushu University.
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ing von Neumann algebras by the group measure space construction ([10]), and
Krieger’s classification was again obtained by the associated flows (L71. They
are closely related to the classification of factors of type III by Connes, and the
dual actions of the modular automorphism groups on factors, respectively. Thus
the study of group actions, their dual actions and their spectral analysis is
indispensable and useful in the theory of operator algebras.

In this paper we discuss the tensor products of continuous actions on von
Neumann algebras and the type classification of the tensor products of von
Neumann algebras. The latter is well known about the classification of the tensor
product von Neumann algebras in the frame of the von Neumann’s classification
to the classes of types I, II or III. One of our purposes is to classify the tensor
product von Neumann algebras in the frame of the Connes’ classification to the
classes of types III, (0<2<1). The Connes’ classification, which is due to the
Tomita-Takesaki’s theory, is finer than the von Neumann’s one for the class of
type III. Firstly it is necessary to discuss the tensor products of continuous group
actions, their dual actions and their spectral analysis. More precisely, let &' and
o’ be continuous actions of a locally compact abelian group G on von Neumann
algebras M, and M,, respectively, and o' @ &* the tensor product of o' and a?
which is a continuous action of G on the tensor product M; ® M, of M, and M,
defined by (&' ® &), =a} ® & for each t in G. Let &' and &* be the dual actions
of &' and a? which are continuous actions of the dual group G of G on the crossed
products MiX ;1 G and M, X ,. G, respectively. The joint action (&%, 4® is a con-
tinuous action of G on (V; ® N,)? defined by (@4 a),=a, ® ¢, where N;=M;x ,;
G and ap,=da}, ® a¢>,. Then we show that the dual action of & ® o is given by
the joint action of &' and &% Also, we show that if we assume the relative
commutant property for «' and o7, then the Connes spectrum I'(a’ ® a?) of o ® &
is given as the kernel of the joint action of the dual actions &' and a&® on the
center of (V; ® Np? From this follows that we can classify the tensor products
of von Neumann algebras by the joint actions of the dual actions of the modular
automorphism groups, since in particular the S-set of a von Neumann algebra is
the Connes spectrum for the modular automorphism group associated with a
faithful normal semi-finite weight. The same result is obtained for a smooth
flow of weights as follows: the virtual spectrum S,(M; ® M,) is the closure of
the product of S,(M;) and Sy(M) ([41). Now, it is known that if M is a factor
of type III,(0< 1< 1), or of type III;, respectively, then the dual action of the
modular automorphism group ¢” has pure point spectrum on the center of the
crossed product of M by the modular automorphism group, and on the other hand
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that there exists a factor of type III, such that the dual action of the modular
automorphism group has pure point spectrum on the center of the crossed product
of M by the modular automorphism group. We discuss the tensor products of
such more general covariant systems and as its application examine the type
classification of the tensor products of von Neumann algebras. For this purpose
we introduce the notion of the joint action of continuous group actions and define
a new type of von Neumann algebras of type III. This plays the important roles
in our discussion.

In section 2 we recall fundamental terminologies and notations about a
continuous group action, the crossed product von Neumann algebra, the dual
action, and the Connes spectrum. In section 3 we use the notion of the joint
action to show that the dual action of the tensor product of continuous actions is
given as the joint action of their dual actions. In section 4 we discuss the joint
action with pure point spectrum and define a new type of von Neumann algebras
of type III. And then we apply the results in the previous sections to the type
classification of the tensor products of von Neumann algebras. In the last section
we discuss the joint flows directly in the case of ergodic non-singular trans-
formation groups, which are closely related to our joint actions in the case of
the corresponding von Neumann algebras given by the group measure space
construction. By our discussion we see again that it is important to study
ergodic non-singular transformation groups themselves for the development of

the theory of operator algebras.

2. Preliminaries.

Let B(&#) be the algebra of all bounded linear operators on a complex
Hilbert space &~. By a von Neumann algebra M we mean a o-weakly closed
self-adjoint subalgbera containing the identity operator I.. of the algebra B(s#)
and by the predual M, of a von Neumann algebra M the Banach space of all
os-weakly continuous linear functionals on M. Let AutM be the group of all
*.automorphisms of a von Neumann algebra M and G a locally compact abelian
group. In this paper we assume that von Neumann algebras are o-finite and
locally compact abelian groups are separable. Then a homomorphism « of G into
Aut M is called a continuous action of G on M if the map: tEGoa(x) €M is
o-weakly continuous for each x in M. The pair (M,a) is sometimes called a
covariant system on G. We denote by M* the fixed point subalgebra of M under
the action a, that is, M*={x€ M; a,(x)=x for all £€G)}. In the vector space
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K(2#; & of all continuous &#-valued functions on G with compact support, we
define the inner product by

¢l ={_&®n@at,

for &, » in K(5#; G), where dt is the Haar measure of G. We denote by L*(s#;
G) a Hilbert space which is the completion of the pre-Hilbert space K(5#; &)
with respect to this inner product. On the Hilbert space L*(s#; G), we define
representations =, of M and 2 of G as follows

()8 () =a; ' (x)E(S),
CIOIIOEIICETIR

for x in M, s, ¢t in G, and ¢ in L*(5#; G). Then =, is a faithful normal represen-
tation and

2D (D AD* =r,(a, (%)), x €M, t €G.

We denote by MX ,G the von Neumann algebra on L*(%”; G) generated by n,(M)
and (&), and call it the crossed product of M by G with respect to the action a,
or simply the crossed product of M by the action « of G ([12]). Apparently, the
crossed product M X ,G depends also on the underlying Hilbert space &. However,
it is known that the algebraic structuré of MX,G is independent of the Hilbert
space.

Let G be the dual group of G, and we define a unitary representation uof G
on L*(&7; & by

(PO =<s5,p> (), E€LN(#; B, s€G, pEG,

where <[s, p> denotes the value of p in G at s in G. Then the map: p—Adu(p)
induces a continuous action of G on MX «G which is called the dual action of &
on MX .G and sometimes denoted by @, where Adu(p) = u(p) - u(P)*. By Takesaki's
duality theorem, the crossed product (Mx &) X ,G of Mx «G by the dual action &
of the dual group G of G is isomorphic to the tensor product of M and the factor
B(L*(®) of type I of all bounded operators on L*(®), and under this isomorphism
the second dual action & of G on (M X ,G) X,G is equivalent to the action @ of G
on M® B(L*((), where @,=a,® Adv®)* and W8 ()=E(Gs—1), (¢, sEG, €€L?
().

If a is a continuous action of G on M, then the spectrum sp(a) is the in-
tersection of all kernels {p €G; f ($)=0} of the Fourier transform Fof fin LG
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with ay= SGf(t)atdt=0. For each projection ¢ in M® we denote by a° the restric-

tion of @ to the reduced von Neumann algebra M,. The Connes spectrum I'(a)

of a is defined by
I'(@)=N{spla®); e € M*, ¢#0}.

Then the Connes spectrum I'(a) of « coincides with the kernel of the action
&|Cyyne Which is the restriction of the dual action @ of @ to the center Cuxye Of
MX ,G, that is,

I'(@=Ker &|Ciyyye
={p Eé;d'p:‘ on CMme}~

The Connes spectrum for the modular automorphism group is the S-set S(MD
of M, more precisely, I'(c®) = {log 2; 2 € S(M), 270} for a faithful normal semi-
finite weight ¢ on M. .

If &' and & are continuous actions of the same locally compact abelian group

G on von Neumann algebras M; and M,, respectively, we denote
(@R, —at@a} and (@' XD s,n=a @ ai.

The former & ®a® is a continuous action of G on M;® M, which is called the
tensor product of a' and % and the latter &' X &’ is a continuous action of GXG
on M;®M, Two covariant systems (M, " and {(M,,a®) on G are said to be
equivalent if there exists an isomorphism 7 of M; onto M, such that r cator t=a}
for all ¢ in G.

3. Dual action of the tensor product of continuous actions.

Let o' and o® be continuous actions of a locally compact abelian group G on
von Neumann algebras M; and M,, respectively. In this section, we shall give the
dual action of the tensor product &' @ a? of a' and &° by virtue of the dual actions
&' and & of &* and %, respectively, to study the tensor product M;® M, of von
Neumann algebras M; and M,. . '

Connes ([3]) introduced the S-set S(M) of a von Neumann algebra M which
is the Connes spectrum I"(¢*) for the modular automorphism group ¥ associated
with a faithful normal semi-finite weight ¢ on M and classified factors of type III
into those of type III,(0<2<1). On the other hand, the Connes spectrum I'(a)

of a continuous action « of a locally compact abelian group G on M is given as
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the kernel Ker &|Cyy e of the action &|Cyyye Which is the restriction of the dual
action @ of a to the center Cy,,s of the crossed product MX ,G of M by the
action @ of G ([4]). Since, in particular, the S-set S(M) of M is given by the
kernel of the action & of the additive group R of real numbers on the center
Cirxqor Which is the restriction of the dual action # of ¢* to the center Cirxgor Of
the crossed product Mx R of M by the action o® of R if the action « is the
modular automorphism group ¢% for a faithful normal semi-finite weight ¢, we
can classify von Neumann algebras by the dual actions of the modular auto-
morphism groups.

Let 8* and $? be continuous actions of a locally compact abelian group I” on
von Neumann algebras N; and N, respectively, and 8 a continuous action of I"
on the tensor product N:® N, defined by Br=BpRF~, for p in I. Since the
action: p— B, ® ¢ commutes with the action 8 on N1®N,, the action: p—p, ® ¢
induces a continuous action of J” on (N:®NE, where ¢ is the trivial action. We
note that B,® ¢ = ¢®p on (NV,QN,P.

DEFINITION 1. We denote by (8, 8% the continuous action of I" on (WV:®
N,*? induced by the action: p—BL® ¢ and call it the Jjoint action of B* and (.

Firstly we show that the dual action (@*®a®” of the tensor product &'® a?
of continuous actions a' and o’ is given as the joint action (@', a» of the dual
actions &' and a® of &' and o7, respectively.

Let « be a continuous action of a locally compact abelian group G on a von
Neumann algebra M on a Hilbert space & and H a closed subgroup of G. We
denote by «f the restriction of « to H and by MXx ,H the von Neumann sub-
algebrva of MX ,G generated by n,(M) and 2(H). Then MX ,zH is isomorphic to
MX ,H by the correspondence:

[ 7urr () = 702

| 27— 2o,

where 27 is the unitary representation of H on L*(s#; H) defined by (QZ@®)&)(s) =
E(s—1t for & in L*(s7; H) ([14]). Moreover,

MX  H={y € MX ,G; ap(y) =y for all p € H'},

where H+={p €G; <t,p>=1 for all t € H) ([16]).

THEOREM 1. Let o' and o be continuous actions of a locally compact abelian
group G on von Neumann algebras M, and M, respectively. If N,=M;X ,,G and
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dp=as®a%,, then covariant systems {(MQMy X u1gaG, (@®aD") and {((N:®
NY%, (&% ad) are equivalent, that is,

((MQM) X siguG, (@@ =2 (IO NYF, (@, D).

PROOF. Let M; be a von Neumann algebra acting on a Hilbert space &
and UY a continuous unitary representation of G on &#; such that ai=AdU}” for
all £ in G. Put M=M,QM, and H={(s,s); s€G}. Let V be the isomorphism
which maps naturally L*(5#4; G)@L*(5#%; G) onto L*(5#/4®5¢,; GXG). Then AdV

gives an equivalence of covariant systems:
(Ni®N,, @' X @)} 2 (M X sixat(GX B, (@ X D).
Since H+={(p, —p); p €G} and
MX gryaH
= {9 € MX u1x(GX B); (@ XD (5,03 =y for all (p,q) EH},

by the above equivalence it follows that Ad V((Ni@QND® =MX sxx.H and AdVo
(@p® ) 0 AdV = (@*xa®\po »that is, covariant systems {(N:@Np* (a',ad}
and {MX gixwH, p— (@ XadD"\po) are equivalent.
Let F be an isomorphism of L*(s#:®27,; GXG) onto L*(#:Q57, GXG)

defined by

FO (s, D)= Sc‘;<t, p> &(s, p) dp
and W a unitary operator on L*(8#,Q®57,; GXG) defined by

(W (s, D) =UTQUE) (s, D).

Put 0=Ad(WoF)om sgay~. Then O gives an isomorphism of MX ugaG onto
MX 4ixe2H such that

. { 7Tw1®a2(x1®x2) - nmlxmz(xl®xQ

2(s)— 2(s, ).
Moreover, @ gives an equivalence of covariant systems:
(MX mguiG, (@) 22 (MX gixa, p = (@ XD (500}

Really, it suffices to check this on the generators. Since di,(n,,j(x))=7rm,-(x) and

al(A(8)) = <s,p> 2(s), it follows that
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00(a" Q) p (Tarpur(#:® %)) = Dor s )

= (@' X a3y, 00 DT ua2(:@ %))

and

0o (d'®a® " p(A(s)) = s, p> (s, 5)
= (@' X a®" 5,0 0(A(S)).

Thus AdV ~'o0 gives an equivalence of covariant systems:
(MM X 19uG, (@@} 22 (N @ N, (a,a%).
This completes the proof.
The following proposition is a dual version of Theorem 1.

PROPOSITION 1. Let B'(j=1,2) be a continuwous action of a locally compact
abelian group I’ on a properly infinite von Neumann algebra N; and B; its dual
action of the dual group I of ' on N i Xgil. Then covariant systems {(INyX al D®
(NoX eI, @B and {(NiI®QNDP X g1, 0T, (B4, B0 are equivalent, where Bpr=3%
R ,.

If M; and &’ are as in Theorem 1 and N;=M;x ,; G, by Takesaki's duality
theorem, covariant systems {N;X3,G,a’} and {M;®@B(L(G®)), o’@Adv*} are
equivalent and furthermore if M; is properly infinite, the latter is equivalent to
{M;,a’}. Therefore if M; is properly infinite, Theorem 1 is again concluded by
Proposition 1.

Here we recall recent results due to Paschke ([12]). If «a is a continuous
action of a locally compact abelian group G on a von Neumann algebra M, it is
said that « has the relative commutant property if the relative commutant of M
in the crossed product MXx,G is the center of MX +G. According to [12], if
(M*Y "M<Z M*, then « has the relative commutant property. This implies from
the relative commutant theorem in [4] that all modular actions, which are
continuous actions by modular automorphism groups, have the relative commutant
property. Conversely, if « is integrable and has the relative commutant property,
then (M*) NMZM®. We recall that « is said to be integrable if the set of all x
in M for which the integral Sat(x*.x)dz‘ exists in M is a o-weakly dense left ideal
in M. Also, if the relative commutant of M in MX «G is the center of M, then «

is said to have the dual relative commutant property. If « is a continuous action
of G dual to some action of G, then To(MY N(MX .G =7,(Cyp) is equivalent to
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(M*Y N M=Cy ([12D.

PROPOSITION 2. Let B and [ be continuous actions of a locally compact
abelian group T of von Neumann algebras N, and N, respectively. Let B be a
continwous action of I' on N\®N, defined by Bp=Bo@F%, for p in I If B is
integrable and has the dual relative commutant property: mgi(N NN X g D)=
nﬁj(CN].), then

C(N1®N2)B = (CN1®N2)ﬁ-

PROOF. Put N=N;®N, and let G be the dual group of I Then B is a
continuous action of I on N. Since H={(t,8); t€ G ={(p, —p); p € 't in GXG,
it follows that the crossed product N X I’ is isomorphic to the fixed point sub-
algebra (VX giyge(I"X F))ﬁl@ﬁ2 and the generators mg(y) and A7(p) correspond to
maxge(y) and A*T(p, —p), respectively, ([16]). Therefore, the inclusion relation

ma(NY NN X gI') Sma(N)
is equivalent to the inclusion relation
gtV Y NN X grocge(T X IO Cgo oa(ND.

On the other hand, as we assume the dual relative commutant property for

#’, we have
mgi(N;Y NN X g7 Smgi(N ).
Hence we have
ZaarCN Y NN X eI X T)) Srtguga(ND.
This implies the inclusion
ma(NY NN X gl') Smg(N),
and hence
(N¥YNN=Cy

by [12]. Therefore, Cys<Cy and hence Cye<(Cy)?. The converse inclusion is
clear.
This completes the proof.

COROLLARY. Let & and & be continuwous actions of a locally compact abelian
group G on von Neumann algebras M, and M,, respectively. If &' and o satisfy the
relative commutant property: w,;(M;)Y N(M;X ,;G)=Cy,x,ic, then
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Caronna=(Cxgn,)%
where N;=M; X ,;G and d,=a,Qad,.

The proof is evident from Proposition 2 since a’ is integrable and has the
dual relative commutant property. )

Now we can prove the following theorem which permits us as its application
to classify the tensor products of von Neumann algebras.

THEOREM 2. If &'(7=1,2) is a continmous action of a locally compact abelian
group G on a von Neumann algebra M; and has the relative commutant property,
then the Connes spectrum I'(a'®a?) of the tensor product o®ao? of & and &
coincides with the kernel of the joint action (&,a?) of the restrictions &' |Cy, and
&*|Cy, of dual actions &* and &* to the centers Cy, and Cy, of N; and N,:

rd®a)={p €G; (¢',a),= " on (Cx,®Cy))%,
where N;=M; X ,;G and dp,=a,®a,.
PROOF. By virtue of [ 4], we have
Id@a)={p €G; (@®ap=1 on Cyxpgua)

where M=M:®M,. By Theorem 1,J(a'®a?)p =" on the center of M X w@e2G if and
only if (@',@®),=¢ on the center of (N;®N,)*. Since o and & have the relative
commutant property, Cuy,gnza=(Cy,®Cy,)* by Corollary of Proposition 2.

This completes the proof.

4. Types of the tensor products of von Neumann algebras.

In this section we shall discuss the joint action with pure point spectrum
and apply it to the results obtained in the previous sections.

Let 8 be a continuous action of a locally compact abelian group I" on a von
Neumann algebra NV and ¢ a faithful normal state on V. Let L*(N, ) be a Hilbert
space which is the completion of a pre-Hilbert space N with respect to the inner
product defined by (x]3),=¢( 9*x). Then B is said to have pure point spectrum for
@ on N if the set of unitary elements % in N such that there exists a # in f’satisfying

Bp(u)=<t,p> u for all p in I is total in L3N, ¢), where I" is the dual group of
I'. By op(B) we denote the set of all # in 7" such that there exists a unitary # in

N such as By(u)=<t,p>u for all p in I" and we call it the point spectrum of B.
Firstly we shall state our main result in this section.
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THEOREM 3. Let 8 and [ be integrable continuous actions of a locally compact
abelian group I' on von Neumann algebras N1 and N, respectively. Suppose that 4
is ergodic on the center Cy, of N; and has the dual relative commutant property:
mg; (N NN ; X oI =mg;(Cy ), for j=1,2. If either

(i) B has an invariani faithful normal state on CNJ. for 7=1,2; or

(7i) B or B has pure point spectrum for some invariant faithful normal state
on the center, then the restriction (8,8 |Cuwenne OF the joint action to the center
Cuvienne is ergodic, admits an invariant faithful normal state ¢ and has pure point
spectrum for ¢, where Bp= QB .

We shall prepare the following lemmas to prove our Theorem.

LEMMA 1. Let p’(j=1,2) be an ergodic continuous action of I' on an abelian
von Neumann algebrea A; and ¢; a faithful normal state on A;. If ¢; is B-invariant
for §=1,2, then the joint action (B', 5> of B* and [ is ergodic, admits an invariant
Ffaithful normal state op:Q@s, and has pure point spectrum op(B) Nop(F) for ¢:@e..

PROOF. It is obvious that the joint action (') is ergodic and ¢:®g¢, is
(B, B-invariant. Since g; is @-invariant, we may assume that A; acts canonically
on the Hilbert space L*(A4;,¢,) and B’ agrees on A; with a unitary representation
UY of I' on L¥(A;, 90

WR %190, = BB e 53 €Ay

Let {EP(#); t €'} be the spectral resolution of U, Let E be the projection of
L(ARA,, ¢:®¢,) onto the closure of (A:®A,)P in L*(A:RAs ¢:R®¢.), and P the
projection onto the closed linear span of {u®®@u{®; t€op(B)Nopr(B?}, where
Bp= 85 ® B>, and u? are the normalized eigenvectors of @’ belonging to t €op(Bh).
Then P<E.

We shall show that E(J—P)=0. First we notice that each pair of E, P, Uy’
®I and IQUY mutually commutes. Put F=E(I—P). Since (UY®DE=U}’,
UPHE, we have

S Z5 9> (dEV(HQD)F= Sg<s, 7> TI—s,45(AEV(HQAEP(D)F.
If f, g€ L} and g(0)=1, then the Fubini theorem implies

) Sf<s> (dEP(H@I)F= Sgﬂs) 5(t—s) (dEV()RIED(D)F.

We may assume that 7 and g have compact supports and 0 <f<1,0<§<1. The
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spectral measure dE™(s) or dE® (%) is continuous at every point s in /" on F(L?
(A;®A, ¢1®¢2)). Therefore, if the support of g converges to the unit of [, then
the right hand side of () converges to 0. Because, the right hand side of (*) is
the integration by a product measure. Hence the left hand side of (™ vanishes
for any f with 0<f<1. If 711, then F=0.

This completes the proof.

LEMMA 2. Let f’(j=1,2) be an ergodic continuous action of I' on an abelian
von Neumann algebra A; and ¢; a faithful normal state on A;. If ¢, is B-invariant
and B* has pure point spectrum for ¢, on A, then the joint action (B, of B and
# is ergodic, admits an invariani Jaithful normal state p:Qq¢,, and has pure point
spectrum ap(fYNop(BD for p:Qps

PROOF. It is obvious that the joint action (88> is ergodic and ¢ ®e, is
(B, B-invariant. Put Br=pB»®p%, on A;®A, Since ’ is ergodic, we can choose
a unitary u” € A; with B(u”) = <t, p> u$ for t € sp(8"). Since Br(uP Ru®) = ul®
®u?, it suffices to show that the set of all P @u with t €op(B)Nop(F?) is total

in Lz((A1®A2)B: §01®(02)-
For this we suppose that x € (4;®A,)? and

5 <@ @uP ) %, 0::®@p; > =0, £ €ap(FYNop(BD).
Let R and L be the right and the left slice mappings on A;RA,:
<ch<x), ¢>= <xa ¢®¢>=<L¢(x)7 ¢>’ @ EAls*’ d} EA27*-

Put x,=R, " (x) for t €5(8). Then x, € A4,
Since f,(x)=x and ¢, is f-invariant, it follows that
<Bo(x), 9> = <P R Bp(#), (01 @¢)of_p>
= <<t’ p>xty ¢>’ d} EAZ’*-

Therefore x,= 2 for some 2 € C. If teEop(B), then x,=0. If t€op(BONop (D),
then (**) implies that

A=<z, @t > = <X, o * R ¥ > = 0.
Consequently, x,=0 for all ¢ in ¢p(B8Y). Therefore
<L¢(x)14§1)*, 1> =<%,¢>=0, t€op(B).

Since #' has pure point spectrum for ¢1 by assumption, Ly(x)=0 for all ¢ € A,,,
and hence x=0.
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This completes the proof.

PROOF OF THEOREM 3. By Proposition 2, the following covariant systems

on I are equivalent:
{Caonses (BY B Cuvionnel =2 {(Cx,®Cy,)?, (B'|Cuxy, BCxy}s

where B,=p,®p%,. Moreover, since the covariant system {Cy Bj]CNj} on I
satisfies the assumptions of Lemma 1, or Lemma 2, the proof is evident from
these lemmas.

This completes the proof.

The following theorem is a consequence of Theorem 3, which gives some

applications.

THEOREM 4. Let &’ be a continwous action of a locally compact abelian group G on
a factor M; having the relative commutant property: n,;(M;) N(M; X ,;G) =CM,~><,,J-G-
If either

(i) &’ has an invariant faithful normal state on the center of M;X ;G for
7=1,2; or

(i) &' or & has pure point spectrum for some invariant faithful normal state
on the center, then the action (a1®a2)/\]CN of G has pure point spectrum for some
invariant faithful normal state, where N=M1QM>) X siga2 G.

We note that a’ is integrable and has the dual relative commutant property,
and if M; is a factor, @; is ergodic on the center Cijdjg.

Now we define a new type of von Neumann algebras and apply the results in
the previous sections to the type classification of the tensor products of von

Neumann algebras.

DEFINITION 2. Let a be a continuous action of a locally compact abelian
group G on a factor M. For a subgroup A of the dual group G of G, a covariant
system {M,a} on G is of type A, if @&|Cyy,s admits an invariant faithful normal
state ¢ and has pure point spectrum A for ¢ on the center Cyy,¢ of MX,G. In
particular, if « is the modular automorphism group and {M,a} is of type A, we
say that M is of type III*.

2,
We note that III '** =1III, (0<2<1) and 11 =I11,.

THEOREM 5. (1) Let M, be a factor of type III* and M, be any factor. Then
MQM; is of type III*NTD wheye T(M,) is the T-set of M,



il

.

- il B S

JOINT ACTION AND TENSOR PRODUCT VON NEUMANN ALGEBRAS 55

(2) Let M; (j=1,2) be a factor with the modular automorphism group o°. If
{CMjXO_jR, ¢’} (7=1,2) admits an mariant faithful normal state, then MQM, is of
type IIIT(MI)HT(Mz).

The proof is evident from Theorem 4, since o’ (/=1,2) has the relative
commutant property ([4]).

COROLLARY ([7]). Let M be a Jactor and T(M) the T-set of M.
(1) If the tensor product of M and a Jactor of type III, (0<2<1) is isomoy phic
to M, then M is of type IIT,u1x for some integer k, or of type III,.
(2) The tensor product of M and a factor of type III, (0<<2<1) s of type III, if
and only if 2m/logi € T(M).

Furthermore, as its application for the tensor products of von Neumann
algebras, this implies the following.
(1) II,®(semi-finite) = I, (2) IULEII=III,
(3) IILAIL, =1, v (0<2, ¥<1), where — log<<2, 2> is the positive greatest
common divisor of —log2 and —logZ, or < 4, ¥> =1 if log2/log? is an irrational
number, (4) IIL®IL,=III,, where ¥ ="%, or 1 o<a<n. (I1D.

5. Examples.

As well known, the theories of operator algebras and ergodic transfomation

groups are closely related. For an ergodic non-singular tranformation group on

a measure space, there corresponds a von Neumann algebra constructed as the
crossed product of the abelian von Neumann algebra of all essentially bounded
functions by the automorphism group induced by the given transformation group,
which was firstly studied by von Neumann in the case of freely acting trans-
formation group and generalized by Krieger ([81). The corresponding algebra
is called as the von Neumann algebra given by the group measure space construc-
tion. Dye introduced the notion of the weak equivalence for countable non-
singular transformation groups which identifies non-singular transformation groups
preserving the orbits, and proved that any countable ergodic measure-preserving
transformation groups on Lebesgue measure spaces are weakly equivalent. More-
over, Krieger studied the non-singular case, and gave the classification of ergodic
non-singular transformations and proved that the weak equivalence between
ergodic non-singular transformations is equivalent to the isomorphism between
the corresponding von Neumann algebras by the group measure space construc-
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tion. Also many important examples of von Neumann algebras were given by
the group measure space construction and conversely the study of general von
Neumann algebras gave some methods to the study of ergodic non-singular
transformation groups. Thus it is interesting and important to study ergodic
non-singular transformation groups for the development of the theory of ergodic
transformation groups itself but also of the theory of operator algebras ([11).

In this section we discuss the joint flows directly in the case of ergodic non-
singular transformation groups, which correspond to the joint actions in the case of

the corresponding von Neumann algebras by the group measure space construction.

Let (2, %, P) be a Lebesgue measure space. Two measures x# and v on the
measurable space (2, %) are mutually equivalent z~v, when p#(A)=0 if and only
if v(A)=0, A €% . A bijective mapping g from £ onto itself is a non-singular
transformation if it is bimeasurable (i.e. g’ €% and g¥ <% ) and Pg~P,
where Pg(A)=P(gA), A€ . Let G be a countable group of non-singular
transformations of (2,.%,P). A measure u defined on (2, %) is G-invariant if
#g=u, g €G and a measurable function f(w) is G-invariant if f(gw)=f(w), g€G,
a.e. w. G is ergodic if every G-invariant function on (&, %, P) is a constant
a.e.. We denote by [G] the group of all non-singular transformations g of
(2, 5 ,P) satisfying that there exist measurable sets 4,¢%, #=1,2, ... and

non-singular transformations g, € G, »=1,2, ... such that 2= GIA,, (disjoint) and
go=g,0, a.e.w €A,, n=1,2, ... . The group [G] is said to bta the full group of
G. Two countable non-singular transformation groups G and G’ of (2, % ,P) and
(2, &' P, respectively, are called weakly equivalent if there exists a bimeasur-
able bijective mapping ¢ from £ onto £ such that ¢[Gle™'=I[G] and P~P'y.

Let us now define the ratio set #(G) and the T-set T(G) of a countable non-
singular transformation group G of (&£, % ,P). The ratio set »(G) is the set of
all non-negative numbers 7 satisfying that for any >0 and any measurable set
A with P(A) > 0 there exist a measurable subset B of A with P(B)>0and g€ G

d;;g (@) —7|<e, w€B([9]), and the T-set T(G) is the

set of all real numbers ¢ satisfying that there exists a measurable function exp ?

such that gB< A and

&(w) such that exp i {é(gw)—&(w)} = exp it-log % (0), g€G, a.e.o ([6]).

The set »(G)\{ 0} is a multiplicative subgroup of positive numbers and T'(G) is an
additive subgroup of R. These two setsjare invariant for the weak equivalence.
Moreover, the ratio set (&) has the following properties: (1) r(G) does not
depend on the choice of a measure P among equivalent measures, (2) 7(G)\{0}

B
EEESRIENEE
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is a closed subset of R, =(0, +) and hence a closed subgroup of R,, (3) if G
admits no equivalent o-finite invariant measures, 7(G) contains 0, and (4) G
admits an equivalent s-finite invariant measure if and only if »(G) ={1}. There-
fore, for a countable ergodic non-singular transformation group G of (2,5 ,P),
the ratio set (G) is one of the following sets: {1}, {2*; n€Z}U{0)} (0<2<D),
[0, +o) and {0,1}.

Let G be a countable ergodic non-singular transformation group of (2, %, P).
Then we say that G is of type III if G admits no equivalent o-finite invariant meas-
ures. And also we say that G is of type III, (0<<2<1), III; or III, accordingly as
the case: 7(G)={2"; n€ Z}U{0) (0<1<1), [0, +) or {0,1}.

Let {U,}_w<s<c+w be a one-parameter group of non-singular transformatons
of a measure space (X, %y, uy) which we call simply a non-singular flow. We
say {Us} —wcs<c+w 18 measurable if the mapping: (s,z) — U,x of RX X into X is
measurable. Let G be a countable non-singular transformation group acting on a
Lebesgue measure space (&2, % ,P). For each g€ G, we define a non-singular
transformation & on the product measure space (2 X R, % X &Z(R),dP X du) by

dPg
arP

&(w,u) = (go, u + log (0)),

and put G= (g; g€G). Let ¢(G) be the measurable partition ([13]) generated by
all G-invariant measurable subsets. For —ocos<+oo, put T (w, u)=(w, %+5),
(0,) E2XR. Since (T} _wescro cOmmutes with G, we can define the factor flow
(T} —cocscroo Of {Ts} _cocscsoo ON the quotient space 2X R/C(G). For each s(— o0 <s
<4), T, is a non-singular transformation with respect to any o-finite measure
equivalent to the image measure of dP X du and {Tx}_w<3<+m is a measurable flow.

We call the factor flow {7} _wcsciw the non-singular flow associated with
the non-singular transformation group G or simply the associated flow of G.

We note that the associated flow {7} _cwcsciew Of G is ergodic if and only if G
is ergodic.

Let (X, Zx, nx; {Us)-wcscsn) and (Y, By, uy; (V) _wescie) be measurable
non-singular flows. These measurable flows (U} _wcscro and {V) _wcscsw are
mutually strongly equivalent if there exists a bimeasurable bijective mapping ¢
from X onto Y such that sy~pup¢ and for all — oo <s<+ oo, gU,x=V ¢z, a.e.x.
We note that the strong equivalence among ergodic non-singular flows is the
same as the metrically isomorphic equivalence if they admit finite equivalent
invariant measures. The strong equivalence of associated flows is an invariant

for the weak equivalence of ergodic non-singular transformation groups. Namely,
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if ergodic countable non-singular transformation groups (£, .%,P; G) and (2, 5,
P'; ) are mutually weakly equivalent, then their associated flows are mutually
strongly equivalent.

Let (X, Zx, nx; {Us} —cocs<+0) be a measurable non-singular flow. A real num-
ber ¢ belongs to the set ¢ ({U;}), which is called the point spectrum of (U} _cwcsctoor
if there exists a measurable function exp 7&(x) such that for all —co<s <+

exp 1&(U,x) =exp iis-exp 1&(x), a.e. x.

We note that if G is a countable non-singulgr transformation group and
{Tg}_m<,<+w is its associated flow, then the T-set T'(G) of G is equal to the point
spectrum o ({T}): T(G)=a({T,)}).

Moreover, the metrical properties of the associated flows give us much more
informations about non-singular transformation groups. For example, the T-set
is the point spectrum of the associated flow and the S-set is given by the periodic
motion of the associated flow. More precisely, let {i’~‘s}_°<,<,<+<,o be the non-singular
flow associated with an ergodic non-singular transformation group G of a Lebesgue
measure space (2, #,P). Then (1) G admits an equivalent o-finite invariant
measure if and only if {Ts}_m<3<+m is strongly equivalent to the translation: RS #
—u+s, — oo <s<+ o0, (2) G is of type III, (0<<2<1) if and only if {Ts)} —cocscron
is strongly equivalent to the periodic flow: [0, —log 2) 3 # — u#-+s (mod. —log A),
—oo<s<+oo, (3) Gis of type Il if and only if {7} _ccscsw is th trivial flow,
and (4) G is of type IIl, if and only if {Ts}_w<s<+w is an ergodic, aperiodic and
conservative flow. Also, it is shown by Krieger's skew-product method that any
ergodic measurable non-singular flow is realized as the associated flow of an
ergodic non-singular transformation group. In fact, let (2, &, P;G) be a countable
ergodic transfomation group of type III; and (X, &7, #; {Us} _wcsci) be an ergodic
measurable non-singular flow and = {<g, g'>; g, g'€G} be acting on (X 8X
XXR,PXPXuxXm) as follows:

<g g >, o, x,u)

=(gv, g, U, 4o %, u—a(g’, o) — logﬁq”‘—

@)
d#(” (£,

dPg
dP

of the ergodic non-singular transformation group & is strongly equivalent to

where dm(u) =e¢"du and a(g, ) =1log (w). Then the associated flow {T';} _cocscroo

{Us} —0LSL+ 0.
Now we define the joint flow of measurable non-singular flows acting on

Lebesgue measure spaces and discuss the weakly equivalnet classes of the product
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GXG' of countable ergodic non-singular transformation groups by using its
associated flow and we introduce a new class (type III") 6f non-singular transfor-
mation groups of type III.

Let {Us} —wcscrw and {V;} _wescsw be measurable non-singular flows acting on
Lebesgue measure spaces (X, %y, ux) and (Y, &y, uy), respectively. Let {U; X
I} _wiscro be a flow defined by (UsXI) (x, y)=U,x, y). Since {U;XI} _wcscroo
commutes with {Us XV _;} _cocsc+ws, We can define the factor flow of the flow {U;
X I} _ocscreo ON the quotient space XX Y /C({U,XV_,}) and denote it by {(U,
V)s) cwocscicon (U, VD) _cocscrw 1S @ measurable non-singular flow with respect to
the image measure of gy X uy on XX Y /CU{U, XV _i}).

DEFINITION 3. We call {(U,V);} —wcscro the joint flow of (Us} —wcscrw and

{Vs} —00L8< + 00

We note that {(U, V);} —wcscs0o is strongly equivalent to {(V,U);)} —cocsc+e and
that o ({(U, V);} ) =0c({(V,U);}).

THEOREM 6. Let G and G be countable non-singular transformation groups on
Lebesgue spaces (2, 7 ,P) and (2', ', P"), respectively, and GXG ={gx g'; g€G,
g' € G'} be the product non-singular transformation group of G and G', where (gXx
gD (w,0)=(gw, g'0"), 0w € 2,0 € 2. Then the associated flow of GXG is strongly
equivalent to the joint flow of each associated flows.

PROOF. We define a mapping ¢ from 2 X RX 2’ X R onto 2X 2 X R as follows

oo, u,0 4= (0,0, u+u").

Since
/ 7
(8% 8" (0,0, 8= (g, u+10g L€ (), 'l o/ +10g PL £ ()
and
~ P ;o dPg dP' g .,
gXg (0,0 ,u)=_gw, g'o',u + log ip (w) + log izl (),

we have
¢ (gxg) =gxg ¢, g€G, g €qG.

Hence ¢ induces a mapping from the product space of the quotient spaces (2 X

R/2(G)) X (2 X R/z(G")) onto the quotient space 2% 2' X R/C(GXG'). Since ¢(w,
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uts, 0,4 —s)=(0,0,u+u) and ¢(w, u+s, o, u)=(w, o, u+u +5), ¢ induces a
strongly equivalent mapping between the joint flow of the associated flows of G
and G’ and the associated flow of GX G .

This completes the proof.

DEFINITION 4. For a countable additive subgroup I of R, a countable
ergodic non-singular transformation group G is of type III" if the associated flow
{fZ~“3}_°<,<S<+.>o of G is ergodic finite measure-preserving and if it has pure point

spectrum 7.

27

We note that IIIm = II1,((0<<2< 1) and III* =III, since ergodic finite meas-
ure-preserving flows with the same pure point spectrum are mutually metrically

isomorphic.

THEOREM 7. (1) Let G be of type III" and G be any countable ergodic
non-singular transformation group. Then GX G is of type IIITNTE?,
(2) Let Gand G be countable ergodic non-singular transformation groups whose

associated flows have finite invariant measures. Then GX G is of type II[T@NTE,
PROOF. The proof follows from the next lemma.

LEMMA 3. (1) Let (X, Py, 1x; (Usl —cwcscr) be an ergodic finite measure-
preserving flow which has pure point specirum and (Y, By, py; (V) ccocscre) be an
ergodic non-singular flow. Then the joint flow {(U,V);} _wcscr IS ergodic finite
measure-preserving and has pure point spectrum os({U})(N o ({V}).

(2) Let (X, ZBx 11, Us) _—ocscsw) and (¥, By, ur; (V) _wcscsw) be ergodic finite
measure-preserving flows. Then the joint flow {(U,V)s} _wescrw iS ergodic finite
measure-preserving and has pure point spectrum o ({Us))MN o ({V)).

PROOF. If gy is a {Us}_wecs<+w -invariant finite measure and if uy is a finite
measure, {(U, V);) _cocs<+0 DPreserves the image measure of xx X uy on the qoutient
space XX Y /C({U;XV_s}). There exist measurable functions exp i&,(x) for £€o
({U4}) such that exp i&,(U,x) =exp its-exp 1£,(x) and measurable functions exp iy,
(y) for t €6 ({V}) such that exp ¢ 5, (V;y) =exp ifs-exp i (y). Since

exp 1&,(Usx) - exp in(V_,y) =exp its - exp 1&,(x) X exp{—its} - exp i7.(¥)
=exp i&,(x)-exp in(y)

for t€o({U DN ({Vy), exp &,(x)-exp in(y) is a {UsXV_;} _wcscsw -invariant
function. )
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We will show that the set of all {U; XV _,} _wcsc+w-invariant square-integrable
functions is generated by {exp &,(x)-exp i, (3); ¢t € c({U DN ({V})}. Let f(x,»)
be a bounded {U; X V_;} _wcs<creo-invariant measurable function and assume

<f('9 ’)seXP i$t<'> €Xp iﬂt(')>ll2(y.zxuy)= 0
for 2 € o({Us}) M o ({V,}). Define
Fel9)=<FC, 5, exp i&(-)> 1250, ¥E Y,
for t € s ({U;}). Then we have
FV ) =<SC, V3, exp i€,(-)> rrun)
=<f(Us*, 3, exp t£,(-)> 1o p
= <f(', y)’ exp iét(U—s')>L2(nx)

=<f(-, ), exp{—ils}- exp i5,(-) > r2ux
=exp its-f,(9), t €a({U,)).

Since {V} _wssc+00 18 ergodic, we have
¢, exp ip,(y) if t€a({U DN ({V))
0 if t€a({UD\a({V,}),

J?cty) =

where ¢, is a constant. Hence we have
fi(=0, a.e.y,

for any ¢t € ¢ ({U,}) from the assumption on f.

Next consider the case (2) and take a measurable bounded function £(X)
which -is orthogonal to every exp i&,(X), ¢t € ¢ ({U}). Defining fs(y)=<f(-,y),
E> rotuyy, We will see fg(y)=0, a.e.y. Indeed ‘

FelVe) =<FC, V) € run
=< fWUs;", ), €§>nuy
=<f(-, ), &U_, D> 1oy

From Stone’s spectral decomposition theorem,
EWUs- ) = S exp 52 AE(QE.
Then -

. =7 exp sz d<sC, 9, E@ECI> s
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We put dFE(D)=d<f(-,3), EQ) &(-)>12up- This measure is non-atomic since
£(-) is orthogonal to all eigenfuctions of (Us} —cocsc+0 - Therefore

% So | Fe(Vsy)|? ds = SS%%Q AF(DAF), a.e.y.
The right term converges to 0 as s—o by Lebesgue’s convergence theorem.
Since {V,)} _wcsc+w is ergodic finite measure-preserving, from Birkhoff's pointwise
ergodic theorem we have fg(y)=0, a.e.y.

Thus for almost all y, f(%,y) is orthogonal to any & y-measurable bounded
function and so f(%, ¥)=0, a.e.(%,y). This means that the subspace of all {U;X
V _s) —ewcscrwo-invariant square-integrable functions is generated by {exp i&,(%)-
exp in(¥); t€a({U))Na({V))} and that {((U,V)s} —ocs<+ has pure point spec-
trum o({UDNa({Vi]).

This completes the proof.

COROLLARY ([ 21). Let G, be a countable ergodic ‘non-singular transformation
group of type III, (0<a<1) and G be an ergodic non-singular transformation group.
Then (1) G is of type I,y for some integer k or is of type III, if G\XG is

weakly eéuivalent to G, and (2) G\ X G is of type III, if and only if—% ET(G).

PROOF. The proof is clear from Theorem 7.
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