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Introduction

In [ 1] Behnke and Thullen studied the convergence problem for a sequence
of domains and the sequence of their envelopes of holomorphy. One half of their
investigation was devoted to the study on the ‘“Nebenhiille’”’ and several interesting
results were obtained. This paper was written to give light to them from the
stand point of convexity.

As recent works of Diederich and Fornaess [ 2], [3] and other works
suggest, a domain without Nebenhiille in the sense of [ 1] may be understood by
a kind of convexity called in this article »n-convex.

Above authors have treated the pseudoconvex domains with smooth boundary
and obtained fundamental results on Nebenhiille and related matters. Some of
their results seem to be very closely related to ours. Non-trivial example of
n-convex domains will be found there, for example:

Let 2 be a strongly pseudoconvex domain with smooth boundary in C*. Then 2
has a fundamental system of pseudoconvex neighborhoods.

In this paper we give a sufficient condition for a domain to be n-convex in
terms of the convexity with respect to a family of functions, Theorem 17, where
no condition is assumed for the boundary.

As is shown a n-convex bounded domain £ is convex with respect to the set
of functions holomorphic on £ and the maximal domain of continuation of which
is schlicht, Proposition 5. The converse of this fact is very likely to hold, but in
this paper we can only prove Theorem 17.

A survey on n-covex domains is given in 1 and 2. In 38 a convexity properly
observed for a n-convex domain is given. And in 4 a sufficient condition for a
domain to be n-convex is proved. For the sake of simplicity we confine ourselves
to the domains in C*. For the standard knowledge of the theory of functions of

several complex variables we refer to [ 4 1.

1. n-convexity

Let 2 be a bounded domain in C®, which we fix in the sequel. We denote by
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" the set of the domains of holomorphy in C® which contain £ as a relatively
compact subset and by N(.Q) the open kernel of intersection of the domains
belonging to .+ :

N@D: (ﬂ .

Qe

We call N(2) the Nebenhiille of the domain £. It is obvious that N(£) is
connected and is a domain of holomorphy. When 2=N(2) holds, we say that 2
is #n-comvex. As was already known in [1] £ does not necessarily coincide with
its Nebenhiille N(2), even if 2 is a domain of holomorphy. In other words “‘n-
convex’’ is a stronger condition than the convexity observed for a domain of

holomorphy. By definition we see
2 CH@) CNWD
if the envelope of holomorphy H(2) of £ is schlicht.

Let K be a compact subset of 2 and & a subset of the set . (2) of functions
holomorphlc in 2. K ={xel |fWIZ<sup| (K], fE€EF). If #=02), we
write KQ in stead of Kf, In the following by 2 C C2; we mean that 2 is relatively
compact in £,. From the definition of n- convexity we have

PROPOSITION 1. The following statements are equivalent.

(i) 2 is n-comvex: Q=N(2).

(ii) @°=Q and for any positive ¢ there exists an 2' € v such that 2C C Q'
C CQs, where Q. is the e-neighborhood of 9.

(i) D=L and 2= N 2.

Qe
(iv) (@°=Q and if "' is the set of analytic polyhedrons which contain 2 as
relatively compact subset, then @ = N P.

peEN’

(v) (D°=Qand 2 = N @Da3,.
N
7 , PROOF (i) = (i) Since in general @@, we put S=(@2)°—2 and assume
S:{=¢ Obv1ously SC0R2. Take any point p €S, then from p € (2)° there exists
a neighborhood U of p such that UC(®2)°. For any 2 € .+ we have UCcCe
and hence UCN(2). Since £ is n-convex, that is, R=N(D, we have UC C Q.
Consequently p € 2. Thus SC®, which implies SC2N82. This means S=¢, a

contradiction. . _
We shall show the latter half of (ii). Since 2 is compact, £, is also compact.

So 08, is compact. For any p €082, we may cheose an 2, € .4 which does not
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contain p. We may assume that p is an exterior point of 2, TFor if p €02y,
considering 2 C C®, we construct an analytic polyhedron P defined by the
functions of (2, such that 2 CC P CC®, Then we may replace £, by P
which satisfies the condition. We associate p with an 2, chosen as above. Then
{(@»)°) peoge is an open covering of 02, where (®,)° is the exterior of £, Since
82, is compact, some finite subset (0% 3% (sz) ===, (2,)° gives an covering of

892.. Then the connected component £ of f\.Q that contains 2 satisfies 2 CC%2

CCQ.. 2 is, as a finite intersection of the domams of holomorphy, also a domain
of holomorphy.
(ii)= (iii) £C N £ is obvious and therefore we shall show 2o N 2.
Qe

QeEwr
Suppose x& 2. Since the distance d(x,2)=p>0, we can choose ¢ in (il) so as
¢< p. Then there exists an 2’ € .+ satisfying 2 CC2'CC®.. Hence xEN L.
Qe
(iii) = (iv) = (v) For any 2 €. there exists an analytic polyhedron P
such that 2 CCP CC£2'. Then we have
2 Cﬂ(!?)gA Cﬂ P cu2a.

Q\E Qe

Thus, if 2= ﬂ!)’ then 2= ﬂ(!?)“—ﬂ P

Qe
The 1mp11cat10n Gv) = ({iD) is obv1ous. By the same argument as in the

proof of (i)i= (ii) we can show (v) = (iv).
(iii) = (i) Taking the open kernel of the both sides of 2= s
Qe

we have

2=0@)'"= (ﬂ.Q’)" N@.

Thus (1) is proved. <
COROLLARY 2. An analytic polyhedron in C" is n-convex.

COROLLARY 3 [1]. Let 2 be a bounded domain in C" and starlike with
respect to a point P. If the distance d(P,Q) is continuous as Q varies in 02, then

2 is n-convex.

PROOF. It is easily verified that the conditions in (ii) of Proposition 1 are
satisfied. <

COROLLARY 4 [1]. Let 2 be a bounded domain in C" and f€ sz (2. If V=
(x € 2: f(x)=0} is not empty, then 2—V can not be n-convex.
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PROOF. Since ¢ # VC(.Q—V);—(.Q—V), by (ii) of Proposition 1 2—V
can not be n-convex. <

From the definition of n-convex domain the following elementary properties
are easily shown:

1) Let £ and £, be the domains in C" and @ a biholomorphic mapping from
a neighborhood of 2 to a neighborhood of 2,. Then £, is n-convex if and only if
£ is n-convex.

2) If 2C@;, Then N(2)CN(2D.

3) The product and the intersection of finite number of n-convex domains
are both n-convex.

4) N@X2)=N(Q)XNR.

REMARK. As in the case of domain of holomorphy the latter half of (iii) is
generalized: Let {2\)icn be a family of n-comvex domains. Then (NL2Y° is
AEA

n-convex.

PROOF. Put 2=(N2D° Since 2C N2, C L, for any u €4, by 2) above we
AEA AEA

have N(@CN(L), rz€4. Hence we have N(@CNN(2). By assumption
AEA
N(2) =2, Consequently N(@C N Since N is open and 2= (N2)°% we
AEA AEN
have N(2)C®, which implies N(2)=202. &

Let . (2) be the set of functions holomorphic in a neighborhood of 2. For
f €7 (@ let us denote by H; the maximal domain of centinuation of £, see [ 5 1.
Then H; is, as is well known, not necessarily schlicht. We denote by & (2) or
by & the set of such element f of .,V(—.Q_) that Hy is schlicht.

Now we are able to state the following

PROPOSITION 5. A#n n-convex domain in C™ is . -convex.

PROOF. we shall proceed by the aid of well known technique due to Cartan-
Thullen, see [1] and [4]. Suppose £ is not . -convex. Then we may find a
compact subset K whose & -hull K; is not compact in £. The distance p=d (X,
02) is positive. Choose positive number 7 so as r<p. For any f€ & and for
any differential operator D* we have D* f € & where

orttan

D= —
0zt - -0z

va=(an -, a,).

Then for arbitrary point ¢ € K and 7-neighborhood S(g, ) of g we have
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D ()| < ;.“;LI sup | F(SCg, ™|,

where a!=ay! ++- a,! and |a|=a;+:-+ +a,. Hence we obtain for 7-neighborhood
K. of K and p €K

DB = e sup | FEDI.

From this we see that the Taylor expansion of f€ . at p converges in S(p, v
for any 7, 7<p. Thus every element of & is analytically continued to S(p, 7).
Choosing ¢ as e< p, by (ii) of Proposition 1 we conclude that the exterior wne
for some domain of holomorphy does contain a non-empty subset of S(2, 0). The
function g whose maximal domain of continuation H, coincides with 2 belongs
to . and thus continued to S(p,p), a contradiction. We proved ithat K is

compact in £. <

If the converse of Proposition 5 holds, we shall have a nice characterization
of n-convex domain. But by this time we do not have affirmative proof. In 4 we
shall show the converse of Proposition 5 under some stronger condition.

Here we give a version of Proposition 1 concerning the boundery point. Let
us sayva poin p € 62 possesses the property (B) if for any open neighborhood U
of p there exist a point ¢ € U and a function f holomorphic in a domain of holo-
morphy containing {g} U @2 such that | f(g)|> sup|f(D].

THEOREM 6. 2 is n-convex if and only if every point of 02 possesses the
property (B).

Proof. (<) Suppose £ is not n-convex. Then N(R)—R2+#¢. Take a point ¢
€ N2 N02 and a neighborhood U of g as VC CN(2). By assumption there is a
point 7 of ¥V and a function f holomorphic in a domain of holomorphy £, such
that 2 U {#} C2, and | f(»)|> sup | f(2)|. Since 2 is contained in &;, there can
be constructed an analytic polyhedron P defined by thelfunctions in & (2,) so that
QCCPCC®,. Put Q=P N{xcQ,: |f@|<|f@]}. Then clearly r&£Q ‘and
QC CQ. This is a contradiction, because @ is an open set of holomorphy “and
hence contains N(2) to which # belongs. Thus we have N(2) —2=¢.

(=) Assume the contrary. Then there exists a point o € 92 which does not
possesses the property (B): there can-be found an-open neighborhood V of p,
such that for any point g of V, any domain of holomorphy £, containing {g} U2
and any holomorphic function f in 2; holds the inequality [ F@|< sup |fD].
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We may assume that f is non-constant. Then by replacing V by smaller V' as
V!CCV we may assume without loss of generality that |f(@)|< sup |F(2)],
q €V’ holds. Further we may take the ball B(p,, p) centered at p, with radius p
in place of V'. Choose positive number ¢ so as e <p. Then, since £ is n-convex,
there exists a domain of holomorphy £; such that 2C C2,C C&, where 2, is the
e-neighborhood of 2. By standard arguments we construct an analytic polyhedron
P such that QCCPC C#:. Then since VNP =B(po,p) P°#¢, for any ¢ €V’
NP° there is a function f holomorphic in 2, such that |f(g)|> sup || F(2)].
Now ¢ can be taken as 2U {¢'} C 2y, contradicting the choice of V'. Thus every
point of 92 possesses the property (B). <

REMARK. The inequality | f(g)| > sup | f(2)| can be replaced by the prope-
rty that f(g) =0 and f(x)%0 in 2.

2. A continuation property for &

From the difinition of N(2) we have

PROPOSITION 7. Ewvery function in & is analytically continued to a neighbo-
rhood of N(2).

PROOF. Since N(@2)=NL, we have N CL for every £ €._4. On the

Qe
other hand every domain of .4 is the domain of existence for some function f of

&, denote it by H;. Then we have N(@) = N H; and N(2) CHy for every f € & .
reF

Since N(2) is compact, H; is a neighborhood of N(£2). This means that every
f € & is analytically continued to some neighborhood of N(2). <

Propsition 7 asserts that any schlicht domain of holomorphy, that contains 2
as relatively compact subset, contains also N(2) as relatively compact subset.

As a direct consequence we obtain
COROLLARY 8. N(N(@)=N(D.
More precisely we can prove the following
THEOREM 9. For any f € % holds
dQH) =d(N(D, Hp.

PROOF. The proof is analogous to that of Proposition 5. Take any f € .&#.
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Since 2 is compact in H; the domain of maximal continuation of f, the distance
o=d (2, H) is positive. First we show that for any ¢ ¢ N2 the inequality |f(@|
< sup | f(@) | holds. If q € 2 there is nothing to prove. So we assume ¢ ENWD—
?. It suffices to show f(g) € f(@). Suppose f(@&f(2) Then since fC2) is
compact, there exists an open neighborhood w of f(2 such that f(g)ew. The
function g(®) = (f(x) —f(@)~" has H,: = Hy—{x€ Hy: f(®) —f(@Q} as its domain
of existence. Since g(#) is holomorphic in w, we have g€ & . gis singular at ¢
and ¢ € N(@CH,. This is a contradiction. Hence f(¢) €f(®) and therefore
| f (@< sup | F(@)| for every ¢ € N(2). Since f is arbitrary in &, we have for
any differential operator D® the same inequality: |D* FQ|Z sup |D* f(D)]. In
general H;CHpe, for f € 5. Taking positive number 7 so that »<p we have
(@ ,CHy and (2),C Hpe, and hence

sup |D*F@D| < 5 sup | F(@].

From this we can show that the Taylor expansion of f at g converges in the
ball S(g, 7) of radius 7 centered at g. Since we may take r arbitrarily near to p,
the Taylor expansion converges in S(g, o). The point g being taken arbitrarily
in N(2) we have (N(2),CHy;. This implies d(N(2), H) = p=d(2,H7). On the
other hand from 2C N(2) we have converse inequality d(N(2), H)Xd(Q, HP.
Thus d(N(Q), H)=d4d(2, Hp). <

COROLLARY 10 [1]. Let f(x) be meromorphic in a neighborhood o of 2 and
let there exist a complex number a such that f(x) # a for any x€ o. Then f(x) is
meromor phically continued to some neighborhood of N(2) and f(x) # a there.

PROOF. Consider the function g(x)=(f(x)—a) " inow. <

COROLLARY 11. Let f be a holomorphic mapping from a neighborhood of 2
to C*. If the rank of f is constant and equal to k, then the rank of the extension

of f to the neighborhood of N(2) is also constant and equal to k.
PROOF. Apply Corollary 10 to the functional matrix of f. <

COROLLARY 12. Let f be a holomorphic mapping from a neighborhood of N(2)
to a domain D in C*. If there exists a function F holomorphic in D such that f(2
N{y € D: F(»)=0}=¢, then (NI N{y € D: F(9)=0}=¢.

PROOF Consider the function Fof. &
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REMARK. If D is domain of holomorphy, we may replace the set {y€ D:
F(y)=0} by arbitrary analytic subset of D. For the case: 2=1 we obtain again
F@D=F(ND).

The standard arguments imply

COROLLARY 13 [1]. Let f be a holomorphic mapping from a neighborhood
of @ to a neighborhood of @ which induces an automoyphism of 2. Then f is
extended to an automorphism of N(2).

From Theorem 9 we are able to deduce a sufficient condition for a domain to

be n-convex. It is also a direct consequence of Theorem 6.

THEOREM 14. If for any p € 082 there exists a non-consiant fin & such that
[ FP) = sup | (D], then 2 is n-convex.

PROOF. Though this is trivially obtained from Theorem 6, we give here a
proof along the line of Theorem 9. Let us assume LREN). Then 02NN~
Take any point p of 92N\ N(2). By assumption of the theorem there exists a
non-constant f of & such that |f(p)|= sup | f(2)|. Since f is non-constant, for
any positive number ¢« we may choose a point g of S(p, ) so that the inequality
| F@1>]7(p)] holds. Obviously g € S(p, &) U@°. Putting g(x) = (f(x) —F(@) ™,
g(#x) is holomorphic in a neighborhood of 2. Hence N CH,. Taking ¢ so that
S(p, o CC N2 we may assume that ¢ is a point of N(2). Since g is singular
at g, this is a contradiction. Thus 2= N(®), that is, 2 is n-convex. <

3. Another convexity for n-convex domains.

In this section we shall define a strong type of convexity that properly holds
for n-convex domains.

Let y=(ys, -+, ¥») be the coordinates of C" and consider the domain S={y:
Lyl <2l <1, 1351 <1, -+, |32l <1) and D={y: |3:| <1, |32] <1, -+, | 3] < 1).
Let @ be a biholomorphic mapping of a neighborhood of D to C™. S=a@(S) and
4= 0 (D) are called a generalized half disk or simply half disk, and a generalized
disk or simply disk, respectively. A domain £ of C” is said to be N-convex if it
possesses the property that if 2 contains >, then £2 contains 4.

Now, we show

PROPOSITION 15. Let 2 be a bounded domain of C*. If Q is n-convex, then it
is N-convex.
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PROOF. Assume 2 is not N-convex. Then there exists a pair (4, > of disk
and half disk so that S1C 2 and 4ct2. Then every function of 7 (D) is analytically
continued to 2N4. By choosing a point p in 4— &£ we may assume that d(p, 2)>0.
Since £ is n-convex, choosing ¢ in (ii) in Proposition 1 so that e<d (p,:é) we

arrive at a contradiction. Thus 4C 2. <

An example of a domain of holomorphy which is not N-convex is the half
disk itself.

Is is natural to ask if the converse of Proposition 15 hold. We have no
answer till now. In consideration of the convexity of Oka we can show the fact:
any domain of holomorphy in C" contains 4 if it comtains > as relatively compact

subset.

4. A condition for a domain to be n-convex

A domain of holomorphy in C” is approximated by an increasing sequence of
domains of holomorphy. This is a direct consequence of the fact that the domain
of holomorphy is holomorphically convex. It is a remarkable contrast to this fact
that a n-convex domain is approximated by a decreasing sequence of domains of
holomorphy. Not as an accurate terminology we may call the former the convexity
from interior and the latter the convexity from exterior. Then, in general for a
domain convexity from interior does not induce convexity from exterior, but
since a n-convex domain is holomorphically convex, convexity from exterior
induces always convexity from interior. Our problem is under what condition
the convexity from interior does imply the convexity from exterior, that is,
under what condition the converse of Proposition 5 holds.

Now we begin with generalizing well known condition for a domain to be

holomorphically convex to more general one which works also for a family of
bounded functions.
PROPOSITION 16. A mecessary and sufficient condition for a domain 2 to be

convex with respect to a subset & of s () is that for any infinite discrete sequence
(%) in 2 and for any compact subset K of 2 these exists an f €5 such that the

inequality sup |f(x)|> sup | fF(K)| holds.
k

PROOF. (=) Assume that the conclusion of proposition is false. Then there
exist a sequence {x;} of £ and a compact subset K such that sup |flxp) | < sup
k

| F(K) | for all £ € . Hence {x:} C K. Since {x;} is discrete in &, K - can not be
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compact in £. Thus £ can not be & -convex.

(<) Assume that £ is not & ~convex. Then there exists a compact subset K
of £2 such that K}r is not compact in £. So we can choose a infinite sequence {x}
in K, which is discrete in 9. By the definition of K- we see that for every
f €5 the inequality |f(x) | < sup | f(K)| holds for every k. Thus we have sup

| FCx) | < sup | f(K)| for every f € 5. This is a contradiction. We proved that
2 is F-convex. <

Our result is the following restricted converse of Proposition 5.

THEOREM 17. Let 2 and 2, be domains in C", 2C CQ, and & a subset of
o7 (21) satisfying the following conditions:
(1) & is equicontinuous in 2.

(ii) There exists a point p €2 such that F(P)={fp): f € &) is bounded.
of

‘=1

= p for every f € 7.
If 2 is & —convex. Vthen it is n-convex.

PROOF. Let {K,} be an exhaustion of 2 by compact subsets; K,CK,,, C --
and () Ky=42. Take an arbitrary point p €02 and fix. Then we can choose a
A

sequence {x;} which is discrete in 2 and converges to p. By Proposition 14 there
is an f, € & for every 2 such that it holds

SZ:P | Falxd) | > sup | LKD) .

Then we can find an integer %, satisfying
‘fz\(xk,\> | > sup | Fo2(ED .

We determine {x;,} inductively so that £,<<£,<---. For this purpose assume that
Jv S » Saor and x, xp, » »%,_, are already determined. Then for
(%} k>x,_, and Ky we apply Proposition 14 and determine S

(i) and (ii) imply that & is uniformly bounded on every compact subset of
2. Choose a domain £, such that 2 CC&CCQ,. Then by the therem of Montel
& is normal in 2, in other words, any infinite sequence of & contains a subse-
quence which converges uniformly in 3. Applying this to the sequence {f\} we
can find a subsequence which converges uniformly in 2,. We may assume that
{f\} itself is convergent. Let f be the limit of {fJ. Then f € v (). Further,
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th esequences {gf }, i=1,2, ---, n also converge uniformly to %:— in £
T i .

respectively.

Clearly for arbitrary x we have

lf/\(xk,\)]> sup | FA(KD|, iz p.

Since {Kx,} U {p} is compact in 2 and f is continuous in £, we have, as 1—

+ oo,
| F(D)| = sup | FCEDs Vo

Since sup | f(K)| — sup | f(2)] as pg—+ o, we obtain
| FP| = sup |F(D],

which implies
| ()| = sup | F(D].

By (iii) f is non-constant in 2,. Since p is arbitrary in 902, the assumption

of Theorem 10 is satisfied. Thus £ is n—convex. <&
We may state Theorem 17 also in the following way.

THEOREM 17'. Let 2 and 2, be the domains in C", 9 CC 82 and & a subet of
o7 (2)) satisfying the following conditions:

(i) & is compact in €(21).
(i) FNEU{x})=0¢.
Then, if 2 is F —convex, it iS n—CONveX. Here @\J{c} is the set constant of

Sfunctions possibly oo -valued.

PROOF. The condition (i) is equivalent to (i) in Theorem 17. In general
the necessary and sufficient condition for & to be equicontinuous is that any
infinite sequeuce of & contains a compact-uniformly convergent subsequence
or a subsequence which diverges compact-uniformly to constant eo. By the
condition (ii) any infinite sequence of & can not contain the subsequence
diverging to oo. Again by (iD) any converging sequence of & can not have
constant limit. Remaining part of proof goes as in the proof of Theorem
7. ©
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