PSEUDODISTANCE DEFINED BY A SET OF HOLOMORPHIC FUNCTIOS AND n-CONVEX DOMAINS

Shawich SATO

(Received October 29, 1979)

Introduction

In [3] the author gave a sufficient condition for a bounded domain to be n-convex. The conditions assumed there were somewhat complicated and restrictive.

If a bounded domain Ω in C^n is convex with respect to a set $\mathscr F$ of functions holomorphic in some neighborhood of $\overline \Omega$, then, as is easily shown, Ω is convex also with respect to $\mathscr F_1 := \{f/\|f\|_{\bar\Omega} \colon f \in \mathscr F, \|f\|_{\bar\Omega} \neq 0\}, \|f\|_{\bar\Omega} = \sup |f(\Omega)|$. And $\mathscr F_1$ is equicontinuous in Ω . Under several conditions a distance d is defined on Ω from such equicontinuous set and by the aid of d a kind of convexity is considered for Ω , see 1. It is shown that this convexity is very natural and implies n-convexity of Ω .

A bounded domain Ω is said to be *n-convex* if $\overline{\Omega}$ possesses a fundamental system of neighborhoods consisting of the domains of holomorphy and the open kernel of $\overline{\Omega}$ is equal to Ω , see [3].

The requirement (v) in Theorem 5 means that Ω is complete in some geometrical sense, and this circumstances are often treated in the theory of hyperbolic spaces, see [1].

1. Pseudodistance $d_{\mathcal{F}}$

Let Ω be a bounded domain in C^n and $\mathscr F$ a subset of $\mathscr A(\Omega)$ the family of functions holomorphic in Ω . $\mathscr A(\Omega)$ is endowed with compact-open topology. We define a real-valued function $d_{\mathscr F}(p,q)$ in $\Omega \times \Omega$ by

$$d_{\mathcal{F}}(p,q) = \sup_{f \in \mathcal{F}} |f(p)| - f(q)|.$$

LEMMA 1. If \mathscr{F} is equicontinuous in Ω , $d_{\mathscr{F}}(p,q) < +\infty$ for any p and p in Ω .

PROOF. \mathscr{F} is equicontinuous if and only if n families $\mathscr{F}_i = \left\{ \begin{array}{l} \frac{\partial f}{\partial x_i} \colon f \in \mathscr{F} \right\}, \\ i=1,2,\cdots, \ n \ \text{are all uniformly bounded on every compact subset of } \varOmega, \ \text{see [2]}. \\ \text{Applying this to the formula} \ f(p) - f(q) = \int_c df \ \text{where } c \ \text{is a path from } p \ \text{to } q, \\ \end{array}$

we obtain the required stimate. \Diamond

It is easily verified that the function $d_{\mathscr{F}}$ is a pseudodistance for a equicontinuous set \mathscr{F} . If \mathscr{F} separates the points of \mathcal{Q} , then obviously $d_{\mathscr{F}}$ defines a distance in \mathcal{Q} . In the sequel the domain \mathcal{Q}_1 is assumed to satisfy $\mathcal{Q} \subset \mathcal{Q}_1$, that is, \mathcal{Q}_1 contains \mathcal{Q} as its relatively compact subdomain, and \mathscr{F} is assumed to be a subset of $\mathscr{M}(\mathcal{Q}_1)$ and to be equicontinuous in \mathcal{Q}_1 . The restriction of \mathscr{F} to \mathscr{Q} is denoted by the same notation \mathscr{F} if there is no fear of confusion. It is convenient to see under what conditions the usual topology, that is, the topology induced by the Euclidian distance $d_{\mathfrak{F}}$, coincides with the topology in \mathcal{Q} induced by $d_{\mathscr{F}}$.

We denote the ball defined by $d_{\mathcal{F}}$ by $B_{\mathcal{F}}(p,r)$ and the ball defined by d_{e} by $B_{e}(p,r)$.

Then we have

LEMMA 2. Let F satisfy the following conditions:

- (i) \mathscr{F} is equicontinuous in Ω_1 .
- (ii) \mathscr{F} separates the points of Ω .

Then the topology $T_{\mathcal{F}}$ induced by $d_{\mathcal{F}}$ coincides with the topology T_{e} induced by d_{e} .

PROOF. We can easily show that $d_{\mathscr{F}}$ is continuous in $\mathscr{Q} \times \mathscr{Q}$ with respect to T_e . First we show that T_e is stronger than $T_{\mathscr{F}}$. Let p be any point of \mathscr{Q} . Since \mathscr{F} is equicontinuous in \mathscr{Q}_1 and hence in \mathscr{Q}_n , for any positive number ε there exists a positive number δ such that $|f(x)-f(p)| < \varepsilon/2$ if $d_e(p,x) < \delta$ for every $f \in \mathscr{F}$. Hence $d_{\mathscr{F}}(p,x) < \varepsilon$. This shows that $B_e(p,\delta) \subset B_{\mathscr{F}}(p,\varepsilon)$. So we have $T_e \ge T_{\mathscr{F}}$.

Next we have to show $T_e \leq T_{\mathcal{F}}$. So assume that there exist a point p_0 of \mathcal{Q} and a positive number ε_0 such that for any positive number δ holds $B_{\mathcal{F}}(p_0, \delta) \subset B_e$ (p_0, ε_0) . If there exists such ε_0 , then arbitrary ε satisfying $\varepsilon < \varepsilon_0$ possesses the same property, that is, $B_{\mathcal{F}}(p_0, \delta) \subset B_e(p_0, \varepsilon)$. So we may assume without loss of generality that $B_e(p_0, \varepsilon_0)$ is relatively compact in \mathcal{Q} . By the fact proved above that $T_e \geq T_{\mathcal{F}}$ the ball $B_{\mathcal{F}}(p_0, \varepsilon)$ is open. We may assume that $B_{\mathcal{F}}(p_0, \varepsilon)$ is connected. For, if for any p and positive number ε' there can be chosen a positive number δ' so that the connected component of $B_{\mathcal{F}}(p, \delta')$ containing p is included in $B_e(p', \varepsilon')$, obviously it holds that $T_e \leq T_{\mathcal{F}}$. Therefore we assume that $B_{\mathcal{F}}(p_0, \delta)$ is connected. Since $B_e(p_0, \varepsilon_0) - B_e(p_0, \varepsilon)$ is relatively compact and $B_{\mathcal{F}}(p_0, 1/n)$ can be assumed connected for every p_0 , and since p_0 and p_0 for every p_0 , from which we choose arbitrarily a point p_0 . The set p_0 is relatively compact in p_0 and therefore contains a subsequence

S. SATO

 $\{y_m\}$ converging to a point y_0 of Ω . From $y_m \notin B_e(p_0, \varepsilon)$ we have $d_e(y_m, p_0) \ge \varepsilon$. Consequently we have $d_e(y_0, p_0) \ge \varepsilon$. Because of $y_m \in B_{\mathscr{F}}(p_0, 1/n_m)$ we see that $|f(y_m) - f(p_0)| < 1/n_m$ for every $f \in \mathscr{F}$, which implies $f(y_0) - f(p_0) = 0$. This contradicts to the requirement (ii) such that there exists an $F \in \mathscr{F}$ satisfying $F(y_0) \ne F(p_0)$. Thus we proved $T_e \le T_{\mathscr{F}}$. \diamondsuit

We need some more preparations. Let Ω , Ω_1 and $\mathscr F$ be as before.

PROPOSOTION 3. Let F satisfy the following conditions:

- (i) \mathscr{F} is equicontinuous in Ω_1 .
- (iii) $\mathscr{F}(p)$: = $\{f(p): f \in \mathscr{F}\}\$ is bounded for some point p.
- (iv) \mathscr{F} is closed in $\mathscr{A}(\Omega_1)$.

Then for any different two points x_0 , y_0 of Ω_1 there exists a function $f \in \mathscr{F}$ for which holds $d_{\mathscr{F}}(x_0, y_0) = |f(x_0) - f(y_0)|$.

PROOF. We can choose a sequence $\{f_n\}$ in $\mathscr F$ so that

(*)
$$|f_n(x_0) - f_n(y_0)| > d_{\mathscr{F}}(x_0, y_0) - 1/n.$$

The requirements (i) and (ii) imply that \mathscr{F} is normal in Ω_1 in the strong sense, that is, any sequence of \mathscr{F} contains a subsequence which converges compact-uniformly in Ω_1 . Let $\{f_m\}$ be the subsequence, the limit of which we denote by f. Then (*) implies $|f(x_0)-f(y_0)|=d_{\mathscr{F}}(x_0,y_0)$. By (iv) we know that f belongs to \mathscr{F} . \diamondsuit

2. Distance d_F and n-convex domain

Let Ω , Ω_1 and \mathscr{F} be as in 1. In this section we assume (i), (ii), (iii) and (iv) for \mathscr{F} . In application the following requirement, that is stronger than (iii), is convenient:

(iii)' There exists a point o such that f(o) = 0 for every $f \in \mathcal{F}$. We prove

LEMMA 4. Let Ω , Ω_1 and \mathscr{F} satisfy (i) and (iii). Then for any compact subset K of Ω we have $\hat{K}_{\mathscr{F}} \subset \overline{B_{\mathscr{F}}(o,\rho)}$, where $\rho = \sup_{x \in K} d_{\mathscr{F}}(o,x)$ and $\hat{K}_{\mathscr{F}} = \{x \in \Omega: |f(x)| \leq \sup |f(K)|, f \in \mathscr{F}\}.$

PROOF. Since $d_{\mathscr{F}}$ is continuous in $\Omega \times \Omega$, $d_{\mathscr{F}}(o,x)$ is bounded on K. As $|f(x)| \leq \sup |f(K)|$ for any point $x \in \hat{K}_{\mathscr{F}}$, (iii)' implies

$$\begin{split} |f(x)| &= |f(x) - f(o)| \leq \sup_{y \in \mathbb{R}} |f(y) - f(o)| \\ &\leq \sup_{y \in \mathbb{R}} d_{\mathcal{F}}(y, o) = \rho. \end{split}$$

Hence we obtain $d_{\mathscr{F}}(x,o) \leq \rho$ which means that $\hat{K}_{\mathscr{F}} \subset \overline{B_{\mathscr{F}}(o,\rho)}$. \diamondsuit

Now we are ready to state our result:

THEOREM 5. Let Ω , Ω_1 and \mathscr{F} satisfy (i), (ii), (iii), (iv) and (v) $\overline{B_{\mathscr{F}}(o,\rho)}$, $\rho=d_{\mathscr{F}}(o,q)$ is compact for any point $q\in\Omega$.

Then Ω is n-convex.

PROOF. Let K be any compact subset of $\mathcal Q$. Since $d_{\mathcal F}$ is continuous, $\rho = \sup_{x \in K} d_{\mathcal F}(o,x)$ is finite and for some point $p \in K$ we have $\rho = d_{\mathcal F}(p,o)$. By assumption $\overline{B_{\mathcal F}(o,\rho)}$ being compact, $\hat K_{\mathcal F}$ is compact and hence $\mathcal Q$ is $\mathcal F$ -convex.

Let $\{K_{\lambda}\}_{{\lambda}\in{\Lambda}}$ be an exhaustion of ${\mathcal Q}$ by compact sets. ${\rho}_{\lambda}=\sup_{x\in K_{\lambda}}d_{{\mathscr F}}(x,o).$ Then $\overline{\{B_{{\mathscr F}}(o,{\rho}_{\lambda})\}_{{\lambda}\in{\Lambda}}}$ is also an exhaustion of ${\mathcal Q}.$ We take an arbitrary point $p_0\in\partial{\mathcal Q}$ and fix, and choose a sequence $\{x_{\lambda}\}$ of ${\mathcal Q}$ that converges to $p_0.$ We may choose x_{λ} so that $x_{\lambda}\notin\overline{B_{{\mathscr F}}(o,{\rho}_{\lambda})}.$ By Proposition 3 we can find an $f_{\lambda}\in{\mathscr F}$ such that $|f_{\lambda}(o)-f_{\lambda}(x_{\lambda})|=d_{{\mathscr F}}(o,x_{\lambda})$ holds. The requirement (iii)' implies $f_{\lambda}(o)=0.$ Hence we have

$$|f_{\lambda}(x_{\lambda})| = d_{\mathcal{F}}(o, x_{\lambda}) > \rho_{\lambda} = \sup |f_{\lambda}(K_{\lambda})|.$$

Since by (i) and (ii) \mathscr{F} is normal in the strong sense, $\{f_{\lambda}\}$ contains a subsequence which converges compact-uniformly in \mathcal{Q}_1 . We assume that $\{f_{\lambda}\}$ itself is convergent and converges to f holomorphic in \mathcal{Q}_1 . Then (iv) and (iii)' imply $f \in \mathscr{F}$ and f(o) = 0.

Let K be a compact subset of Ω . We can find an integer λ_0 such tha $K_{\lambda} \supset K$, $\lambda \geq \lambda_0$. We have then

$$|f_{\lambda}(x_{\lambda})| \ge \rho_{\lambda} = \sup |f_{\lambda}(K)|.$$

Letting $\lambda \to +\infty$ we obtain $|f(p_0)| \ge \sup |f(K)|$. K being arbitrary we conclude that $|f(p_0)| \ge \sup |f(\Omega)|$ and hence that $|f(p_0)| = \sup |f(\Omega)|$. By the following we see $|f(p_0)| > 0$:

$$|f_{\lambda}(x_{\lambda})| > \rho_{\lambda} = \sup_{x \in K_{\lambda}} d_{\mathcal{F}}(x, o) \geq \sup_{x \in K} d_{\mathcal{F}}(x, o) > 0, \ \lambda \geq \lambda_{0}.$$

Combining this with f(o) = 0 we see that f is non-constant. Since $p_0 \in \partial \Omega$ is

80 S. SATO

arbitrary, Theorem 14 in [3] implies that Ω is n-convex. \diamondsuit

An example of the domain considered in Theorem 5 is simply given by the polydisk in C^n , where we may take as \mathscr{F} the set of coordinate functions. Thus, the domain satisfying the conditions from (i) to (v) in Theorem 5 seems to be a generalization of polydisk.

Referencens

- [1] Kobayashi, S.: Hyperbolic Manfolds and Holomorphic Mappings. Marcel Dekker, New York, (1970).
- [2] Sato, S.: On equicontinuous families of holomorphic functions, Kumamoto J. Sci. (Math.), 9, (1973), 75-86.
- [3] Sato, S.: On the Nebenhülle of bounded domains, Kumamoto J. Sci. (Math.), (1980), 64-75.

Department of Mathematics, Faculty of Science, Kumamoto University