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Introduction

In [3] the author gave a sufficient condition for a bounded domain to be
n-convex. The conditions assumed there were somewhat complicated and restri-
ctive.

If a bounded domain £ in C" is convex with respect to a set & of functions
holomorphic in some neighborhood of 2, then, as is easily shown, £ is convex also
with res pect to # 11 ={f/|Iflla: £ € &, IfllaZ0}, | flla= sup | f(D]|. And &, is
equicontinuous in £. Under several conditions a distance d is defined on® from such
equicontinuous set and by the aid of 4 a kind of convexity is considered for 2, see
1. It is shown that this convexity is very natural and implies n-convexity of £.

A bounded domain £ is said to be #m-comvex if 2 possesses a fundamental
system of neighborhoods consisting of the domains of holomorphy and the open
kernel of 2 is equal to £, see [3].

The requirement (v) in Theorem 5 means that £ is complete in some
geometrical sense, and this circumstances are often treated in the theory of
hyperbolic spaces, see [1].

1. Pseudodistance d -

Let 2 be a bounded domain in C" and & a subset of &7 (2) the family of
functions holomorphic in 2. = (2) is endowed with compact-open topology. We
define a real-valued function d_(9, g) in 2 X2 by

d-(p,q) = fseug | (D] —Ffla].

LEMMA 1. If & is equicontinuous in 2, d-(p, )<+ for any p and p in 2.

PROOF. & is equicontinuous if and only if » families 5«"1-={ gic f 65"},

i=1,2,+--, n are all uniformly bounded on every compact subset of 2, see [2].

Applying this to the formula f(») —f(q) = Sc df where ¢ is a path from p to g,
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we obtain the required stimate. ¢

It is easily verified that the function d~ is a pseudodistance for a equi-
continuous set . If & separates the points of 2, then obviously d.- defines a
distance in £. In the sequel the domain £, is assumed to satisfy 2 C C#;, that
is, £, contains 2 as its relatively compact subdomain, and & is assumed to be a
subset of 7 (£,) and to be equicontinuous in £,. The restriction of & to @ is
denoted by the same notation & if there is no fear of confusion. It is convenient
to see under what conditions the usual topology, that is, the topology induced by
the Euclidian distance d,, coincides with the topology in £ induced by d_-.

We denote the ball defined by d_- by B(p, ) and the ball defined by d, by
B.(p. 7).

Then we have

LEMMA 2. Let & satisfy the following conditions:
(i) & is equicontinuous in 2,.
(ii) & separates the points of Q.

Then the topology T - induced by d_- coincides with the topology T, induced by
d.

PROOF. We can easily show that d~ is continuous in 2X £ with respect to
T.. First we show that T, is stronger than T .. Let p be any point of 2. Since
& is equicontinuous in 2, and hence in 2, for any positive number e there exists
a positive number § such that |f(x)—f(p)|<e/2 if d,(p, x) <b for every f€ & .
Hence d-(p, x)<e. This shows that B(p,0)CBs(p,e). So we have T,>T ...

Next we have to show T.<T.. So assume that there exist a point p, of 2
and a positive number ¢ such that for any positive number & holds B (po, 6) B,
(b0, 20). If there exists such &, then arbitrary e satisfying ¢<{e possesses the same
property, that is, Bs(po, 60 B.(ps, ). So we may assume without loss of
generality that B,(p,, &) is relatively compact in 2. By the fact proved above that
T.=T the ball B.(p,, ) is open. We may assume that B.-(py, ¢) is connected.
For, if for any p and positive number ¢ there can be chosen a positive number ¢’
so that the connected component of B, (p, &) containing p is included in B.(p, &),
obviously it holds that T,<T.. Therefore we assume that B +(p0,0) is connected.
Since B.(po, ¢0) — B.(po, ¢) is relatively compact and B_-(p,, 1/%) can be assumed
connected for every #, and since B.(p,, 1/%) G By(py, ), we have B (pe 1/7) N
{Be(po, e0) — B.(0, €)} #¢ for every u, from which we choose arbitrarily a point
%, The set {x,} is relatively compact in £ and therefore contains a subsequence
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{ym)} converging to a point y, of 2. From ym &B,(po, &) we have de(¥m, o) 2 e.
Consequently we have d.(3, po)=¢. Because of yn € B, (po, 1/n,) we see that
| fCym) —F(p) | <1/nn for every f €., which implies F(9)—f(p)=0. This
contradicts to the requirément (ii) such that there exists an F €.% satisfying
F(9)7#F(p,). Thus we proved T.ZT.,. <

We need some more preparations. Let 2, £; and & be as before.
PROPOSOTION 3. Let & satisfy the following conditions:

(i) & is equicontinuous in 2,.

(i) F(p): ={f(p): f €5} is bounded for some point p.

(iv) & is closed in sz (2)).

Then for any different two points xo, Yo 0f 2: there exists a function f € F for
which holds d (%, yo) = | f(x0) —f(30)].

PROOF. We can choose a sequence {f,} in % so that

(*) l fn(xo) —f'n.(yo) ‘ > d_g"(xo’ yﬂ) - 1/1’1.

The requirements (i) and (ii) imply that & is normal in £2; in the strong sense,
that is, any sequence of & contains a subsequence which converges compact-
uniformly in 2. Let {fx} be the subsequence, the limit of which we denote by
7. Then (%) implies | f(%) —f(30) | =d+(%.3). By (v) we know that f belongs
to #F. <

2. Distance d and n-convex domain

Let 2, 2, and % be as in 1. In this section we assume (i), (i), (iii) and
(iv) for & . In application the following requirement, that is stronger than (iiD),

is convenient:
(iii)! There exists a point o such that f(0)=0 for every fes.
We prove

LEMMA 4. Let 2, 2, and & satisfy (i) and (iii)'. Then for any compact
subset K of 2 we have K.C B. (o, p), where p= sup d-(0,x) and K,={xeg:
zC K
| F|Z sup | (K|, f €51,

PROOF. Since d, is continuous in 2X 2, d~(0,x) is bounded on K. As | fCx)|
<sup|f(K)| for any point x € K, (iii)’ implies
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[ )| = (%)= F)|< sup | f(3)— F(0)]
yeX

< sup d(y,0) = 0-
YER

Hence we obtain d_(x, 0)< p which means that K_.C B.(0,0). ©
Now we are ready to state our result:

THEOREM 5. Let 2, 2, and & satisfy (1), (i), (iii), (iv) aend (v)

B,-—(o,p), o=23d-(0, @) is compact for any point qEQ.
Then 2 is n-convex.

PROOF. Let K be any compact subset of 2. Since ds is continuous, p = sup
zC K
d (o, x) is finite and for some point p € K we have p=d-(p,0). By assumption

B~(0, 0) being compact, K- is compact and hence Q is & -convex.
" Let {K\}aean be an exhaustion of £ by compact sets. o.= sup d_(x,o0).
zC K\

Then m)})\gj\ is also an exhaustion of 2. We take an arbitrary point p,
€02 and fix, and choose a sequence {x,} of 2 that converges to po. We may
choose x, so that x & Em). By Proposition 3 we can find an f, € % such
that | fi(0) —fi(x) | =d (0, x) holds. The requirement (iii)’ implies f,(0)=0.

Hence we have

| Falx) I =d (0, %) > ox=sup| fL,(K,) |

Since by (i) and (ii) & is normal in the strong sense, {fi\}contains a subse-
quence which converges compact-uniformly in 2,. We assume that {f\) itself is
convergent and converges to f holomorphic in £,. Then (iv) and (iii)’ imply
f €% and f(o)=0.

Let K be a compact subset of 2. We can find an integer 4 such tha K,D K,
A=2. We have then

If)\(x)\)lgpz\:sup | ACRD].

Letting 2 — + o we obtain | f(p) | = sup | F(K)|. K being.arbitrary we conclude
that | f(po) | = sup|f(2)| and hence that | f(po)| = sup | f(2)]. By the following
we see | f(po)|>0:

| Al > oa= sup d-(x,00= sup d(x,0)>0, 1= .
TCKE) ng

Combining this with f(0) =0 we see that f is non-constant. Since Do €082 is
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arbitrary, Theorem 14 in [ 3] implies that £ is n-convex. <

An example of the domain considered in Theorem 5 is simply given by the
polydisk in C", where we may take as .# the set of coordinate functions. Thus,
the domain satisfying the conditions from (i) to (v) in Theorem 5 seems to be a
generalization of polydisk.
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