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§ 1. Imtroduction and results

In this paper we will compute Picard-Vessiot group of Appell’s systems of
hypergeometric differential equations (F), (Fy), (F,) and (F). We prove also the
infiniteness of monodromy groups of (F3) and (Fy). To begin with, we will
explain Appell’s systems. These systems are defined on the projective space PZ
and given by equations

(7. {0(6—!—6’—!—7—1)z—x(0+0/+a)(0+8)z=0
0'C0+0'+r—1)z2—y@+0+a)(0 +F) z=0,
P, {0(0+r—1)z—x(ﬁ-i—ﬁ’-f—a)(ﬁ—i-ﬁ)z:O
00" +7" =1 z—y(0+6' + )0 +F) z =0,
F { 00 +0'+7—1)z—x0+a)6+B) z=0
0'@+6'+7—1) 2—30'+ )0+ B) z=0,
00+7r—1)z2—x(0+0+a)(@+0'+8) z=0

(F4){ eal / / /
00 +r"—1D z—y0+0+a)(@+0 +8) z=0,

where 6= x %, 6= yw, (%,¥) € P? being inhomogeneous coordinates, and Greek

letters «, B, 7, -+ are complex parameters. Each system is of Fuchsian type;
that is, every solution is regular singular at the singular set S: S consists of the
line at infinity and {x=0} Y (=1} Y {y=0} Y {(y=1} Y {(x=9}, x=0Yi{x=1)Y{y=
0 Y{y=1}Vi{z+y=1}, x=0Y{x=1}V (y=0}V{y=1}Y {x+ y—2y—0} or {x=0}
Yi{y=0)Y {1—2(x+3)+ (x—3)?=0) for (FD, (Fy), (Fy) or (F,) respectively. Also
we consider the system called (Fp), which is a generalization of (F) given by G.
Lauricella:

(Fp) 0,01+ +0,+7—1) z—x;(6,+ - -+ FO+ad)(0:+B)z=0 1<i<n),

where ﬁi=x172—_, (%, -+, x,) € P". This system is again of Fuchsian type and its
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singular set is the union of U {xi=0}U{xi=1}U {x;=%;} and the line at infinity.
1 i 4,7

Since (Fp) is (F,) when n=2, we will not mention (F)) in the following. S0 (Fy)
denotes one of (F, (F3) and (Fo).

By k we denote the order of each system, which is n+ 1 for (Fp) and 4 for
others. The monodromy representation of the fundamental group nl(P"——S)(n———'Z
for (Fy)) has values in GL(k, ¢). Its image, the monodromy group, gives an
abelian aspect of the system.

The Picard-Vessiot group of the system is, by definition, the automorphism
group of the solution space over the coefficients field which is, in our case, the
rational function field of n variables. These are algebraic subgroups of GL(E, C).

From now on we denote by (F) oneé of systems (F;) and (Fp), by I'(resp. I'is
I'p) the monodromy group of (F)(resp. (F, (Fp)) and by P(resp. P,, Pp) the
Picard-Vessiot group of (F) (resp. (F, (Fp)).

The fundamental result about the Picard-Vessiot group is the following: If
the system of linear differential equations is of Fuchsian type, then the monodromy
group is 7 ariski dense in the Picard-Vessiot group. Therefore, since every system
we are considering is of Fuchsian type, the monodromy group I is Zariski dense
in the Picard-Vessiot group P. So, to compute P, it is desirable to know the
structure of the monodromy group r. TFortunately, we know generators of I'
explicitly. E.Picard and T. Terada gave generators of I'p ([41, [81). Recently
E. Nakagiri, K. Takano and J. Kaneko computed generators of I'; ([31,L61, [2Mh.

Making use of these generators, we can prove the following

THEOREM 1. When complex parameters take general values, the Picard-Vessiot
group P is equal to the Sfull general linear group GL(k, .

Concerning the monodromy group itself we prove
THEORME 2. If Iy, i=2, 3, 1S irreducible, then it cannot be finite.

We should remark here that I'p can be a finite irreducible group when

parameters take special values and n=1,2,3 ([5]1). But, so far, the author does
not know whether I'y can be finite or not.
We prove Theorem 1 in Part I and Theorem 2 in Part II.

Part 1. Picard-Vessiot group

§ 2. The Picard-Vessiot theory of linear differential equations is developed by E.R.

Kolchin extensively. But we know few examples whose Picard-Vessiot groups
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are computed. Professor K. Aomoto advised the author to calculate these groups
for the systems (F) and conjectured Theorem 1. Really he raised a problem to
characterize systems whose Picard-Vessiot groups are equal to the general linear
group. At this stage, the author does not know why Theorem 1 holds, i.e. what
kind of structures of the system assure this result.

The idea of the calculation of Picard-Vessiot groups is very simple which
came to our notice in the conversation with Dr. S. Mukai. Nameiy, take one
generator 7 of the monodromy group I. Then, in general, the group {+*; x¢ z)
has a continuous group as its Zariski closure. Since we know r explicitly, it is
easy to get the infinitesimal génerators of this group. And, obviously, these
infinitesimal generators are contained in the Lie algebra of the Zariski closure of
I'. Then we see that the Lie algebra containing these generators is the Lie algebra
of the general linear group. i

There is one more remark. In the following we deal with, instead of I” itself,
a certain subgroup of I". Let z be a solution of the system (F). It is a function
of (%% or (#,..., %,). If we consider z as a function of x or x, only, then z
satisfies an ordinary differential equation of the same order with respect to x or
x. If we denote by I the monodromy group of this equation, then 77 is a
subgroup of I" which we would like to consider. For the systems (F;), i=2, 3,
and (Fp) we will prove the following which is stronger than Theorem 1.

THEOREM 1. When complex parameters take general values, the Zarisk; closure
of the group I'y, T'y or I} is equal to the general linear group GL(E,C).

REMARK 1. Let K be the field over the rational number field extended by
exponentials of 2r: times of complex parameters: exp2mic), exp(2mip), . ... .
Then I' is contained in GL(%, K) and the Zariski closure over K equals to GL(%, K).

REMARK 2. It is known that the equation obtained above from the system
(Fp) restricting variables to x, is the equation of Jordan-Pochhammer type:

(Fo) 2™ — 1 (2™ + u(u+1) /24 ()P . ...
JP _¢<x)z(n)+ (,u + 1)¢/<x)z(n—1)_ . =O
» n+1
Here, (0 == a)(x—a)... (r—an.0), ¢()/$(x) = 21 a;/(x—ap), a,=0, a,,,=1,
J=1 .
a;=the value of x; which we fixed, 2<i<m; “1=51+"'+3n—,r+1, DR

a;=—0;_1+1, 2<i{<#, and py=7r—a—1—n.
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§ 3. Generators of the monodromy group

Since the proof of the above Theorems is given by calculations, we list gene-
rators of I" in order to do that. I', and I'; are generated by 5 generators and I, is
generated by 3 generators as follows. The expression e(a) =exp(2ria) is used.

T,

[l

T,=

S, =

S;

Il

e(-7")

(I (3D
M1 0 0 0 1 0 0 0
0 e(-r) 0 e(-p)-1 0 e(-7") e(-8)-10
e(-B)-10 e(-7) 0 *“lo 0 1 0
K 0 0 1 ] e(-8)-1 0 0
1 e(-a)-1 0 0 1 0 1-e(-a) 0
0 e 0 .0 . 0 e(6+B) e(d+F)A-e(-p)) 0
0 1-e@+f-r> 1 ol ‘|o o e(o+8-1") 0
10 1-e(8+B-r) O 1] 0 1l-e(z'-a) -e(z'-ad(1-e(-8)) 1]
10 0 1l-e(-a)
0 e+ 0 e(o+p(1-e(-8))
0 1l-eG-a) 1 ~e(r-a)(1-e(-B))
) 0 e(s+8-1)

where 6= —a—pB—F —7+7.
) (3
[e(-R) 0 0 0 _
0 e(-a) 0 e(-a)(1-e(-p))
e(-a)(1-e(-B)) 0 e(-a) 0
L0 0 0 e(-B)
re(-A) 0 0 0
0 e(-a) e(-a)(1-e(-f)) 0
0 0 e(-f) 0
Le(-a)(1-e(-A)) 0 0 e(—a) |
1 e(f+a+a) 0 O 1 0 1-e(d+a+d) 0
0 e(® 0 o0 s 0 e(6+8)  e(6+f)(1-e(-F)) 0
0 1-e@+d) 1 o o 0 e(o+dl) 0
|0 1-e(d+a) 0 1 0 1-e(d+a+f) -e(d+a+r@)(1-e(-f)) 1
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1 0 0 1-e(d+a+d)
. 0 e(6+p3) 0 e(0+p)(1-e(-B))
S0 1-e(erd+B) 1 -e(s+d+B)(1-e(-B))
0 0 0 e(0+a)
where d=a—d—p—F +7.
(ryo (6h
(1 0 -(1-e(-a) 01 1 1-e(-a) 0 0
e 0 1 1 0 U, = 0 e(-1) 0 0
0 0 ~e(r+7'-a-p) 0 a b e(-r) ¢
lo o 1 1] 0 o0 0 i
M1 0 0 1-e(-a)
0 1 0 0
U, =
a Jd  el-y) b
K 0 0 el —%") |
where

a=—10—e(—B)A—e(re(r YA —elr+1 )7,
d=—U—e(—BA—elrNel(r)A—elr +1' )7,
b=0—e(—a))A—e(—Pelr+1A—elr+7)7,

¢ =—U+e(rD—e('—ad—e(t' =D —elr + 1) +elr + 2 —a—B)(A—e(r + 7)),
d=—+e(m—elr—ad—e(r—R —elr +1)+e@r+71' —a—B)(1—e(r+1)).

T (7D

I'p has n(n+3)/2 generators. Here, instead of listing these generators, we
write generators of I'p, the monodromy group of (Fyp) in Remark 2. I') is gene-
rated by following n+1 elements.

-1 -

8= “(-g)e--- _(1_5j~1) &€ ‘50(1‘5j+1)"' _50(1_5n+1)
1




90 T. SASAKI

where eo=e(r —a), e;=e(fi+ ... +B,—71) and ¢;=e(—B;_, 2 F<n+1.
REMARK 3. To compute generators explicitly, it is necessary to fix a funda-
mental set of solutions. In that occasion, we assumed the parameters of the

system satisfy the conditions below:

(1) 7.7, vr—a v"—a, r+7'—a are not integers for (F,),

(2) a—B, d—f, r—a—d, r—d —B, r—a—f are not integers for (F,),
(3) 7,7, r+7' are not integers and y#%y for (Fp,

(4) & is not equal to 1, 07 <n+1 for (Fyp).

§4. Case (F,) and (F,).

The systems (F,) and (F;) have similar natures (see §9) and, since the proof
for (F,) is the same as that for (F,), we deal with (F,) in this section. Let us
denote by G, the Lie algebra of P,. _

First, note that I';(see § 3) is generated by T4, T, and T..

By direct calculations, under the assumption (1), we see

1 0 0 0

0 e(-r)" 0 a
Ti= L

an 0 e(‘T) 0

0 0 0 1],

where a,=((—B)—1DA—e(—1)")/A—e(—7)). If we assume
(5) e(r) is not of finite order,

the Zariski closure of {T7; n € Z} is an one-parameter group generated by

1 0 0 0
0 ¢ 0 a(®)
a(l) 0 t 0

0 0 0 1,

where a(®)=((——1)A—2)/(1—e(—71)). Hence its infinitesimal generator is

contained in G, and it is equal to

o
|

, a=Q1—e(~BN/A~e(~7.

S Q8 © o

0 0
1 0
0 1
0 0

o O 8

R

e R

i Ty T P TR

e
Bl
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By the same method for T, we get another element in G;:

0 b 0 0
g 1 " " b=1—e(—a))/A—el),
Y = 0 c 0 0 ) 4 =<e(6+ﬁl—‘r/)_1)/(1—6(6))y , (:'
, ¢ =(+B—1)—1)/A—e(®),
0 i 0 0 :
assuming

(6) e(s) is not of finite order.

The closure of {T?; n€ Z} is a two-parameter subgroup of P,, whose elements
are

0 d,
¢ d,
0 s

a, a,

o O o =
= o o o

where di=0—e(v' —a)) A —8)/(A—e3+5)), d=_1—e(—a)A—s)/1—e(6+5 —
), di=1—e(—F))(t—5)/A—e(—1")) and di=1—e(v'—a))(1—e(—B)) (e(6+
B)=/A—e(—B)) 1—e(G+ B+ A—e(—B8)) {((1—e(—a))s —(e(6+F —v)—e(s
+h—a)+e(r' —a) —e(—a))}/(A—e(— 1)1 —e6+ 5 — ).

Here we assumed
(7) e(@+F —7") and e(6+ ) are not of finite order.

Then we obtain two infinitesimal generators:

[o 0 0 0]
4 0 1 d 0 d=0—e(—p)/A—e(—71"),
0 0 0 d=(e(r'—a)—1)/(A—e(s+8)), !
| 0 d da 0 i‘
(o 0 b 0
. 0 0 —dc 0 ‘
0 0 c 0
Lo 0 —ad'b 0

Now we show that the Lie algebra G generated by these four elements X,
Y, Z and U is the Lie algebra of GL(4, C). In the following E;; means the matrix I
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whose entries are zero except (Zj)-entry which is equal to 1. Putting V,=[X, Z]
+Z, we have [X, V1= —2a(1+ad)(d'E,,+E,). So, if

(8) a(l+ad)=ale(—p —e(—r)A—e(d+B+A))/A—e(—71)) A—e(G+5)
#0,

the matrix V,: =ad'Ey+E, belongs to G. Then we see Vi:=E,+dEy=V,
+al[Z,V,]. Hence V, is an element of G. Since Z=V,+dV, where V,=FE,
+dEg, V. is also an element of G, if

(9) d#o.

Using the identy [X, Z]=—ad(dE,+E,) (mod. V, Vi, V), Vs =dE,+E,
belongs to G by (8) and (9). Putting Vs:= [Y, V,] —V,—dVs we have [Y, V]
=—(d'b+() (bE;,—E,+ cEy) (mod. Y). This means V;: = bE,—E,+cE,, €G if

10) db+c=Ce(—1)—e(—BD)) A —e(y'—a))/(1—e(d))A —e(—7))F0.
Since [Vs, V;]=d'bE,, Ey, €G if
(11) db#o.

Then, considering ¥ and V,, we see E,, € G and bE,+cEy;=: Vg €G. Hence, by
(11), E,;, E; and E, € G. The identity [E,, X] =aFE,, means E,, € G.

Now Vy: = aE;+E;;=X (mod. E,,, E,,). Making a bracket of Vy with Vs, we
see (ab+c)E, € G which yields £y, € G, if

(12) ab+c=Ce(—71)—e(—)A—e(r —a))/(1—e(d))(A—e(—71)) 0.

Define Vy: =b0FE,;+ cE;; which is equal to U (mod. E,, E,;). From Vs, V,, and E,,
we obtain a(adb+c)E;. Therefore E; € G. Summing up above calculations we see
E;; belongs to G except E), and E,. But G, is a Lie algebra containing C, it
contains E), and E;, also and finally we see that G, is the Lie algebra of GL(4,C).
This proves Theorem 1’ for the system (F,) under the generality conditions (1)
and (5)—>12).

§5. Case (F))

Calculations necessary to prove Theorem 1 for the system (Fy) are carried
out analogously as in the previous section. Let G, be the Lie algebra of Py
Assume (3) and the following

VAN PR R
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(13 —e(r+r'—a—p), e(—7r) and e(—+') are not of finite order,

Considering the closure of the group generated by U, (resp. U,, U,) we get an
element X(resp. Y, Z) in Gy

(o 0 d 0 0 dl 0 0
0 0 3 0 0 1 0 0
X= ¥
0 0 1 0 al bl 1 cl
0 0 . 0] 0 0 0 0
ro 0 0 am]
0 0 0 0
Z = / /
am cm 1 bm
LO 0 0 1],

where d=1—e(—a), k=1/(1+e(r+71' —a—B)), I=—1/1—e(—7)) and m—= -1/
I—e(—7).

Putting V,=[X, Y] —X, W,=[X, Z] — X, we define new elements V.= {[X,V,]
—X—=V.)/2k+fl X and W,={([X, W,] — X— W,)/2k+ f'mX, where f=ad—b—c=1
—e(y' —a—pR), f’=a’d—b—c’=1——e(r—a—ﬁ). Then V,=~d(+1)Es+fl Ex+E,
and W,= —d(m+DE;+E;+f'm E;. Therefore the element {X-+ BV ,+EW,} /E(
+m+1) which is equal to —dE;;+ (1—e(r +1' —a—RB)) Ex belongs to G, Let us
denote this element by V and set e=1—e(r+7' —a—p). Making brackets of ¥
with V' twice we get an identity [[Y, V], V] = elY,V] + 2d(e—ald) E,. Now
assume

(14 de(b+e)=de(l—e(r+71' —a))A—e(r+1' —B))/A—elr+ 7)) 0.

Then, since —ald=», E;, belongs to G,. Hence, by this assumption, Ey;, E,, and Fy
belong to G,.

Calculations remained are easy. By making the bracket of ¥ with E; we
have S;:=aFE;,+bE;;+cE;y, 1<i<4, and Ss: =dlE,+ E,,. Also, from Z, we have
T::=d'Eu+cEy+bEy, 1<i<4, and Ts: =dmE,+Ey. Since [S, Ts] = (adm--
O)E,, and [Ty, Sil =(d'd+)E,, if

(15) adm+c=1—eG'—a)) A —e(r' —B))/(e(+') —1%0,
ddl+cd=10—e(r—a)) (A —e(r —B))/(e(y) —1) %0,

we conclude that E,, and Ej, belong to G,. Now, from Ss and T, E,, and E, also
belong to G, Then, considering S; and T;, we can see finally that all E;; belong
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to G, This proves the theorem under the generality conditions (3) and (13)-
(15).

REMARK 4. In the case (Fy), the Zariski closure of I'j, the group generated
by X and Y, is not GL(4,C), but it is a group of dimension 5.

§6. Case (Fp)

The method is the one employed in previous sections. Denote by G the Lie
algebra of the Zariski closure of I'p. Letting a;=¢; — 1, we see

ro1

I3
gi= a;by, cee @by (Eosj) Soai+1bk cer g0Qn iy
i

Here, by=(1—(ee;)®) /(1 —eoe;). Assuming

(16) eej, 1< j<n-+1, are not of finite order,

we have elements X; in G:

=1 n+1
.X-,;=C1; kz akEik_l'Eii_}"CikE EOakEilw
=1 =1+1

Where C; =1/(EQE7; - 1).

We prepare an easy lemma. For the matrix ¥ = > d*E.. let Y’ be the
matrix 3 d*Ey. o '

LEMMA 1. Let Y=Sd"E;, Z=¢"E, and assume i#j. Then [Y,Z]=

d’Z'—e'Y’.
Using this lemma we have o
an [X;, Xl =€oai+1CiX§+;‘aiCi+1X::+l’

and we see

SRSt ATy
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€ X1 =Ci1 X+ Cis(@ic; =1 E;;+c;(1— 0@ +1C;+1) Eii 1,

CinXi™ =X+ Coi(1— @€ ) Evypi + ¢ieo@iaiCis1— 1D Espginn
Putting X“-'H: =X, Xi11] — e0@s 161X+ aic: X, We see
(18 [Xi,Xii01] =2e0a:4,0: X5 1 (mod. X;, Xizir).
LEMMA 2. Let us assume
A9 epciar #0, 14, E<n-+1.
Then X;, 1<i, k<n+1, belongs to G.

PROOF. For k=ix1, X;., and X!™' belong to G by (17) and (18). Lemma 1
shows that the bracket [X, X?:.] is the linear combination of X:., and X¥ with
non-zero coefficients by the assumption (19). Using this fact we can prove this
lemma by the induction on |2 — i].

LEMMA 3.  Determinants of principal minors of the matrix CXyons ' XD
are not zevo for general values of e and ej, IS j<n+1.

PROOF. Generalities mentioned are stated in the following. We prove this
lemma for det(*X,, ..., *Xni). It is seen that this determinant is equal to the
determinant p,,; (bs, ..., b,,;, &) of the matrix

Fl » €0b2 egbg """ 60177”_1_
b, 1 gofy  sweems S
b, b 1 ‘

L b, b, B,  wissus 1 I’

where b;=a;¢c;=(e;—1)/(e0e;—1). If we denote by $.(bs ..., byi1s c0) the deter-
minant of the minor (2,..., n+1) of this matrix, we have

pn+1(b17 e bn+1: 50) =pn<b2’ e bn+1’ 50) =+
b1{(1 —50b2>- . (1 = s0bn.+1> _pn(bz, ) bn-_}-lr €_0)} .

This means that p,.; (b, ..., b,.;, &) cannot vanish when ¢, takes a general value
for fixed values of ¢ and ¢;, 2<j<n+1. Then, by induction, we see that det (*X,,
..» "X,.1) is not zero generally. For minors the proof is carried out in the same

way.
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Now we can prove Theorem 1’ for (Fp). In fact, we can conclude by Lemma
2 and Lemma 3 that every E;;, 1<i, j<n-+1, belongs to G, i.e. G is the Lie
algebra of GL(n+1, C). The generality conditions are (4), (16), (19) and the
condition that all determinants of principal minors of the matrix ‘X, ..., ‘X,.0)

are not zero.

Part 11 Infiniteness of monodromy group

§7. In this part we will prove Theorem 2. The proof is due to the simple fact
that every finite group in the general linear group has a non-degenerate hermitian

invariant form. In fact, we prove
PROPOSITION 1. I has generally no non-degenerate invariant form.

Theorem 2 for (F,) follows immediately from this proposition. The case (F,) is

proved making use of the case (F).

§8. Case (Fy)
For the sake of simplicity we set d=1—e(—8—f'+7). By the form of each

generator we see easily
LEMMA 4. I, is reducible if d=0.

LEMMA 5. If I', is finite, then parameters a, &, B, B and r are veal and

rational.

Now let us look for a non-degenerate invariant form A under [, assuming
that parameters are real. A is a 4X4 nonsingular hermitian matrix (a;;) such
that SA® S=A for all elements S in I;. Let S; be generators of I'; as listed in
§3. We denote by (i7); the equation: (ij)-component of S;A’S; —A=0, 1<4, j<4,
1<%<5, which we do not write here, because it can be computed by the table in
§3.

Hereafter we assume d# 0. Equations (Z7);, 1<i, j<4, can be solved as
follows

an=~1—e(8))a./d, = (e(8) —e(—aDay/d,

(20)
ay=(e(8) —e( ‘—a‘))alz/d: an=e(B+ B/ —7)as.

Since det A#0, we have

(21) a,7#0.
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By equations (14)s and (12),,

(22) day=—1—e(0+a)) ay
(23) (A—e(Bay=((p—a)—1) Q3.

Similarly by equations (13); and (12),,

(24) dag=—1—e(0+a)ay
@5 _e(ﬁl>)axs = Ce(Bl - al) —Day,.

LEMMA 6. (1—e(0)((1—e(+a))=0, (26)
(1—e(@))A —e(@+a))=0. @n
PROOF. The equation (12)s is
e(—0— P {an+das+ A —e(@)(ay+daw)} =au.
Substituting (20), (22), (23) in (12)s, we have
(A—e(—=)A—e(d+a) a,=0.

By (21) we have (26). Similarly by (12),, using (24) and (25), we get (27).

LEMMA 7. e(d) =1.

PROOF. Assume e(6)#%1. Then, by (26) and (27), e(6+a)=e(s+d)=1.
Hence, by (20), (22) and (24), axy=a,=a;=au,=0. Substituting these values in
(13)s and using (23), we have ay=ay,. Also, by (14),, anw=e(f+ B —1)a, Since
a,; 70, we have e(8+ 8 —7)=1. This means d=0, contradicting the assumption.

PROOF OF PROPOSITION 1. Obviously this follows from Lemma 7.

Now we can prove Theorem 2 for (F,). More precisely we have

THEOREM 2-1. I is not finite if d=-0.
PPOOF. Lemma 7 means that
-d 0
1 0
1-e(o+a!) 1
1-e(6+a) O

o o o +~
= o O O
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If I, is finite, S; must be of finite order. But it is not of finite order if d# 0.

REMARK 5. Continuing above calculations, it is seen that I'; has the following
invariant form when d(1—e(B))(1—e(f )0 and e(d)=1:

ie(-a-dYEEd id ie(-aFd ie(~a)kd
-id 0 i(l-e(-a))  i(l-e(-a))
-ik'd -i(1-e(a)) i(l-e(-dDFE ie(-a)d
~ikd -i(l-e(a)) ie(-&)) i(l-e(-a)k

wherei=1/—1, k=(e(a—B) —1)/A —e(—B)), ¥ =(e(d =) —1)/(1 —e(—p")). The
determinant of this matrix is (1—e(—a—a/))(1—e(Z))(A—e(a))A—e(—B—F))/
(1—e(—PR))(A —e(—p)) which is generally non-zero.

§ 9. Ca-se (Fz)

First we note that any solution of (F;) can be represented by solutions of

(F,). Precisely we have

PROPOSITION 2. ([11) Every solution of (F;) with parameters (a, &, B, B> 1)
and variables (%,y) is writien as a linear combination of solutions of (F,) with
parameters (a, B, B's 7, v') and variables (1/x, 1/v), whose coefficients are in C[x72,
22, 9y, v B, (a, B, B, 1, 1) are given by eqations

(28) a=B+pf —r+1,8=8, =8, r=B—a+1, y'=f - +1.

By the same way as in § 8, we see
LEMMA 8. I is reducible if e(a) 7= 1.
LEMMA 9. If I}, is finite, parameters o, B, B, v or ¥’ are real and rational.

With these lemmas Theorem 2 for (F,) follows from Proposition 2. We will

prove
THEOREM 2-2. I, is not finite if e(a) # 1.

PROOF. Assume I, is finite. Then all solutions of (F,) are algebraic, because
(F,) is of Fuchsian type. Hence, by Proposition 2 and Lemma 6, every solution of
(F;) is also algebraic, i.e. Iy is finite. Then, by Theorem 2-1, e(@-i—@’—z):l.

This is equivalent to e(a) =1 by (28), contradicting the assumption.
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REMARK 6. Proposition 2 menas that (Fy) and (F,) are the same in a function
theoretic aspect. But, as differential equations, they are different. Compare Pro-
position 1 with the next

PROPOSITION 3. T3 has generall Y a non-degenrate invariant form, if parame-
lers are veal. Moreover if e(B), e(8) and e(d) are not equal to 1, the following
matyix is the invariant form

g g -p'q -bgq
e(a+d)gq 1 -e(r'-fdr  -e(r-p)7¥
-e(r-Pplq -7 P'r e(r-fgq
-e(y'-pDpg -7 e(z'-pNg  pr

where p=(1—e(r))/(1—e(B)), p' =1 —e('))/(1—e(B)), g=0—e(—a)/A—eld),
r=U—e(—a—B+7r))/A—e(®) and ¥'=1—e(—a—F +1)). The determinant of
this matrix is equal to sinwe sint(a—7r—71") sint(a—r71) sinn(a—71") {sinn(f—71) sinx
(B'—7")/sin nB sinnf sinty sinzy')%.

§10. Reducible Case

In the above two sections, we proved the monodromy group I} and I3; are not
finite if it is irreducible; note Lemmas 4 and 8. Thus they are finite only if
reducible. But, doing careful calculations, we have

PROPOSITION 4. T ahd Iy are not finite under the conditions (1) o (2)in §3.
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