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Summary

There are some results dealing with statistical problem in the presence of
the restrictions on parameters. However, it seems that there are no papers which
discuss the complete class in the statistical estimation problem under some restric-
tions by inequalities so long as I know. Our aim is to show that the class of
estimators satisfying the same inequalities as that of paraméters is essentially
complete.

1. Introduction

Suppose that X is the sample space of the observed random variables. 4 is a
o-field of subsets of X and {Py; 6 € ®} is a family of probability measures on A.
Here it is assumed that @ is an open and convex subset of a p-dimensional Eucli-
dean space and C is the Borel o-field on 6. Let p(x; 6) designate the probability
density function of P, with respect to a s-finete measure x on 4, for which it is
assumed to be C-measurable for each x € X.

As we are interested in the estimation of a parameter §, we may suppose
that the action space Y is identical to the parameter space 6.

Moreover, assume that the loss function is L(f, y)=(y—0) M(y—6) where
(9—0)'=(9—0y, -+-, 9,—0,) and M is a known pXp real symmetric positive-
definite matrix. In the sequel, we consider the estimation problem in which there
is the restricted condition on parameters so that § belongs to the set

@® F={0€0: fi®)=<c;, i=1, 2,---,k)

where £ is a given positive integer, f;'s are convex and continuous real-valued
functions of 6 and c¢;’s are constants.

Since the loss function L(6, y) is convex in y for each 6, we may only consider
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the class D of non-randomized decision functions, i. e., D={d; d: X—Y, measura-
ble} (see Blackwell-Girshick, p. 294). The risk function of & € D is defined by

) 76, = ; LB, (%)) p(x; 6) p(dx).

For a given ¢ € D, 7(0, ) is considered a function on O, which is C-measurable.
Let & be the set of prior probability measures on (6, C). Then the prior
risk of ¢ with respect to §€ X is defined by

@ r(§, &)= g’ 7(0, ) £(dO).

We donote the class of Bayes decision function by B.
Let 5,= (&€ &; »(§, 6)< oo for some o €D} and B,={6€D; d is Bayes for some
&€ 5. A sequence {6,) of randomized decision functions is said to converge reg-
ularly to a randomized decision function § if for every u-integrable function f(x)

and every bounded continuous gy

lim §I ; F(Dg(y) 8,(dy | %) pldx)

7n—>00

=§ §, FCx) g 8(dy | %) n(dx).

From LeCam (1955) the closure of B in the topology of regular convergence
is an essentially complete class. If 6, € D converges regularly to 6 €D, we have
that 8,(x) converges a. e. to 8(x). Accordingly, the closure B of B in the topology

of convegence a. e. is an essentially complete class.

2. Complete class theorems

In order to achieve our aim, one theorem and some lemmas are prepared.
THEOREM 1. B, is essentially complete.

PROOF. Let B, be the part of B which excludes those ¢'s with infinite risk.
Then B, is essentially complete because B is. Let € B, i. €., 0 € B and r(6, H<
co. Then there is a sequence (5,) of B such that d, converges regularly to ¢ and
78, 8,)< oo for all . In fact, for the regular convergence of (6,) to 8, we have
that Lim (8, 0,)=7(0, )< oo for every 0 (see Farrell). Hence there is a £, € =

n—rc0

such that 8, is Bayes for &, and 7(&,, 0,)<oo; that is, &, € B,. This shows that
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there exists a sequence {6,} of B, such that é, converges regularly to ¢; that
is, 6 € B, Hence B;CUB, This is the desirable result because B, is essentially
complete.

We denote by Dy the class of all estimators ¢ which satisfy the inequalities
fi(a) g Cis i=1’ 25 ttcy k-

LEMMA 1. Bo CDF-

PROOF. Due to Girshick and Savage, é € B, is given by
(©Y) 0(x)= 7§ 0&(db | %) a. e.
F

for some ¢ € 5.

From Jensen’s inequality, we have

fi(a(x>)=fi(§ 0¢(do | %))
< ; fi(6) £(db | x)

6 : =

for =1, 2 ---, k. This shows Lemma 1.
LEMMA 2. Dp=Dj.

PROOF. Let 6(x) be any element of Dp. Then there exists a sequence {8,(x))

in Dr such that 9,(x) converges a. e. to d(x). Since f;(0,(x))=<c; for all » and f;

is continuous for i =1, 2, ---, &, it is clearly implied that £;(6(x))<¢; for =1, 2,
..y k'

The following theorem is our aim.
THEOREM 2. Dy is an essentially complete class.

PROOF. From Lemma 1, B,CDy. Hence B,CDy. Hence, from Lemma 2, B,
CDp. This shows Theorem 2.

3. Examples

EXAMPLE 1. Let X,, X, --- X,, be independent and identically distributed
random variables with an unknown mean §. When it is known previously that

ea=<0<b (a=—c or b=+ x may be permitted), we consider the estimation
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problém of §. Since the restriction a <0 < b can be written as follows: Let fi(6)
— —p and f,(0)=0, and let e;= —¢& and ¢,=b. Then F= (g, b]=1{0; fL®) =c1 and
f@=cs}.

Since both fi and f, are convex and continuous in 6 €[a, b] we can apply
Theorom 2 to this problem.

We can directly have from

a SZ 919(55, 0) E(dﬁ)
Hg(x) Sz ( . ) ( ) and (Z_ﬁ__b

that a<8:(x) =b.

EXAMPLE 2. Let X, and X, be independent random variables with means 6,
and 6,. Under the restriction 62+ 63 <d (aisa positive constant), we considdr

the estimation of 6, and 0. Such a restriction can be written as follows.
Fe (=00, 6,): 05+0:=a’)
=105 fr (65 0)=0.— Ja@—6 <0
and 7,005, 8= —02~ J@—0 <0

We can easily check the conditions which f; and f, must satisfy.
1t is directly shown that Theorem 2 can be applied to this problem. Indeed,

i ; g, p(x; 6) £(d0) A ; 9, p(x; 6 £(d0)
o I Sl e
§ p(x; 0) £(dO) ane o ; p(x; 6)E(dO)

~

6,= dé

where x= (%3, %)
From Schwarz's inequality, we have

<§ 6, p(x; 6) £(@NY* + (% 0, p(x; ) £(d’

o A2
G5 ECDECD]

[

§ 62 p(x; 6D6(dO) + § 6% pCx; 6) £(dB)
< _E,/F’_’//

§ plx; 6) £

F
; @ + 63 plx; 0) £dO)
o § pCx; e

<
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EXAMPLE 3. Let X, and X, be for as Example 2. We suppose that there is
an order restriction ¢ <0, <6,<b (¢= — o or b=+ c may be permitted). This
restriction can be expressed using functions f,(6;, 0,)= —0,, f.(6; 0,)=0,—6, and
f3(05, 6,)=0,. That is,

F={0=(0, 0,); a<6,<6,<b)
={0; f1(0) < —a, f2(60)<0 and f,(6)<5}.

It is easily seen that f}, f, and f, satisfy the conditions.
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