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In [8] we treated Hutchinson’s equation with diffusion
(1) U=daU+a(1—U(—1)/K)U in (0, )X 2

subject to zero Neumann boundary condition, where « = 9/6¢ and £ is a bounded
domain in RY with smooth boundary 6%, and considered the Hopf bifurcation
and its stability in order to obtain a stable spatially inhomogeneous temporally
periodic orbit from ecological and mathematical view points. But in [8] we could
obtain only a spatially homogeneous temporally periodic orbit for (1) with zero
Neumann boundary condition as the primary bifurcation when « varies in a
neighborhood of 7/2 as a bifurcation parameter. We did not there consider the
effect of the magnitude of the diffusion constant d and so fixed d. Recently, Y.
Morita [5] proved that this spatially homogeneous themporally periodic orbit
becomes unstable when we make the diffusion constant 4 small after the Hopf
bifurcation occured for a certain fixed . This implies that an orbit of another
type can appear near this orbit as the secondary bifurcation, which was suggested
by J. Lin and P. B. Kahn [4].

The purpose of this note is to give an example that a stable spatially
inhomogeneous temporally periodic orbit occurs as the primary bifurcation by
the cause of two time delays. As is stated above, such a phenomenon does not
occur for equations with only one time delay, while equations with multiple time
delays seem to have various interesting aspects. Thus we tried here to study
Hutchinson’s equation with diffusion and two time delays 7, 7, (0<r; <75

(2) U= dAU + (¢ — aU(t —r,) —bUG —r,))U.

Equations with two time delays are studied by J. K. Hale [2], R. D. Nussbaum
[6], J. Ruiz-Claeyssen [7] and so on. They, however, treat ordinary functional
differential equations and therefore they do not consider that an effect of two
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time delays have influence on space variables. As another model which ex hibits
an appearance of a stable spatially inhomogeous temporally periodic orbit as the
primary bifurcation, the authors kmow only a system of competing reaction-

diffusion equations of four species:
: .
i =d;(U) sz + > (i —ayudus, i=1,2,3, 4
7=1

with zero Neumann boundary condition given by K. Kishimoto, M. Mimura and
K. Yoshida [3]. Thus the example given in this note is not only interesting as
a phenomenon but also gives a direction in which we study equations with

multiple time delays in future

1. Preliminaries

For the later purpose let us recall the discussion on the Hopf bifurcation
theory developed in [8], which holds for (2) with zero Neumann boundary condi-
tion. Throughout this note we assume c¢=a + b without loss of the generalty.
Since the equation (2) with zero Neumann boundary condition arises in ecology,
we are interesting in only the existence of the unique global non-negative solu-
tion for this equation, and this is proved by the same method as in [8, Proposi-
tion 1.1]. In order to investigate the Hopf bifurcation from the positive steady
state U=c/(a+b)(=1), we change the unknown function by U=1+#%. Then our

considering equation results in

w=ddu—(au(t—r) + bu(t—r))(A+u)
3 ou

07 |aa

where 8/0n is the outer normal derivative on 82. Let W>?(2), 1<p <o, be
the Sobolev space of real valued L? functions whose derivatives of order up to 2
belong to L?(2) and Wi” ()= {u € W>?(2): du/dn=0 on 82}. As in [8] let C=
C(L—7,0]: L?(2)) and Ci=C([—7,0]: W%"(2)). Throughout this note we
assume N < p < oo (IN being space dimension), which means that W*P(2) forms
algebra (cf. [8]). As usual we write #,(8)=u(t+0) for 6 € [ —7,,0]. Let T(t) be

the solution map for
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(z’;=ddu—au(t—rl)—bu(t—rz) in (0, ) X 42,
on| v

2Q

2 o
u,(0)=(0) € C, —7,<6<0,

from C to itself which is defined by

TW¢=u,(-).

Here we note that the solution is understood in the sense of ““mild solution” (cf.
[8 p. 324]). Then {T(®},2 forms a strongly continuous semigroup on C and
T(#) is compact for each ¢>7, We also note that T(#) is uniquely extended to a
bounded operator from the space of piecewise continuous functions on [—7,,0]
with values in L?(2) to C. Using 7'(#) we can rewrite (3) as

(4) | u, =T, + St T(t—5) X F(ug)ds,

where
Flug) = —(au,( —r) + bu;,( —7,))u,(0)

and X,=X,(f,x) is such that X,=0 for —#,<0 <0 and X,=1 for 0¥0. Let B be
the infinitesimal generator of 7(¥) and D(B) the domain of B. Then,

D(B)=1{¢p€C: ¢€C, ¢(0) € W5 (2), $(0)=dAp(0) —ad( —r) —bp( —r,)}
Bp=¢ for ¢ € D(B),

and the sectrum of B is composed of the roots of equations

-

(5), Atae” M b 4 gg, =0, n=0,1,2, ...,

where {£,}, 0=§, <& <§,<-+-— 0, is the set of eigenvalues for —4 with zero
Neumann boundary condition. We call these equations (5), the characteristic

equations.

2. The Hopf bifurcation theorem

Putting C*=C([0,r,]: L% Q)), 1/p+1/g=1, we define a bilinear form (-, - )
by
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(@ d)= <o, $O>—a|  <eE+rDd, HE>dE

—5 <oter, $©>a

for ¢ € C*, ¢ €C, where <., - > is the duality between L? and L? Let B(a)
denote the infinitesimal generater B if it is necessary to specify a when the
constants (a, b, d, 71, 7,) varies along a certain line (a(a), (@), d(a), r(a), r.(a)),
—ay < a< a, In the sequel we assume the following

HYPOTHESIS A. Some characteristic equation (5), has a pair of simple complex
conjugate roots (2(a), W)}, Wa)=p(a)+iv(a), such that

(6) 2(0)=0 and v(0)=y,>0,
7)) #'(0)# 0,

and the other roots of (5)p, n=0,1,---,0 -, have megative real parts for a€

(—ay, ap).

It is to be noticed that in Hypothesis A we implicitly assume that &, is the
simple eigenvalue. As in [8, Section 3] we can prove the followings:

if we put, with the eigenfunction A(x) of &,
0o=(P1,ar P2.0)
b1.o(8) = ()P cos ¥(adl, ¢ a(6)=h(x)e"Psin v(a)d, —7r=0=0,
Fi=col (¢7a $2a)
¢fa<s)=h(x)e”(”’cos v(a)s, ¢fa(8)=h(x)e"¥sin v(a)s, 0=<s=7

(¢Fa b1a) (OFar b2 w))}

(T:: (Dm‘) = {
(‘p;z’ ¢1,m)) ((Qb;w ¢2,m\)

then the 2 X2 matrix (¥%, 0,) is nonsingular. if ¥,= @%, 0,)7%%, then (¥a, 0 )

=7 and C is decomposed as

C':Pm@Qw,
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P,={¢p€C:¢p=0,a, ac R,
Qw= {¢EC ((Wm ¢))=O}

by making use of this decomposition, (4) is decomposed as

11

(8) ufe=Truuio+ | Tout— 91X Fauas,
0
z

(9) ul®=To,(Dul® + S To(t—)X2*F(uy) ds,
0

where

£ Q P
% = 04(¥ s ut)’ u =, —u, °,

X0 “F(u) = 0,<¥a(0), F(u)>, Xo*F(u)=XF(u;) — X “F(u,),
and Tp,(2) (resp. Tg,(?)) is the restriction of T(¢) to P, (resp. Q,).
Applying ¥, to the both sides of (8) and then differentiating them, we have
(10) £a(D) = Mauxa(®) + X(xu(D), 4", @,
where

xw(z>: ((gfw ut))r

[ PIe)) V(a)J
M,=
—v(a) p(a)

is the matrix representation for the restriction of B to P,

and
X(xo (D), u?% a) = <W,(0), F(0ux,(D)+ul®)>.

Then we have

THEOREM 1 ([8, Theorem 4.1]). Let k be an arbitrary fixed positive integer.
Then there exist a zero neighborhood % XI in RPX(—ay, a,) and a k times con-
tinuously differential function G on # X I with values in Q,=Q,NC, satisfying the

following conditons:
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i) G0, &)=0, D,G(0, 0)=0.
i) For any a € I let
(D)= (b€ Cy: p=0,5+C(x, @), x€Z}.

Then () is locally invariant in the $ence that if, for any ¢ € A (a) such that
(T op) € %, the solution x(1) of

%() = Mx(D) + X(x(®), Glx(D), @), &)
with
x(0)=(7*¢)
stays in %, then
() = 1,(0) = 0 (0x () + G(x(®), a)lo=o
is he unique so ution of (3) with ty=¢.

() is locally attractive, i. e., if the solution u(?) of (3) satisfies ||u,)|c,<e for
some small ¢>0, then there exist positive constants K, 1 independent of t which satisfy

g, — Do (D), Doy <Ke " ||toll o
where
x(t> = (Wm ut) .

By vertue of Theorem 1 we have the following Hopf bifurcation theorem.

THEOREM 2. There exist a positive constant &, real valued continuously differe-
ntiable functions a(s), o(e) on (—e, &) such that a(0)=0, w(0)=27/v,, and an
w(e)-periodic solution xueq(t) of the equation

(Gl) =M, x+ X(x, G(x, ale)), ale))

such that |xqw (8| =0(). Thus
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”(t) =i (Dw(e)<0)xw(a)<t) + G(xw(a,<t>: LZ{(E)) le=o

is the I-th mode w(e)-periodic solution of (3).

3. Stability of bifurcation orbits

In order to know whether the Hopf bifurcation is realized, one must investi-
gate its stability. In this section we describe briefly S.-N. Chow and J. Mallet-
Paret’s theory that the stabily constant “K” ensures the Hopf bifurcation stable.

Let us consider, in general, an infinite evolution equation

a2 2=f(z, a)=A(a)z+ F(z, a)
F(z, a)=0(]z|®

in a certain Banach space X, where A(a) is an unbounded closed operator from
X into itself with domain ¥ C X, Y being a Banach space continuously and densely
deflned in X. Assume that

F:YX(—ay ay) > X

is sufficiently smooth and further the spectrum of A(a) is composed of only the
point spectrum with same property as in HYPOTHESIS A. Let

X= Pm@Qm

be the spectral decomposition, where P, is two dimensional eigenspace of A(a)

corresponding to {i(a), 2(w)}. By using this decomposition, (12) is rewritten as

x=AP(a)x+ chx, Y, [Z)
13) {

y=Aq(y+Fo(x, y, )

where Z2=x+y € P,Q, and Ap(a) (resp. Ag(a)) and Fplx, y, @) (resp. Folx,
Yy, a)) are restrictions of A(w) and F(z, a) to P, (resp. @,). Let us denote the
matrix representation of Ap(a) by

[ u(a) V(a)J
—v(a) wla)].
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Expanding (13) in the Taylor series we have
i = n(a)x +v(a)x+ 22 Bi(x, y, @)
=
Hy= —v(a)x,+uladx+ X Bix, ¥, @)
=

y=Ay(y+ 22 Bi(x, ¥y, @
£~

= Ag(a)y+ J(@)x*+ N(axy + E(@)y’+ 's(x, P T

which, in polar coordinates x= (rcosC, 7sinl), become

i=F,(, D +7rua)+G, y, @y} +7°CE ¥, @
+7°C y, )+
C=—v(@)+7DyC, y, @) +7 D, Yy, a)+ -

#=as above but with x= (rcos(, 7sinl).

av

Here we used the notations in [1] as possible as we can.
Scaling (14) by

Yy —e¥, Y e, a—eq,

we have
7= e (Or+7°Cy(C, ey, ea) + Fi(&, eady’+7G(L, ey, cady)
+ 2PCE, ey, ea) + O+ 0 al),
E= — vyt e{ar'(0) +7Dy(C, ep, ca)} +O(D,
i=Agy+ e (J(ca)x*+ N(ea)xy + E(ca)y’} + O(e).

Let us now define the stability constant X by

K= K* + K™,
K* _ 1 2z C C 1 C
E 27__[ 0 { 4( 3 07 0) + E 3(C7 07 0>}dC1
2
K* = 2%8 . w*(O)J(0)(cost, sind)’dL,

N L e et g |

R
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where w*(0) is the unique 2z-periodic solution of
15) Yot ™(0) — w*(0)Ag(0) = G,(C, 0, 0).

We recall that for each @ € (—ap, @), J(a) is a bilinear form in the x-space R?
taking values in the y-space; in the above definition J(0) acts on the point (cos(,
sin{) € R°. Since G,(¢, 0, 0) arises as a coefficient of y in the differential
equation involving #, G,({, 0, 0) for each { is a linear functional on y. Also note
that the property K+#0 depends on the differential equation at a=0.

THEOREM (S.-N.Chow and {J. Mallet-Paret [1]). Suppose that there exists a
center manifold taking value in Q.NY. If p/(0)K<0, then the Hopf bifurcation is
stable.

4. An example.

In this section, as an application of Theorems 1, 2 and S-.N. Chow and J.
Mallet-Paret’s theorem, we give an example that a stable spatially inhomogeneous
temporally periodic orbit occurs as the primary bifurcation. In what follows we
treat the equation (2)(or (3)) in the case of one space dimension and so put 2=
(0, z). Then {cosnx:n=0,1, 2, ---} is the set of eigenfunction for — (d*/dx?)
with zero Neumann boundary condition and #® is the eigenvalue for cosnx. Thus

(5), become
(16),, A+ae ™ +be P 4 dnP =0, n=0, 1, ---.
Let us now determine the constants (a, b, d, 7,, 7,) parametrized by a. Put
r1=1, 7,=3.05,

.2 4 . 2
a=a,+ «, a0=27r/{3(sm§7r+ ﬁmn»grzrz)},

b= = a,
1%

2 4 2
d=—a, cos—g—n— 1—1a0 cosgnrz>0.
Then these constants satisfy HYPOTHESIS A with /=1. In fact, if we write i=
#+1v, the equations (16), are equivalent to the systems of eqations to find Cu, v)
in R%:
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7 o ,
7x u+ae Mcosry +be " cosry +dn'=0,
— Tk e —Tol .
(18) y—ae Y sinry —be ¥ sinry =0.

It is easy to verify that (0, ’%n) and (0, = % 7r> are solutions of (17); and (18).

Next we must prove that the other solutions of (17),, 7=0, 1,---, and (18) are
not located in the half plane =>0. Since

ay~2.316717113
b ~0. 842442587

d~0.320530953,

we see that (17), has no roots v for any 2=>0 if n>=4. Hence we have only
to consider the cases 0<7#<3. But by the argument principle it is easily shown
that each equation (16), has only roots with negative real part. For example

consider
(16), A+ ae N +be =0
and apply the argument principle along the semicircle:

{(Oy V): —Rng—R}U{</J, V>: /"Z—I_VZ:RZr ﬂ20}5

where R is large enough. Then we see that the winding number is zero, which
means that our assertion holds. Thus HYPOTHESIS A holds except the property
(7). Since the root ()= p(a) +iv(a) satisfies

©(0)=0 and v(0)=vy, (=%n>,

it follows from (16), that
2(0) +¢ O — g A (0 O —brd (e V=0,
which leads us to

19 2/ (0)(1— ayricosryo— br,cosrw,)=v'(0)(ayr:sinyyo + by,8in7,w,) — COS7 Vg,

1
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20) v (0)(1 — @y7:coS71, — br,cosryy,)

= sinrw,— 1/ (0) (a7 sinrw, -+ brysinr,y,).

From (19) and (20) we obtain

@20 #'(0)=A,/B,
where
22) A= sinrw,(ayr,sinrw, + br,sinrw,)

— cosvo(1— ayr,cos7 vy — br,cosryy,),
23 B,= (ayrsinrgy, + br,sinr.y,)?
+ (1 — ayr1c08715, — br,cosrywy)? (#£0).

From (21), (22) and (23) we have, numerically,

A, ~1.771627691

B, ~5.332866583,
which lead us to

#'(0) ~0. 332209266.

Consequently, there exists a positive constant «, such that HYPOTHESIS A holds.
Therefore, by vertue of Theorem 2 we have the first mode w(e)-periodic solution
of (3)

u(l, £)=e""Dx, 40,(O(x) + 0D,
where
_1
h(x) = <£\ “cos%
2

and x4 (2) is the first component of the w(e)-periodic solution Xue)(#) of (11).
Let us now proceed to the proof of the stability of this periodic orbit
following Chow and Mallet-Paret’s theorem. To do so we first determine 7, (8.

Since
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0(0) = (1,0(0), 2,006,
p1,0(6) = h(x)cosy,b,
h,0(6) = R(x)sinyb,

h(x)=as above,

it follows from (¥,, @,)=1I that

ay G cosyé
@y G| | SINVeE

where

@ @y = an=A,/B,,

(25) ap= — an=A;/B,,

(26) A,= —2(ay7:CoSyyr;+ br,cosyr, — 1
@7 A,= —2(apr,sinyer; + bresinur,),

and B, is equal to (23). Next, in order to evaluate the stability constant K, we
must determine C,(Z, 0, 0), C«(C, 0, 0), Dy(&, 0, 03, G5(&, 0, 0) and J(0)(cosC, sin)™

But, these are, by easy calculation, obtained as
(28) C,(C, 0, 0)=ay{ —aycoswr; cos’C + asinyr; sing cos¥
— beosyyr, cos’C +bsinyyr, sin cos™} S:hs(x)dx
4 ayy [ — apcosvyr; cos’C sind + apsinygr; sinC cosC
— beosyyr, cos’C sinl + bsinyr, sin’C cosC} S:hg(x)dx,
29 Cy«¢, 0, 0)=0,
(30) D,(C, 0, 0)=ay;{a,cosyr; sinl c0s¥ — aysinyer, sinC cosC
+ becosy?, sinl cos® —bsinyyr, sin®C cosC} S:h3(x)dx
+ iy {@osinver, sind cosC — acosyery cos’C
= bsinyyr, sinl cosC — bcosyyr, cos’C) S:hs(x)dx,

(3D G,(C, 0, 0)= — ay<a(cosyr, cos’ —sinyr; sind cost)p(0)




and

(32

Since
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+ 2,c08’Cp(— 7, ) +b(cosvyr; €0sC— sinpyr, sinC cos8)p(0)
+bcos’Cp(—15), B> — any<ay(cosver; cosC sinl — sinyyr; sin’C)¢(0)
+aosinC coslp(—7y) +b(cosyyr, cosC sinl — sinyyr, sin®C)p(0)

+bsinl cosCp(—7r,),h*>, for ¢ €

J(0)(cost, sind)’= X% {(asinyyr, sinC cosl — aycosy,; cos’™

+ bsinyyr; sing cosC— bcosyyr, cosX)h?)
= (@Ssinyyr, sinC cosl— a,cosy,r; cosi

+bsinyr, sin cosC — beosyyr, cosC) X h’

(STt

T
S cos® xdx=0,
0

S:ha(x)dx= (%>_

it follows that

Ci(C, 0, 00=0 and D,(, 0, 0)=0,

which together with (30) lead us to

2
K*= %T S {C«C, 0, 0) + Vi Cy(&, 0, 0) Dy(¢C, 0, 0)) dc=0.
0

In order to solve (15), write G,(&, 0, 0) as a Foutrier series

G(C, 0, )= 37 g™, g, € Q%

n=—0c0

where @ is the dual space of @, and next by expanding w*(¢) as a Fourier series

WO = 3 1,6,

n=—co

inserting this into (15) and equating coefficients, we obtain

Wn= gn(iny,— BQD—I-

In what follows, justifying this formal calculas, we apply this to find w*(d).

Since
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cosC = (e¥+e /2, sinl=(e¥—e ") /2,
it follows from (31) that

GG 0, b= ) ga(@e™,

Nn=—0c0

g(p)=— 61211 < @ycosypr1p(0) +aep( — 7,) + beosyer,p(0) + bp( —72), h*>

+ “221 < asinyyr(0) + bsinverp(0), B>,
a(p)= g—1(¢) =0,

()= g.(¢p)

= — Z“ < ap(cosyyry +isinver ) d(0) + ayp(—71)

+ B(cosyyr, +isinvrs)p(0) +bp(—7,), B*>

— % < ay(sinpyr1— icosver DP(0) — iged(— 71

+ B(sinyyr,— icosye?s)p(0) —ibp(—7,), h*>,
() = () =0, 7n=34, -
On the othere hand, since
A,COSyy? 1+ becosyr, +d=0,
Yo — GoSinyer,— bsinyyr, =0,

we obtain

33 gl d) =— L <ap(—r) +b(— ) —dp(0), B>+ G (0, B>,

3D &(p) = — % (@ — i) <app(—71) + bp(—72) — dp(0) +ivep(0), 1>

There (33) and (34) together with (32) yield

w*(O J(0)(cost, sinl)?= B,(0){g(B3'(Xoh®))
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~ &((2ni— BT (XM + g_,((2ui + Bo) (Xoh®)e %),
where
By,(O=aycoswr, cos®C—a, sinyyr, sinC cos ¢
+bcosyyr, cos’C — bsinyyr, sinC cos C.

Consequently, we have

S:ﬂw*co J(0)(cost, sink)? dC= — drg,(B5'(X,h®))
— (2/2) 22— B (Xoh™>) {ay(cosvor,— isinwery)
+ B(cosu,— isinver,))
+ (/2) g (2w + B) (Xok®) {@y(cosvyr, +isin )

+ b(cosyyr, +isinyyr,)).

Since g_,= ng, it follows that

(35) g 1 S”w*(g) 7(0)(cost, sing)’de

271'0

=(a/2)g(— B3 (Xoh™)) + (d/2)Re g,((2vyi— BT (Xoh™))

- (Vo/z)lm gz<(2Voi-BQ)_l(Xoh2>)-

Let us determine —By'(X,h») and 2y —Bo) ™M (X,h». To do so calculate, more

generally,
(36) b= (nvii— By) ¢
= (mi— B) ¢ for given ¢ € §,.

If we remember the representation of B (cf. p. 93), then the problem (36) to
find ¢ is reduced to the equation

&19) (0D = nui(8) — ¢(6)

subject to the boundary conditions

33 (0= dp2(0) —axp( —7,) — bp(—72),
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39 $2(0, 0)= (0, m)=0.
From (37) we have

$(9)= ™" p(0) — SZ e g (s)ds,
which leads us to

(40) ¢( _‘rl)=_e—nvorli¢(0) . S;"’le_nuoi(rl-f—s)d)(s)ds’

(41) $(—r)=e ™ P(0) — S emiEny(9ds.
On the other hand since, form (37) and (38),
1gip(0) — P(0) = depzz(0) — aop( —71) — bp(—72),
it follows from (40) and (41) that
— dp25(0) + (0D +ao €™ p(0) +be”™ " p(0)
=¢(0) +a S;rle‘”vﬂi”l”’gb(s)ds—l- bS;rze‘"”"i”z“’ o (8)ds.
For ¢ = X,h* we then have
(42) — dep2(0) + moich(0) + aoe ™™ p(0) + be” ™ THp(0) = I,
First, consider the case #=0. Since 4*=(z/2)"" cos’, the equation (42) results in
— depz2(0) + (@ + B)p(0) = (1/m)(1 + cos’x),

which together with (39) admits the solution

¢<0>=%{i+ L

- m cos ‘Zx},

where co=a,+b. Since
$(—r)=¢(0) and ¢(—7,) =20,

it follows from (33) that
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1 1

(43) s =B = 5 2+ 5 e ate—a.

We proceed to the case 7z=2. Then, the equation (41) becomes
—AP22(0)+ (2voi+ aoe ™" + BTV 8(0) = (1/7) (1 + cos2x),
which together with (39) admits the solution
$(0)=(1/7)(As+ B, cos 2%),
where
Au= Quoi+ ae™ 01 4 oyt
By= (4d+ 2vi+ ape 201" + po~2o"2¥) 1,
Since
PC—rD=e""1"¢(0) and ¢(—r,)= e *i2ig(0),
it follows from (34) that

2(Cuyi — BQ)—I(X0h2)>= — (1/477-') {A;+ (1/2)34} {aoe_zrlcrli

+ bem#ot g wol {ay; —ia,,).

Put

(44 D = aycos2yyr,+ bcos2yyr,,
(45) E = 2v)— apsin2uyr, — bsin2v,r,,
(46) F=D-—(,

“n G=FE—y,

(48) H=D+44.

Then, it follows that

(49 Re g((2wi— Bo) '(X,h®)
= —(au/8n){2(D*+ E®)(DF+EG) + (H*+EH™(FH+EG))
+(@y/87) (2(D*+ E*)"(EF —DF) + (H*+E*)™WEF+ GF)},
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(50) Im g,((2vi—Bo) ™ (Xoh*))
= —(ay/80) (2(D*+E)(DG—EF)+ (H*+E) 7 (GH—EF)}

+ (ay/87) (2(D*+ E)(DF+EG)+ (H*+ E*) 7 (FH+ EG)).
Consequently it follows from (35), (43), (49) and (50) that

K* = (d/47) {l + o

Co m} {aﬂyo—all(co—d)}

— @ (D7 + B NDF+EG)+ (' + B (FH+ EG))

and
6

1 (2(D*+ E») " (EF—DG)+ (H*+ E» ™ (EF —GH))

_|_

=+ % (2(D*+ E»{(DG—EF)(H*+ E»)™"(GH—EF))

— @ oD+ BV DF+EG)+ (H'+ B (FH+ EG)).

This K™ is numerically evaluated as

K**~ —0.05130788.
Since
K=K*+ K™,
K*=0,
#'(0 >0,

it follows from Chow and Mallet-Paret’s theorem that the solution obtained in

this section
u(t, $)=€"*Dx, 4oy (OR(x)+0()

; is stable for small .
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