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One of the basic assumptions for solving the plasticity problems in engineering
is that each point of the material chooses a definite state in the deformation process
and that the ‘elastic and plastic states continue for a while once they have been
chosen by the point. Mathematically, this is nothing but to assume the existence
of a classical solution. In [1] we discussed this assumption for dynamic finite
element problems. The present paper deals with a quasi-static case. We consider
a finite element problem to illustrate our basic idea of the proof, but the method
and the results are valid to other various semi-discrete problems. Also, as is
already shown in [1] and [2], our approach is immediately applicable to analyze
both the fully discrete and fully continuous problems.

We consider so called a plane stress problem with ‘‘kinematic” hardening
rule, but our method is valid to other kind of problems. Let £ be a region
obtained by a triangulation of the original region. We shall call the triangles in
2 the elements. Let {¢,} be the usual piecewise linear finite element basis defined
on £. The approximate displacements of the material at time t is sought in the

following form.

() = 2 ui(De, (=1, 2),

where P is the set of all nodes of 2 excepting those at which zero displacements
are given. We employ the Prandtl-Reuss equation and the Ziegler’s rule. Then the
unknowns {u%(#)} are determined by solving the following system of equations.

(1> 2 (Uij: GPp,j)L?(Q) = (bi: 40;;)1.2(9) pEP,
7

D) 6=D¢, &=0 if f(6—a)<G, or f(6—a)=3 and 8 *4<0,

af s
flo—a)

2 6=(D—DN¢, &= (c—a) if f(6—a)=23 and 8f*¢> 0.
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In the above, o, ¢ and a are used to denote the stresses, strains and parameters

representing the center of the yield surface, and

fz(o) = 0'1% + 023 — 03102 T 30'1%
e = (U1,1, Uz,20 U1,2 + uz,l)

Dafaf*D

of (g —a) )
»+0f*Dof 0o )

D' = (4: positive constant, of =
For the details of this formulation, we refer to [3] and [4]. As regard b; we
assume that it is piecewise smooth and that, for any # in the time interval I on
which the problem is considered, there exists an interval I,=[t, £+ 9] (6>0) such
that b;(#) is equal to an analytic function on I,. Now the integration of O~
under the initial condition (u, o, )=, 0, 0) proceeds as follows. For any
element the elastic stress-strain relation (2,) is employed as far as f(0)<a
is satisfied. Suppose that f(a)=35 holds at =t for the elements é;, &3 --.» ém
(m>1). Let E and E, be the set of all elements of £ and the set consisting of
the above elements which may “yield” at t=to respectively. We say that an
element is in elastic (resp. plastic) state if (2,) (resp. (25)) holds at the moment

considered. The main result is

THEOREM 1. The state of each element of E is uniquely determined beyond

t = t, and the system (1)~ (2) has a unique analytic solution in a certain time interval
[ty £+ 0] (6>>0).

We shall sketch below a proof of this theorem. The key of the proof is to
construct a series of quadratic forms with respect to the derivatives of #. First,
we note that the next state of the elements of Ei is determined clearly by the
sign of 8 *6 |1yr0- To find this sign we hence consider the following system of

linear equations for the velocity # at = fo+ 0.

(3) > (64459, 5) 2@ = (b(t+0), @p)rze pEP,
4
where 6= Dé for the elements of E—E, and

{d=Dé in DL={a: af*De<0}
¢=(D—D"e in DL={u: 8f*De>0)

for the elements of E..
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LEMMA 1. The system (3) has a unique solution = (u?).

This lemma is proved by minimizing a standard quadratic form with respect
to #. Now let # be the solution of (3) and ¢ be the strain velocity calculated
from #. Since the sign of 8f.*d is the same to that of 8/*Ds, if 8f*De< 0 (resp.
>0) then this elemet must be elastic (resp. plastic) after ¢ = #,, that is, (2,) (resp.
(2,)) must be chosen. If there is no element of E, which satisfies 8f*Dz =0, then
the next state is completely determined for all elements. However, there might
be such non-empty subset E, of E, that 8f*D:=0. In this case we have to
examine the sign of % (6f*¢) at t=1,+0. We remark that the choice of the
next state of E, gives no inﬂuence on the value of #(%+0) for any element of E.

dt (@F*De) - (1—0) (0<£<1) at £+0

for E,, we consider the followmg linear system for 4 at £ =#,+ 0.

To determine the sign of —+ (af*a)

(4) Z (51‘_7', (Dp,j)LZ(Q) = (Bicto"‘ 0), ¢7p)L2(Q) P € P
I

In this equation & is connected with # by the established stress-strain relation for
the elements of E—E, and

¢ =Dz in D= {i: % (8 D&)< 0)

5= 4 [(D—D"e] D% =(a: 4 (of*De)> 0)

o di g ln u: dt E)=>
for those of E,.

LEMMA 2. The system (4) has a unique solution = (i%).

For the proof of this lemma, consider the quadratic form

F@) = 3\ 05 G D= 5 0 D — Bllo+0), i).]

eCE

where (, ), denotes L*(e) inner product of vector functions. The functions 6 and
¢ are defined as follows.

0 = (“- D/)5)t0+0
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0 (resp. &) for the elastic (resp. plastic)

elements of E—E,

gz - in'DZ
for the elements of E,

g in D2

The vector % is an arbitrary fixed 3-dimensional vector which satisfies the
equaution W(af*Dé)=0. It is shown that the stationary condition of F(4i) is

the equation (4). This lemma hence implies that the next state of the elements
. a '
of E, can be determined if there is no element which satisfies ar (6 *D&)=0.

To prove Theorem 1, continue this argument. Then if (@f*6)<0 (resp.
>0) at t=1%+ 0 for a certain < o, this element must be elastic (resp. plastic)
after t=1,+ 0. If there is no finite &, then this element is neutral after t, and
the stress-strain relation is arbitrary. This situation is just the same as in the

dynamic case considered in [1] and we have the theorem. Our conclusion is

THEOREM 2. There exists a unique Function (u, &, o, &) which satisfies (1D~
(2) except at most countable t € I.

It is evident that the proof of Theorem 1 is valid also to the case that there
are some elements for which the unloading may occur. Therefore, since some
energy inequalities are derived easily, we can continuate the solution through I
and hence the theorem follows. The countability of the exceptional ¢ follows
from the fact that such point is always an end of a time interval of positive
length. We note that absolute continuity is enough to set up the class of functions

in which the solution is sought.
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