A NOTE ON THE CLASSICAL SOLUTIONS OF SEMI-DISCRETE QUASI-STATIC PLASTICITY PROBLEMS

Tetsuhiko MIYOSHI

(Received Oct. 24, 1981)

One of the basic assumptions for solving the plasticity problems in engineering is that each point of the material chooses a definite state in the deformation process and that the elastic and plastic states continue for a while once they have been chosen by the point. Mathematically, this is nothing but to assume the existence of a classical solution. In [1] we discussed this assumption for dynamic finite element problems. The present paper deals with a quasi-static case. We consider a finite element problem to illustrate our basic idea of the proof, but the method and the results are valid to other various semi-discrete problems. Also, as is already shown in [1] and [2], our approach is immediately applicable to analyze both the fully discrete and fully continuous problems.

We consider so called a plane stress problem with "kinematic" hardening rule, but our method is valid to other kind of problems. Let $\mathcal Q$ be a region obtained by a triangulation of the original region. We shall call the triangles in $\mathcal Q$ the elements. Let $\{\varphi_p\}$ be the usual piecewise linear finite element basis defined on $\mathcal Q$. The approximate displacements of the material at time t is sought in the following form.

$$u_i(t) = \sum_{p \in P} u_i^p(t) \varphi_p$$
 (i=1, 2),

where P is the set of all nodes of \mathcal{Q} excepting those at which zero displacements are given. We employ the Prandtl-Reuss equation and the Ziegler's rule. Then the unknowns $\{u_i^p(t)\}$ are determined by solving the following system of equations.

$$(1) \qquad \sum_{i} (\sigma_{ij}, \varphi_{p,j})_{L^{2}(\Omega)} = (b_{i}, \varphi_{p})_{L^{2}(\Omega)} \qquad p \in P,$$

(2_a)
$$\dot{\sigma} = D\dot{\varepsilon}, \ \dot{\alpha} = 0$$
 if $f(\sigma - \alpha) < \bar{\sigma}$, or $f(\sigma - \alpha) = \bar{\sigma}$ and $\partial f^*\dot{\sigma} < 0$,

$$(2_b) \qquad \dot{\sigma} = (D - D') \dot{\varepsilon}, \ \dot{\alpha} = (\sigma - \alpha) \frac{\partial f^* \dot{\sigma}}{f(\sigma - \alpha)} \quad \text{if } f(\sigma - \alpha) = \bar{\sigma} \text{ and } \partial f^* \dot{\sigma} \geqslant 0.$$

T. MIYOSHI

8

In the above, σ , ε and α are used to denote the stresses, strains and parameters representing the center of the yield surface, and

$$f^2(\sigma) = \sigma_{11}^2 + \sigma_{22}^2 - \sigma_{11}\sigma_{22} + 3\sigma_{12}^2$$

$$\varepsilon = (u_{1,1}, u_{2,2}, u_{1,2} + u_{2,1})$$

$$D' = \frac{D\partial f \partial f^* D}{\eta + \partial f^* D\partial f} \qquad (\eta: \text{ positive constant, } \partial f = \frac{\partial f(\sigma - \alpha)}{\partial \sigma}).$$

For the details of this formulation, we refer to [3] and [4]. As regard b_i we assume that it is piecewise smooth and that, for any t in the time interval I on which the problem is considered, there exists an interval $I_t = [t, t + \delta]$ ($\delta > 0$) such that $b_i(t)$ is equal to an analytic function on I_t . Now the integration of $(1) \sim (2)$ under the initial condition $(u, \sigma, \alpha) = (0, 0, 0)$ proceeds as follows. For any element the elastic stress-strain relation (2_a) is employed as far as $f(\sigma) < \bar{\sigma}$ is satisfied. Suppose that $f(\sigma) = \bar{\sigma}$ holds at $t = t_0$ for the elements e_1, e_2, \ldots, e_m $(m \ge 1)$. Let E and E_1 be the set of all elements of Ω and the set consisting of the above elements which may "yield" at $t = t_0$, respectively. We say that an element is in elastic (resp. plastic) state if (2_a) (resp. (2_b)) holds at the moment considered. The main result is

THEOREM 1. The state of each element of E is uniquely determined beyond $t = t_0$ and the system (1) \sim (2) has a unique analytic solution in a certain time interval $[t_0, t_0 + \delta]$ ($\delta > 0$).

We shall sketch below a proof of this theorem. The key of the proof is to construct a series of quadratic forms with respect to the derivatives of u. First, we note that the next state of the elements of E_1 is determined clearly by the sign of $\partial f^*\dot{\sigma}\mid_{t_0+0}$. To find this sign we hence consider the following system of linear equations for the velocity \dot{u} at $t=t_0+0$.

(3)
$$\sum_{j} (\dot{\sigma}_{ij}, \varphi_{p,j})_{L^{2}(\Omega)} = (\dot{b}_{i}(t_{0}+0), \varphi_{p})_{L^{2}(\Omega)} \qquad p \in P,$$

where $\dot{\sigma} = D\dot{\epsilon}$ for the elements of $E - E_1$ and

$$\begin{cases} \dot{\sigma} = D\dot{\varepsilon} & \text{in } D_{-}^{1} = \{\dot{u} : \partial f^{*}D\dot{\varepsilon} < 0\} \\ \dot{\sigma} = (D - D')\dot{\varepsilon} & \text{in } D_{+}^{1} = \{\dot{u} : \partial f^{*}D\dot{\varepsilon} \geqslant 0\} \end{cases}$$

for the elements of E_1 .

LEMMA 1. The system (3) has a unique solution $\dot{u} = (\dot{u}_i^p)$.

This lemma is proved by minimizing a standard quadratic form with respect to \dot{u} . Now let \dot{u} be the solution of (3) and $\dot{\varepsilon}$ be the strain velocity calculated from \dot{u} . Since the sign of $\partial f^*\dot{\sigma}$ is the same to that of $\partial f^*D\dot{\varepsilon}$, if $\partial f^*D\dot{\varepsilon}<0$ (resp. >0) then this elemet must be elastic (resp. plastic) after $t=t_0$, that is, (2_a) (resp. (2_b)) must be chosen. If there is no element of E_1 which satisfies $\partial f^*D\dot{\varepsilon}=0$, then the next state is completely determined for all elements. However, there might be such non-empty subset E_2 of E_1 that $\partial f^*D\dot{\varepsilon}=0$. In this case we have to examine the sign of $\frac{d}{dt}$ ($\partial f^*\dot{\sigma}$) at $t=t_0+0$. We remark that the choice of the next state of E_2 gives no influence on the value of $\dot{u}(t_0+0)$ for any element of E.

To determine the sign of $\frac{d}{dt} (\partial f^*\dot{\sigma}) = \frac{d}{dt} (\partial f^*D\dot{\varepsilon}) \cdot (1-\zeta) (0 \leqslant \zeta \leqslant 1)$ at t_0+0 for E_2 , we consider the following linear system for \ddot{u} at $t=t_0+0$.

In this equation $\ddot{\sigma}$ is connected with $\ddot{\varepsilon}$ by the established stress-strain relation for the elements of $E-E_2$ and

$$\begin{cases} \ddot{\sigma} = D\ddot{\varepsilon} & \text{in } D_{-}^{2} = \{\ddot{u} : \frac{d}{dt} (\partial f^{*}D\dot{\varepsilon}) < 0 \} \\ \ddot{\sigma} = \frac{d}{dt} \left[(D - D')\dot{\varepsilon} \right] & \text{in } D_{+}^{2} = \{\ddot{u} : \frac{d}{dt} (\partial f^{*}D\dot{\varepsilon}) \ge 0 \} \end{cases}$$

for those of E_2 .

LEMMA 2. The system (4) has a unique solution $\ddot{u} = (\ddot{u}_i^p)$.

For the proof of this lemma, consider the quadratic form

$$F(\ddot{u}) = \sum_{e \in E} \left[\frac{1}{2} \left(\ddot{o}, \ddot{e} \right)_e - \frac{1}{2} \left(\theta, \dot{e} \right)_e - \left(\ddot{b} (t_0 + 0), \ddot{u} \right)_e \right]$$

where $(,)_e$ denotes $L^2(e)$ inner product of vector functions. The functions θ and $\bar{\epsilon}$ are defined as follows.

$$\theta = (\frac{d}{dt} D') \dot{\varepsilon}|_{t_0+0}$$

The vector $\ddot{\epsilon}_0$ is an arbitrary fixed 3-dimensional vector which satisfies the equaution $\frac{d}{dt} (\partial f^*D\dot{\epsilon}) = 0$. It is shown that the stationary condition of $F(\ddot{u})$ is the equation (4). This lemma hence implies that the next state of the elements of E_2 can be determined if there is no element which satisfies $\frac{d}{dt} (\partial f^*D\dot{\epsilon}) = 0$.

To prove Theorem 1, continue this argument. Then if $(\partial f^*\dot{\sigma})^{(k)} < 0$ (resp. > 0) at $t = t_0 + 0$ for a certain $k < \infty$, this element must be elastic (resp. plastic) after $t = t_0 + 0$. If there is no finite k, then this element is neutral after t_0 and the stress-strain relation is arbitrary. This situation is just the same as in the dynamic case considered in [1] and we have the theorem. Our conclusion is

THEOREM 2. There exists a unique function $(u, \varepsilon, \sigma, \alpha)$ which satisfies $(1) \sim$ (2) except at most countable $t \in I$.

It is evident that the proof of Theorem 1 is valid also to the case that there are some elements for which the unloading may occur. Therefore, since some energy inequalities are derived easily, we can continuate the solution through I and hence the theorem follows. The countability of the exceptional t follows from the fact that such point is always an end of a time interval of positive length. We note that absolute continuity is enough to set up the class of functions in which the solution is sought.

References

- [1] Miyoshi, T.: On existence proof in plasticity theory. Kumamoto J. Sci. (Math.), 14, 18-33 (1980).
- [2] Miyoshi, T.: Numerical stability in dynamic elastic-plastic problems. R. A. I. R. O. Analyse numérique, 14, 175-188 (1980).
- [3] Yamada, T.: Plasticity, Visco-elasticity, Baifukan, Tokyo (1972).
- [4] Ziegler, H.: A modification of Prager's hardening rule. Quart. Appl. Math., 17, 55-65 (1959).