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Introduction

Let 2 and I be the open interval (0, 1) and its Boundary, and T a fixed
positive number. We use Q and S to denote the sets (0, 7°) X 2 and 0, THXr,
respectively. The heat control problem considered in this paper is as follows.
Seek a function #(¢, x) satisfying

(0.1 ' —%,,=0 in Q (v = —),

with the initial condition
(0.2) u(0, x)=a(x) in 2,
and the boundary conditions

(0.3) W20, 2 >0 on 3,

(0.4)

{au/an=o if />0
on 2,

0u/6n>0 if /=0

where # is the outward normal to I".

The difficulty in proving the existence of a solution to this problem or
approximating it numerically lies in the treating of the boundary conditions.

In [2] Duvaut-Lions presented an idea to formulate this kind of problems by
using variational inequality.

In the present paper we employ the idea proposed in [4] to analyze plastlc
vibration. We therefore introduce first a finite element scheme, which is a system
of ordinary differential equations. We then prove that an initial value problem
for this system is well set up. As a result, some a priori estimates of the solution
of this system are obtained, and the existence and uniqueness of the original
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problem are proved by a standard compactness argument.

Furthermore, we show the stability and convergence of an explicit finite
difference scheme for approximating the problem. Our criterion for the stability
is k/h*<1/4, being h and k the spatial and time increments, respectively.

1. A finite element system

We devide [0, 11 at the points {(x;} (7=0, 1, " , J), where %,=0, x;=1.
We assume %j,1—%;=Ah. We use P, to denote the set 0,1, -+, J} which depends
on 4. Also, we use P} to denote the set obtained by excluding both the first and

last numbers from Ph. We shall use the following finite element basis.

(1) {¢;} (JePr) is the system of continuous functions satisfying ¢;(x)=1,
$;(x)=0 for x&xj-s x;,0)N& and linear in each [xj, xj,.], where x_,= —h, Xy
=1+ h.

(2) (%} (jEPy) is the set of the characteristic functions of the interval
[x,—h/2 x;+h/2].

Now the solution # is approximated by # and 7 of the following forms.

al, 2) = > u,(DP;(x) all, ) = > ;DA ;()-

je€Ph jePh

The unknown {#;(D} is determined by solving the following system of
ordinary differential equations, which correspond to (0. 1)—(0.4).

o Ba ddyy_ .
1.1 G, X+ (—87’ e y=0 for all JEP3,
a.2 u;(0) =a(jh) =a; for all € Pa,
1.3) 2>0, 9 >0 and @'- 2% =0 on I

’ =" on — on

Here, (,) and || || denote the inner product and norm of L*(Q), respectively. As

well seen, (1.1) is equal to

’

1.1 w; — % (uj+1——2uj+uj_1)=0 for all jEP5.

We first show that this problem can be well set up as an initial value problem
for the unknown {2;(D)}. We start from #=0. The semi-discrete system a.1n—
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(1.3) has an unique analytic solution in a neighborhood of {=0 for given initial
value, provided #, and #; are given by analytic functions near = 0 in advance.
Considering the continuity of {#;} and the boundary condition (1.3), we assume
the next condition concerning the initial value.

ASSUMPTION 1. The initial value a(x) belongs to C[0, 1]-class and decreases
at x=0 and increases at x=1.

Under this assumption the value of #, and %, near =0 are determined as
follows.

As regards u,; By Assumption 1, if % is sufficiently small, we have a,=>a,.
Therefore we consider the following four cases for {a;},

¢D) a>a,

@ a;=a;1.(7=0, -+, Jo) and @; 41 >as,:2
@ @;=a;.:(J=0, -+ -, Jo) and ;11 <asy sz
)] a;j=a;,(j=0, .-+, J—=1).

We use #™ to denote the n-th derivative of # with respect to %.
In the case (1), #,()<<q, must hold in some time interval [0, 6] by the
continuity of #,. Therefore we determine #,(f) =q, in this case.

To discuss about the case (2), we first prove

LEMMA 1. In the case (2) we have
(D ="---=u(0)=0 and #{"*?(0)<0.
PROOF. By (1.1)" we have

i (O =u;(0)="--=u5(0)=0 and u,.,(0)<0.

We determine the value of #, by the following rule. If u,(¢) is decreasing after
1= 0, then we determine #%,()=a, In other cases we determine u,()=u,(¢). In
both cases we have #4(0)=0 since #%;(0)=0. By an induction we can easily prove
that

U (O =0 ="+ =u; (=0 and P, (<0 for i=1, -, ],

From this we have
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#T+0(0)<0.

This lemma shows that #,(#) is decreasing after £=0. Therefore we de-
termine #,(f) =a, in this case, too.

In the case (3), u:(?) is increasing after =0 by the same reason as in the
case (2). Therefore we determine wy(8) =u,() in this case.

In the case (4), we have a trivial solution. In what follows, we exclude this
case from our consideration.

Summarizing the above results, we have

(a), if ay>a, or a;j=0a;.,(J=0, =+ Jo) and arp1<asye2 then #,({)=a, in some

time interval, and

(b)o if @;=a;::(G=0, -+, Jo) and a;,+1<as2 then wo() =u,(¢) in some time

interval.

Since the value of #, is determined analogously, we can integrate the system
(1.1) and get an analytic solution satisfying the initial and boundary conditions
(1.2)—(1.3) at least for a certain time interval. The solution exists until the
time ¢ = #, at which {u;) satisfies uo(i)—ul(t)=ua(t—0)=0 or u;(t)—us(D=
uy (2—0). After i=1, {#;} may destroy the boundary condition (1.3). We have
to determine again the value of u, and u; after {=t.

As regards #; If {u, u,} satisfies uo(tl)—ul(t1)=u3(t1—0), then the next
value of #, can be determined as follows. We have to discuss about the next two

cases.
D) w;(3,—0) >0,
2 w(t,—0) ="+ -=u"(t —0)=0 and #{"*"(,—0)=F0.

In the case (1), %{(#)>0 in some time interval [t,, £,+0] due to the continuity
of u, at t=1%,. Therefore we determine #,(#) =u,(#) in this case. We note that
(1) =u,(t) and w, (1) <wy(t,) by (1. 1.

To discuss about the case (2), we first prove

LEMMA 2. If u(tD —u,(8) =uy(t;—0)=0 and w(t,—0) ="+ -=ui”(—0)=0
(n+1<]), then

@ ”0(t1)=ul(t1) ==y (),

@ P E)=u"(tx0=""" = wD, (G xD=0 G=1, -+, n) for any
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choice of the next value of u,,
® u§"+1)<l‘1 +0)=p"%"*D {20,422 — 2,1 (2)}.

PROOF. We shall use an induction on #. The lemma is obviously correct
for n=1. Assume the lemma is correct until z# By «**?(£,—0)=0 and ® we
have @ for n+1. By #{"*"(,—0)=0 and @ we have @ for »+1. Finally, by
® for n+1 we have

w2 (£ 0) =A™ V(4 £+ 0) — 20" V(4 £ 0) + 248"V (4, + 0))
=h""u"* 0 (4, £0)

=pH"D {un+3(t1> — (D)),
which proves @ for n-+1.

Now assume that #"*"(#,—0) <0 (i. e. #,4,(¢) > #,,.(2) ) and » is odd. By
the above lemma, #,(#) is decreasing after ¢=¢,. Therefore we determine u, (1) =
uo(2,) after t=¢. If w{™V(#—0)>0 (i. e. %, ,(4)<tbnss(?)) and 7 is even, then
#,(¢) is increasing after t=¢,. Therefore we determine uy(8) =u,(¢) after t=t,.
We remark that the other cases don’t occur by the relation between #, and #,
for t<¢,.

Summarizing the above results

@) if u;(t) =0, (D=0, - -+, n) and #,,,(¢) >y, ,(t) (1 is odd), then we de-
termine #,(¢) = u,(¢,) after t=¢,, and

(b); if w;(#) =u;1(2) (G=0, -+, %) and u,,,(t,)<t,.,(t)) (n is even), then we
determine #,(¢) =u,(t) after t=¢,.

In both cases #, and u, satisfy the boundary condition (1.3) after t=t,. In the
case that u; and u,_, satisfy u;(t,) —u,;_,(t,) =uz(¢,—0)=0, the value of u, after
t=t, is determined analogously. Hence we can set up the initial value problem at
t=1, again and continuate the solution beyond #=1¢. We can continuate the
solution successively by this procedure. By the energy inequalities, which are
proved in §2, there is no bound beyond which this continuation is impossible.
Therefore, the initial value problem for this semi-discrete system is posed over
the whole time interval [0, 7]. We note that {u;}) (GEP) and (!} (FEPY) are
absolutely continuous and {#;} (j&€P,\{0, 1, /—1, J}) belongs to C*-class.
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2. Energy inequalities

We shall derive some energy inequalities for the semi-discrete solution

i(t,x) obtained in the preceding section.

THEOREM 1. Under Assumption 1, it holds that
2.D lal-+ ll oy ll<C

where C is a positive constant indpendent of h and t.

PROOF. According to (1,1), we have

E wiX;) + ( E};‘Juj ‘fiif )=0.

]EPh

We rewrite this equality as follows

—I2__ =l P , oi 81:4-/ o , quo . d(i)] —
llull (u’“oxo’l'u.rx.r)‘i‘(%?y ax) <6x o ax +“J—“dx) 0.

By using the relation (D) wty= (Dt Duz=0 and (@< @)’ u)* < (-’ we

have
A % <o

where D, is the forward difference operator. By integrating with respect to i,

we have
@.2) (o s 12 ) B = 3] D’
By the smoothness of a(x), this inequality implies

2.9 S |@'dt <C,

and I] TS ll<C Furthermore, it follows that

@.0 jalf <alacoi+ 27 laason 3 @ +ar | 5
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Hence, by (2.3) and Assumption 1, we have |#|<C and |#|<C, which complete
the proof of Theorem 1.

For estimating the higher derivatives, we 1ntroduce w(t, x) = Euj(t)x x)

JE‘P
and assume the next condition.

dz

=0 at x=0 and x=1.
dx?

ASSUMPTION 2.

REMARK. By (1.1), #(0)=d’a/dx*(0)+ O(k). If h is sufficiently small then
@, a, and a, satisfy ay=a,=a, or @, >a,>a,. In both cases we have #4(0)=0.
Therefore if we assume lzm #;(0)=u3(0) then d’a/dx*(0)=0. Analogously we

have d’a/dx*(1)=0. This observatlon suggests that this assumption is not unnatural.

THEOREM 2. Under Assumption 1 and 2, it holds that

(@5 Il + II

2.6) So I ar<C,

where Du(x) = {u(x+h) —u(x)}/h. Here, we define Du(x)=0 for 1—h<x<I.
PROOF. We first have

ag;

2.7 @, 2+ (2, iy o for all jEP.

Note that ' is absolutely continuous with respect to ¢. Let Th= ({n_1, tm) be a
time interval in which no change of the relation between u, and u,, and #;_, and
u#s, which we considered in §1, occurs. In this interval we can differentiate @.mn),
and have the following equality.

0 rr % d¢
w'’ Eu,x)-l-( , DUy dx’)=0.

[ [
]EP sPh

By using (D) wus’=(D,u5_,) wf=0 in T,, we have

11+ 5 2 122 e,
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Hence, integrating inLs, 21CTn, we have

(2.8) | St ' |I%dt + % G = % G(s),

i
where G = || -g—;‘— ®|% and hence

2.9 g TP+ % i f,_o)=% Gtmrt 0.

thi i

We want to show that G(#) is non-increasing at t=1t,. Assume () —
1y, (Em) =16t — 0D =0. If u, is constant on Tn and #(t,—0) >0, then we have
(D) (tn—0) >0 and (Do) (tm+0)=0. The analogous relation holds for #; and
#s_,. In other cases D, and Dy, are-equal to zero or continuous at t=1, 0.
(Dgu;} (=1, 2, =+~ J—2) are obviously continuous at ¢=t,. Hence, in any
situations G(¢) is non-increasing at {=in.

Therefore we have successively

G(im_1+ 0) gG(tm—l - 0)

<G(tn—z+0)

<G0).

We note that
J-3
GO =h 3] (Daest’ + % ((0) — (O + % (0D — 5 (O,

where D,z is the third forward difference operator.

By Assumption 1 the first term of G(0) is bounded by a constant and by Assump-
tion 2 the last two terms are also bounded by a constant. Therefore for any ¢ it
holds that

(2.10) o =2 p<co=c.

Therefore we have
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z
2.11) S @' |?dt<C.
To prove (2.5) we first note that
L G LI J-2 o,
[ <2 1/ Ol +27 4 Fdt=2h S} (Desapt+ 27 i it
i=o 0

Since a(x) is sufficiently smooth, [&/(0)| is bounded by a positive constant.
Therefore we have /| <C. Since(#)’<(«))* and (uD?<(47-)% we have [|[#/| <C,
and hence by (1.1) we have Hﬁz(%) |<C. The proof of Theorem 2 is complete.

3. Existence of a solution

THEOREM 3. Under Assumption 1 and 2, there exists a Sfunction u such that
uE L=, T; H(2), ¥ €L*(0, T; H'(2) and W' ELXQ) satisfying a. a. t

(3.1 W —t,,=0 in £,
3.2) #(0, x)=a(x) in .2
ou 0u
, e —— /- f—— e
(3.3) u' >0, on =0 and % on 0 on[.

PROOF. By the energy inequalities derived in the preceding section, we can
extract a subsequence such that

. 0n B 0 . ou 0%u
Y ox Y=\ ox " ox 0 ox’
» o weakly™ in L*(0, T; L*(2)),
L
G0 % ox %y ox
L — weakly in L3(Q).

We first show that # satisfies the equation (3. 1). Let ¢ be an arbitrary
function of C*(2) whose support is in 2,and take an arbitrary s&(0, 7). For
positive integer £ we define ¢, ¢, and & as follows.




20 T. TOHYAMA, M. ARAKI and T. MIYOSHI

¢ if iE@k=(s——1/k, s+1/B)
or =
0 if 1€0,,

€2k= J§h¢k(i, T p;(x), = j;l ity TR,

Then (1.1) implies
. T 90 0d
/ _uw I .
So G, ¢rdt + So 9% ox ) di=0.

As well known, ¢x — ¢, 00r/0% — 84,/0% strongly in L(Q) when & tends to 0.

Therefore we have

= Z ou adik
/ _— =
SO (u 9 djk)dt + SO ( ax 2 6x ) dt 01
that is,

0u
or 0%

(g@ku’dt, R (S at, %) —o.

From which we have (3.1).
It is easily to show that x satisfies the initial condition (320
To prove that x satisfies the boundary condition (3.3) we introduce the

following functions.

a(t, x)= Z uj(t)¢j(x)+u1(t>¢0(x)+u_]'_l(t)¢d(x)’

jePy,
ﬁ(t’ x).: E (Dxuj)¢j’
jePp

where D u;= D us_;.
The energy inequalities obtained in §2 are valid also for these functions.

Therefore we can extract a subsequence such that

12/ 'M/

(3.5) ou weakly in H'(Q).

PR 2
ox

As well known (see for example Aubin [1] or Lions-Magens [3]) the canonical
injection from H*(Q) to H**(Q) is compact and the trace mapping is continuous

linear from H**(Q) to L*(X). Therefore we have
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@' |g— o |5

(3.6) ou strongly in L*(%). -

is— 5 Iz
Also the following estimates hold
3.7 @':2—-Cv'%,
3.8 [@, ) ey | <Cv/ T,

where C is a positive constant independent of % and #.
To prove (3.7) we first have

B9 h{Cu— o) /R <C,

by (2.5). On the other hand, if w,=u, then #,>0 and if =2, then u,=0. In
the later case we have (#)’<Ch by (3.9). Therefore for any cases we have
#,=>—Cy/ 1. Samely uy,>—Cy/7. Hence we have (3.7).

To prove (3.8), we have on the boundary x=0

Wty

12 -

é(g Ch df) Clol e, 0<Cv%.
0310y

Samely we have an estimate on the boundary x=1. Hence we have (3.8).
By using (8.6) and (3.7) we have #'|5>0, and samely 0u/0n|5>0. Also by
(3.6) and (3.8) we have (#/, 82/6n) 12¢z)=0, which completes the proof.

4. Uniqueness of the solution

THEOREM 4. The solution of (3.1)—(3.3) is unique.

PROOF. Let % and #™ be two solutions and put w=u—1z". Then we have

o'lf+ G, Sy - B |

LN LA
ox ’ ax) r On war=0.

By using the boundary condition, we have
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1d

o+ 3 -2 | 22 <.

Since w(0)=0, it follows that
! ow
/112 2
2 lwas + | 3 <o,

which proves the uniqueness.

Therefore, the convergence holds not only for a subsequence, but also for

the original sequence.

5. Error estimation

In this section we shall derive an estimate of the rate of convergence of the
finite element solution. By #, and #, we denote the finite element solutions,
which are obtained in §1. By u(#, x) we denote the exact solution. #p and #p
denote the projection of # onto the space spanned by {¢;} (FEPy) and {X;} (GE Py,

respectively.

THEOREM 5. Put e=wu—1i,. Under Assumption 1 and 2 we have the following

estimate.

» T 12 -
G.D e+ 122 1+ (§ 1) <Ct++/ BB,
(5.2) lim b(h) =0,

h—>0

where C is a constant independent of h and t, and b(h) is given by

() = S Yls dt.
e | B0
For the proof of this theorem, we prepare the next two lemmas, which are

easily proved.

LEMMA 3. Let @, % and @, © be the functions represented by {(¢;} and (X},
respectively. Then we have
09

(5.3) (@, 3 — (4, )= %(% )
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LEMMA 4. Let u be the exact solution, then 6% /ox’ belongs to LX(Q).

PROOF OF THEOREM 5. Since % is the exact solution, we have

P 5u 611;3_612; __S au P _
(u’ Up ug) + (Tx—, Bx W) " W (up uc)dI’—O.

By the boundary condition the last term is non-negative. Hence we have

(5.4) G, )+( 6“ Gr gﬁ/

¢y &
0x % ) =0.

On the other hand, multiplying (1.1) by w;—u; ({, j2) and summing with respect
to 7,

Giae, we—p) +(

2., Dk 31‘““%% {adaCaty — 1 C0)) + 2l Caly— 24 (1))
+ {Doty(thy—2(0)) — Dasy_(ty— 2 (1))} =0.

The last term is again non-negative. Therefore we have

(5.5) (s e~ Z‘;‘f - ai") —ha()<0,

where a(®)=1/2 {uyCuy— ' (0)) + u;(uy—u' (1))

Adding (5.4) to (5.5), and putting e=u—,,

(5.6) NP+ C&'s @ —ud + (@l — acl® + (Cas, a5) — (il 7))
ty gl e, By <o

Integrating with respect to # and using Schwarz’s inequality and Lemma 3,

& {lera+ L2y
Slar—wloo ( lerar) "+ 1 22— By o () 0 )"
1S o) L2 g+ 11 § o) at1 + 12 oo
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The fourth term of the right side of (5.7) is estimated as

n §, awat<a(§ @ dt)”z(suclmce'm a)"

<Ch{llacl 2o + Il lI n@) bR,

where b(h) = (SA,I):#() g dt)jlz

Uc

Hence, by (2.5), Theorem 3, Lemma 4 and Assumption 1, we have
z 1/2
5.8 S ll']I1? dt+|[ l[2<Ch{<So |]e’”2dt> + <S | = Ilzdt> +h+b(h)},

where C is a constant independent of % and #.
Therefore we have

(5.9 ll = c;;{(S [[— uz dt) +h+ b(h)},
and hence by a similar argument to prove the Gronwall’s inequality we have
(5.10) H ”<C(h +v'h VBGED.
To estimate & substituting (5.10) into (5.8),
¢ t 112 o
{1 arcn {(§ e at)" ety VR + b(h)}.
0 0
By solving this quadratic inequality, we have
t 12 _
(5.11) (S IEa& dt> <Ch+v'h vb(h)).
0
¢
Since (¢, x) = (0, x) + S ¢ di, we have
0

(5.12) lel<Ch+ vH vBR)).

(5.2) follows from (3.6). The proof is now complete.
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6. Stability of a difference scheme

We devide the time interval [0, 7'] at the points {#,}(#=0, 1, ..., N), where
4,=0, ty=T. Let {,.,—t,=%, and P, be the set {0,1, ..., N—1}.
We consider the following difference scheme.

6.1 Dt —Du} =0 for all jEPS, nE Py,
(6.2) &L =a; for all jEP,,
wy =ug if ug >urt! uy =uy if o} >uzt)
(6.3) and
Ny i =up™? if uy <! W=y if uy < ur’}

where %} =u(t,, x;), and the difference operators are defined as follows.
n 31 n+1 n n 1 n n n o__ n
Dtu,- =‘—E (uj — U ), Dxl{j = —}'L— (uj+1—u,- ), Duuj ——Dx(DIuj ), etc.
We show that this scheme is stable. To do this we assume the next condition

as a stability criterion of the difference scheme.

k 1

ASSUMPTION 3. =T

In

THEOREM 6. Under Assumption 1 and 3, we have

J J-1 N
(6.4 S @b S (D) + ke S (D)< C,
7=0 =0 /

-1 J
n=0 j=0

where C is a positive constant independent of h, k and n.

PROOF. Multiplying (6.1) by D,x%?~' and summing with respect to j, we have
7

J-1 J-1
L h3) Dait Dy = 3 Dagth-y- Doty ™ =0.
j=1 j=1

The first term of (6.5) can be rewritten as follows.

g

= J-1
{((Du?)*+ (Dyd; ™% — % S (Dt — D™

= i=1

J-1 h
h E D;u?'D;u?—l= ==
i=1 2 7

<.

By using the boundary condition (Djuy)(Duy™") = (Dyuy_)(Duw;~') =0, the second
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term of (6.5) can be rewritten as follows.

J-1
R -1
'—'h 2 Dx_tu;'_l . Dtuj
J=1

J-1
= 5 ]Zo {((Du3)*— D}« Dod; ™'}

I

h n—1\2 it n__ 7}-1 2
W =3 (D,z:u] (Dxuj ) }'}' —Zk—‘ ]go (Dxu] D,,.u, ) .

Therefore (6.5) is written as

6.6 @iKmmwamwm+§§mmW—wwﬂﬂ

1 J-1 J-1 2
h [? ?;(.) (D4 — D7 ) — 2(Dws — Dy u™h) } =0

=1

Since Du? = (D u} —Dul-)/h, the last term of (6. 6) is estimated from below as

J-1 J-1
% Eo (Dxu;l _Dx”?_,l)z_‘ 21 (Dt“? "“Dn“}l—l)z
i= =
I-1
=k 20 (D7) — 21 ((Dyu?} — D) — (Dt — D))’
= =

>k (1 - ﬂ) E (D}

By Assumption 3 the last term of (6. 6) is non-negative. Also, by the boundary
condition, we have (Duy)*<(Du?)* and (Du2)?< (D3l )’ Therefore, we finally
have

6.7) B S (DY (Da ™) + 3 (D= (D™ =0

Now, multiplying (6.7) by %2 and summing with respect to #,

6.8 B ST (DAl + h 2 (D)< 2h 2 (DY =2h 2 (D)’

n=0 j=0

By the smoothness of a(x), the right side of (6.8) is bounded by a constant C
independent of %, 2 and #n.

By Schwarz’s inequality and #j =u’+Ek Z‘, D%, it follows that

n=0
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J J J n—-1
B GY<2hS) )42k S) (B S DadlY'<C.
i=0 i=0 i=0 n=0
This completes the proof.

THEOREM 7. Under Assumption 1, 2 and 3, we have

N-2 J-1 J—-1
6.9 kh >\ ) (D3 '+ k> (Do)’ <G,
n=0 j=1 7i=0

where C is a constant independent of h, k and n.

To prove this theorem, we prepare the next lemma.

LEMMA 5. Under the same assumption as in Theorem 7, we have

J-1
(6.10) h X (D)< C.
=
PROOF. By the difference equation (6.1), we have
J=-2 J=-2 J-2
h 21 (chu(} )2=h E(Dzrxug—1)2=h 21 (Dxxxaj—l)z-
J= j=1 i=

Since a(x) is sufficiently smooth, this term is bounded by a constant independent
of h. To estimate A(D, )% since (D,u))’<(Dud)?, we first have

4

(D)’ = (D2} — D) /h} < 0 (Da)?
= o (Do) = —= (&' @)+ O™

By Assumption 2 4”(0) =0, and hence A(D,ud)?= O(k). Similarly we have
h(D,u;_)?=0Ch). The proof is complete.

PROOF OF THEOREM 7. From the difference equation (6.1), we have

(6.11) Dy} —Dypyth; =0 for all jEPS, nE P,.

Now put v7 =D,}. Multiplying (6.11) by D,v"! and summing with respect to j,
we have

s ottt
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J-1
(6.12) hS) D} Dt —h 5_} Dot} D} =0

j=1

The second term of (6.12) can be rewritten as follows

—h Z D, v} -Dwi™t

J-1

((D,v})?— Do} - D77’} + Doy «Dwy ' — D7 - Dwy” L

=0

Eu-|§“

k.

By the boundary condition (Dyuy)( Dy~ ) =0, we have

D_,;’U() D{Un g

e Dady 4 Dy « Doy ) =0.

Samely — (D 03 )(Do5 ") is also non-negative.

By the same way as (6.5)—(6.7), we have
(6.13) h Z (D7) + (D}~ )+ 5 E (D v?)— (D} £0.

Multiplying (6.13) by %2 and summing with respect to %, we have

n J-1

(6.14) Eh > 2 (D)’ + h 2 (D}’ <h 2 (D 0%

n=0 7j=0
By Lemma 5, the right side of (6.14) is bounded by a constant independent of 7,
% and »n. This completes the proof.

7. Convergence of the difference scheme

We obtained a rate of convergence of the finite element solution to the exact
solution in §5. In this section we shall derive an estimate of the error between
the finite element solution and the finite difference solution obtained in the previous
section. We extend the discrete solution {#7} to the function defined in the whole
space @ as follows.

iq(t, %) = g‘, uy p;(x)

in the strip t,_<t<tx,
(2, x) = Z ui X; (%)

jEePp
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where £ =(n+1/2)k.
We use the difference operators defined as follows

Dagt, ) = L (0t s+ W= D), Dbt ) = § Wl D=9 D),

Deg(t, %) = % (¢, ) —¢(t—F, %)}, etc.

Let [, ] and || - I be the inner product and norm of L*(h/2,1—h/2), respectively.
THEOREM 8. Put s=1ii,—ilq. Under Assumption 1, 2 and 3, we have

@D el +1 -2 1<CvEs

where C is a constant independent of h, k and 1.

PROOF. (i) In the case that t<#;. Multiplying (1.1) by w,— D, summing

with respect to j and using the boundary condition, we have

o o, 0ns _ ~ ( Ot
(7.2) [‘ucy Ue Dtud]+( ax B ax Dt< ax )) _S__O'

Next, multiplying (6.1) by Da}—1%; and summing with respect to j, we have

_ 0ty 7 (O0a) _ O
(7.3) [Dsitg, D:iig #e] + ( ox D, ( ox > 5% )
=+ {Dxug(DzuS—ué) _Dxu?f—l(D‘ug' —u;)} =0.

Here, if D,u3==0 then we have ay>a,>a, by taking A sufficiently small. Since

W= :Z a,+ <1~—,12§> a + % a,< @y =145,

we have Dad=0. Also if D,u5 ;=0 then D=0, and hence 'the last term of

(7.3) is non-negative. Therefore we have

g ’}Dt<6ad ) _ 0y <)

(7-4) [Dzﬁd, Dtﬁd_ﬁc] =+ ( % —6x— o =

Adding (7.2) to (7.4), we have
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s O, _ 0Oia aa;_~<aad> <
(7.5 W ze = Deaa I + (2 55 Ox Di\ =75 ) 2 =0

Integrating this from 0 to #; and using the facts #4(Z, %) =100, x)=1,(0, %),
we have

(7.6) S Il 2= Dea Wt + 125 Gl

IN

“ 04, _ 0 ~ (B 3
c __ c = %
(¥ e 85 (5 s
(ii) In the case that ¢ >#. Multiplying (1.1) by #; —Du?™' and summing
with respect to 7,we have
J-1 - J-1

(e, ) (s — Do ™"} X, %““ s S (=D %)=0 in 5., <t<t:.

i=1 i=1

By the same way as in the case (i), we have

R auc 612:; D 612,1
@7 e, @ Dyaad + (e, B _p (P )y <o,
On the other hand, multiplying (6.1) by D} ' —; and summing with respect to

7, we have
J—1 , J—-1 ,
h >3 D7 (Doat; ' —u))—h > D (Dt —u))=0 in t;_ <t <t
i=1 F=1

J—-1
Now, % ZDtu *Dau;'—h 3\ Dy,uf - D}~ is estimated from below:

j=1

J-1 h J-1

2 5 3 Day+Dag™) + 2 Sy (D — (D™,

=i

<.

as shown in §6.
Therefore we have

Dty fm;)
ox ’ 0Ox

.8 [Diia, %Dtad—a;] + 5 Il DI = ¢

o 152 enl—1 2 Gl <o.
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Adding (7.7) to (7.8) and using the equality
(@, @~ Di#lal+ [Dyts, 5 Dita—a1 + = Il Drtg I?
1, ., = I oot a2, m
=5 Il % —D,ag I* + 5 Il e — Drizg %,

we have

i — 6uc 612; _ N a‘ﬁd
.9 2 I a—Da I+ ¢ e -5 Ze))

— (B By 4 1

o

Integrating this from #;_, to #;, we have

(7.10) {7 na—baa+ 1% aop-1-& gl

n—1

<ol (e - B iz ar, 5 (%) ).

By using Schwarz’s inequality, the right side of (7. 10) is estimated as

4

<w1D: (G Yaon([ 1% i )" <cw

~1

Therefore we have

t

7.10) §o wa—pacra+1E anp-1 Z arops or
n -1

Combining (7.6) and (7.11), we have successively

t _
(7.12) SO Il %e—D, 4 |? di + [J ) (t*)[Vg C-SE*< CTk.

Therefore by using the equality

0z _(* oal 0z . i
o= B Ean torie ai, il

P -1 -2 Gz <o.

31
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0z —
we have || T I<Ccv%.
Noticing

4

(e =) () = (7 — 2, (0) + S (@ —Day) dt

£ o
+ g df — Dy di,
+_1 0

we have |l (@, —a) () | <C /7.
Also we have

oty =245 Y’ <20°(D sy — Dy, )+ 2h(,—u Y’ < Cr.

Samely we have ety —u})*<Ck. Summarizing the results, we have
@ -z |<c 1/ %. Finaly, by using the equality

z
aw=\" @ arau,
t'n

we have [#, —#,|<C /% for any f. The proof is complete.
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