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Introduction

In this paper we shall give a generalization of the hyperbolicity that was
introduced by H. Kaup. Let X and Y be reduced complex analytic spaces and Y~
be the one-point compactification of ¥, Y’ := YU {w}. Hol(X, Y) and C(X, ¥)
stand for the set of all holomorphic mappings and the set of all continuous map-
pings of X into Y respectively. We put Hol(X, Y )= {(f€ C(X,Y"): f€ Hol(X, Y)
or f(X)={w}}. Kaup called an arbitrary complex analytic space ¥ a hyperbolic
space if for every connected complex analytic space X, Hol(X, Y') is compact
with erspect to the compact open topology.

Then a complex analytic space Y is hyperbolic in this sense if and only if ¥
is taut in the sense of Kobayashi [8] and Wu [11].

Let S be a complex analytic space. If there exists a holomorphic mapping
oy of X into S, we call (X, ox) an S-space and oy the projection of X into S. Then
we will define the /S-hyperbolicity (hyperbolicity over S) of a complex analytic
space in the family of all S-spaces. If a complex space S consists of one point,
the /S-hyperbolicity reduces to the hyperbolicity by Kaup. We shall prove the
following properties concerning the /S-hyperbolicity.

Let X and Y be /S-hyperbolic. Then the fibre product of X and ¥ over S is
/S-hyperbolic. Moreover, a fibre bundle X with the base space S is hyperbolic if
and only if X is /S-hyperbolic and S is hyperbolic [6], [9].

If a complex analytic space X is /S-hyperbolic for an arbitrary complex
analytic space S and an arbitrary projection to S, then X is hyperbolic and the
converse is also true. Let X be /S-hyperbolic. For every point s€ S, the fiber
ox(s) is also hyperbolic.

If X is compact, the space Hol(X, Y) has a canonical complex analytic stru-
cture [3]. Moreover if X is compact and hyperbolic, then Hol(X, X) is a compact

complex analytic space. In our case, if ¥ is compact and /S-hyperbolic, then
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Hol(X,Y) is an /S-hyperbolic complex analytic space. Moreover, if ¥ is compact
connected and /S-hyperbolic, then Holg(Y, Y) is compact and the group Auts(Y,
Y): = Holg (¥, YD Aut(Y) is finite.

1. Definition of /S-hyperbolicity

In this paper, complex analytic spaces are always assumed to be reduced and
countable at infinity. Let Sand X be arbitrary analytic spaces, ox be a holomorphic
mapping from X into S. We call a pair (X, o) an /S-space. We write X instead
of (X, oy) when there is no confusion. In the following, C(X, Y) stands for the
set of all continuous mappings of a complex analytic space X into a complex
analytic space Y. The set C(X, V) is a topological space with the compact open
topology. Let Y’ be the one-point compactification of Y, Y': =YU (0}, where
o is the point at infinity. v’ is assumed to be Y if ¥ is compact.

DEFINITION 1.1. Let (X, ox) and (Y, ay) be /S-spaces. We call a holomoy phic
mapping f from XtoY a holomorphic mapping from (X, o) to (¥, oy) if oyof=ox-
We denote Holg(X,Y):={f € Hol(X,Y): oyof=o0x) and Hols(X,Y'): ={f¢ C(X,Y":
F€ Hols(X, Y) or f(X)={w}}.

DEFINITION 1.2. Let (¥, oy), (Z, az) be /S-spaces. We call (Z, oz) an
/S-subspace of (Y, ay) if there exists a proper injective holomorphic mapping © €
HOls(Z,Y).

For the definition of the /S-hyperbolicity we prepare the following lemmas.

LEMMA 1.3. The space Hols(X, Y is compact if and only if, for any compact set
KC X and any compact set LCY, the set {f € Hols(X, Y): fIKD NL=E¢) is compact.

(PROOF) Assume the set A: ={f¢ Holg(X,Y): f(K)NL=¢} is compact for
any compact sets K and L. Let (K,) be a sequence of compact sets such that
K.CE,CKC - - — X and K;CEKi.; for all i €N.

For the convergence of a given sequence {fn) C Holg(X, YY), we have the
two possibilities:

(1) there exists an integer 7, such that the set {f.: n=>n,} dose not contain
the mapping f(X) = {v};

(I for any integer #,, the set (f,: m=>mn,} contains the mapping f(X)= {v}.

In the case (I, {f,) has a subsequence which converges to the mapping

FX =},
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In the case (I) we have one of the following two possibilities:

(I)! for each integer j and each compact set L, there exists an integer #,
such that f,(K)NL=¢ for n=>n,;

(D" there exists an integer j, and a compact set L, such that Fa(K;) NLy==
¢, for some »# which can be chosen arbitrarily large.

In the case (I)/, {f.} converges to the mapping f(X)= {0}. In the case (D"
we have a divergent {s;} such that f,,j(Kjo)ﬂLo#q{;. The sequence {f,} has a
subsequence {g;} so that g;— f, f € Hol(X, Y). The mapping f belongs to Holg
(X, Y) since Holg(X, Y) is closed in Hol(X, Y). Hence, the space Holgs(X, Y")
is compact since the sequence {f,} has in any case a subsequence that converges
in Holg(X, Y).

Conversely assume the space Holg(X, Y') is compact. Let {f,} be a sequence
in A. Since any subsequence of {f,} is not convergent to f(X)= {0}, we may
assume {f,} has a subsequence {f,,j} which converges in Hol (X, Y). Let gj=fn].
and }gf g;j=/. There exists x; € K such that g;(x;)=y; € L because g;(K)NL=F

¢. We can take lim x;=2x,, x, € K and lim y;=3, € L since K and L are compact.

jeo J->e0

So yo=1lim g;(x,)=f(lim x;)=f(x) and f(K)\L+¢. Hence f€ A; A is compact.
oo o
We will define the mapping

O: XXHolg(X,Y) — XXY

by the formula @(x, f)=(x, f(x)) € XXY for each (%, f) € XX Holsg(X, Y). This

is called the canonical mapping.

LEMMA 1.4. Let X be a connected complex space and @ be the canonical mapping
of XX Hols(X, Y) to XXY. Then @ is proper if and only if the set {f € Holg(X, Y):
F(KDNL=E¢} is compact for any compact KC X and any compact LCY.

(PROOF) For any compact KCX and any compact LCY, we put
A :={f¢€ Hols(X, Y): f(XDNL=F¢},

B :={(x f): (x, f(x)) EKXL).

Define the continuous mapping =: X X Holg(X, ¥) — Holg(X, Y) by the formula
n(x, f)=f. Then n(B)=A and 0"'(KXXL)=B. Hence A is compact if @ is proper.
Conversly, take a sequence {p,} CB; pn= (%, fr)» %, € K, fn € Hols(X, Y).
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Since K is compact, we have a subsequence {x,,j} of {x,} such that lim %n;=%

n >0

.
¢ K. Since A is compact, we can take a convergent subsequence {fn;} so that the

limit f € Holg(X, Y). We have f(%,) € L and, hence F(RONL*¢. So lim pn;=p=

’
nisco
7

(%, f) € XX Hols(X, YD and (% f(x)) € KX L. Hencce {pn) has a subsequence
which converges in B. B is compact.

Let X be a connected comlex space and Y be a complex space. By Lemmas
1.3. and 1.4., the following conditions (a), (b) and (c) are equivalent.

(a) Hols(X, Y") is compact with respect to the compact open topology.

(b) For any compact KCX and any compact LCY,

(f € Hols(X, Y): FIK)NLF)

is compact.
(¢) The canonical mapping

0: XX Hols(X, Y) — XXY

is proper.
Now we can define the /S-hyperbolicity.

DEFINITION 1.5. Let (X, ox) be a connected /S-space and (¥, o¥) be an /S-
space. (Y, oy) is called an X, ox)/S-hyperbolic space if (¥, ay) satisfies one of the
conditions (a), (b) and (¢).

DEFINITION 1.6. (¥, o¥) is called an /S-hyperbolic space if (¥, oy) is (X, ox)
/S-hyperbolic for every connected /S-space (X, ox)-

If op(Y)={s} for some point s € S or the projection oy is a constant map-
ping, then Holg(X, Y)=Hol(X, Y). Hence our definition reduces the definition
of an X-hyperbolicity in Kaup [6] or of tautness in Kobayashi [8] and Wu [111.

If every holomorphic mapping f of X into Y satisfies JX(X)ﬂay(f(X))=qb,
in particular if cx(XDNoy(¥Y ) =2, then Y is X-hyperbolic. Trivially S is an
X/S-hyperbolic space for all /S-space X.

EXAMPLE
Let B be a fibre bundle with the base space S. If the fibre is hyperbolic,

then B is /S-hyperbolic.




RELATIVE HYPERBOLICITY 51

2. Some properties of /S-hyperbolicity

In this section we prove some properties of the /S-hyperbolicity defined in
the section 1.

PROPOSITION 2.1. Let Y be an/S-space. If Y is /S-hyperbolic, then every /S-
subspace Z of Y is also /S-hyperbolic.

(PROOF) Since Z is an /S-subspace of Y, there exists a proper injective
holomorphic mapping z: Z—Y so that oz=oy oz. This mapping ¢ defines a
homeomorphism of Holg(X, Z) with Holg(X, =(Z)). When z(Z) is non compact
(resp. compact) in Y then, Holg(X, z(Z)") (resp. Holg(X, =(Z))) is closed in
Hols(X, Y'), Hence Hols(X, Z') is compact and Z is /S-hyperbolic.

COROLLARY 2.2. Let Z be a complex subspace of Y. If Y is hyperbolic, then Z
is also hyperbolic.

If X is a compact complex space, then Hol(X, Y) has a complex analytic
structure constructed by Douady [3]. For Holg(X, Y),we have the following.

PROPOSITION 2.3. Let X and Y be /S-spaces. Assume X is compact. Then
Hols(X, Y) is a complex analytic subvariety of Hol(X, Y).

(PROOF) Let oy: Y — S be the projection. Then, for a complex analytic
space X

oy*: Hol(X, ¥Y) — Hol(X, S)

defined by oy*(f) =0y of for each f € Hol(X, Y ) is a holomorphic mapping. Since
ox € Hol(X, S) and opx~! (ox) =Hols(X, Y ), Hols(X, Y) is an analytic subvariety
of Hol(X, Y). '

We denote by Aut(Y) the automorphism group of Y and, if ¥ is an /S-
space, by Autg(Y ) the subgroup {f € Aut(Y): gyof=oy)}.

COROLLARY 2.4. Let Y be a compact /S-space. Then Auts(Y) is an analytic

svbgroup.

Let X be an analytic space. If ¥ is a projective analytic variety, then Hol
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(X, Y) is projective algebraic [2]. Hence we have

COROLLARY 2.5. Let X be an /S-space and Y be a projective algebraic variety
over S. Then Holg(X, Y) is projective algebraic.

Let Z be an open subset in complex space X and iz: Z— X be the injection.
We denote the restriction mapping ix. C(X, Y) —C(Z, Y ) defined by iy (f)=
foiz for f € C(X, Y).

PROPOSITION 2.6. Let S be a complex manifold and Y be an /S-space. Then
Y is /S-hyperbolic if and only if it is (E™, £)/S-hyperbolic for all f € Hol(E", S) and
for all n € N.

(PROOF) It suffices to prove the /S-hyperbolicity of ¥ when Y is (E", f)/S-
hyperbolic. Let X be an arbitrary connected /S-space and & be an arbitrary
ultrafilter on Hols(X, Y.

In order to prove the compactness of Holg(X, Y') it is sufficient to prove
that for every x € X we can take an open neighbor hood V of x in X so that & |V
=4%() converges. If & has an infinite number of f(X)= {0} then it converges
to the mapping f(X)= {w}.

Otherwise we devide the argument in two cases.

(D X is non-singular

For every ¥ € X, we can take a neighborhood V of x in X so that V=
E™. Since an arbitrary ultrafilter & |V converges in Holg(V, Y'), i. e. the ultra-
flater .# converges in Holg(X, Y.

(IID) X is general

For every x € X, we can take an open neighborhood V such that it has
a resolution (V, p), where p is a proper surjective holomorphic mapping p: Vv
— V. Then for arbitrary ultrafilter &, o (& |V) is also an ultrafilter bases.
Since Holg(V, Y is compact, p*(& |V) converges in Hols(V, Y.

Therefore, an ultrafilter & |V converges in Hols(V, Y.

PROPOSITION 2.7. If Y it /S-hyperbolic, then every fibre Yy :=07'(s), s €S
is hyperbolic.

(PROOF) For any point s, we have Holg(X X {s}, Y )=Hol(X, Y. For any
compact sets KC XX {s} and LCY, we put

={f € Hols(XX {s), Y): (K)NL=F}.
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If we write K=MX {s} for a compact set M in X, we have A= {f € Hol(X,
Ys): f(M) N Ls==¢}. Since A is compact. Y is X-hyperbolic for any X [6].

PROPOSITION 2.7. An analytic space Y is hyperbolic if and only if it is /S-
hyperbolic for any S.

(PROOF) Consider the case S={s}. Since Hol,; (X, Y )=Hol(X, Y), we see
that Y is hyperbolic if it is /S-hyperbolic. Conversely, if Holg,(X, Y') is not
compact for some S, and for some (X, ox), then Hol(X, Y') is not compact beca-
use Holg (X, Y) C Hol(X, Y") and Hols,(X, Y) is closed in Hol(X, Y).

3. Hyperbolicity of fibre product

In this section we will consider the hyperbolicity of the fibre product of /S-
hyperbolic spaces.

Let (XXY)' be the one point compactification of a product space XXY.
We put X'=X U {0}, Y'=Y U {0, and (XXY)=XxYU {0}. We define the
mapping ¢: X' XY'—(XXY)' by the formula (%, y)=(x, ) for (x, ) € XXY
and o(x, y)=ow for (x, ) € X XY'—XXY. This mapping is surjective and
continuous.

PROPOSITION 3.1. Let X, Y and Z be /S-spaces. If X, Y are Z/S-hyperbolic,
then the fibre product XX sY of X and Y over S is Z/S-hyperbolic.

(PROOF) The mapping s induces the continuous mapping o, of C(Z, X)X
C(Z, Y") into C(Z, (XXY)"). The restriction

oy Hols(Z, X)X Hols(Z, Y) — Hol(Z, XX sY)

is injective and surjective by the definition of fibre product.

Since the mapping o, sends the all of {w,} X Hols(Z, ¥), Hols(Z, Y) X {w,}
and {o;} X {w,} to {0}, the image o,(Hols(Z, X') X Holg(Z, Y)) is equals to Holg
(Z,XxsY) U {0}, which is Holg(Z,(X X sY)). For an arbitrary ultrafilter & on
Hols(Z, (XX sY)') and an arbitrary z € Z, we can take open neighborhoods U,
Viand V, of z in Z and ultrafilters % on Holg(Z, X'), & on Holg(Z, Y') such
that

f|U=d*((ﬂ—/]V1)x(f//IVg)>-
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The ultrafilter & |U is converges because dltrafilters &' |V, and &V,
are convergent. Hence Holg(Z,(XX sY)) is compact. XX sY is Z/S-hyperbolic.

COROLLARY 3.2. Let X, Y and Z be complex analytic spaces. If X,Y ‘are Z-
hyperbolic, then X XY is also Z-hyperbolic.

4. Hyperbolicity of fibre bundle

PROPOSITION 4.1. Le X be a fibre bundle with the base space S. If the fibre
X, =037(s) for each s € S'is hyperbolic, then X is /S-hyperbolic.

(PROOF) Let Z be a connected /S-space, & be an urtrafilter on Hols(Z, XD
and the mapping ox be'_the projection of X into S. Assume first that lim# (2)
=x, x € X. Since Xisa fibre bundle, there is an open neighborhood V such that
V X X,=203(V), for every s€ S. Put U :=02(V), then & |U C Hols(, V %
X,), V can be assumed to be a hyperbolic subdomain.

Since V, X, is hyperbolic, the ultrafilter & |U converges. Then putting lim
& |U=fy, we have fy € Holg(U, ¢2(@)) or fy=wy. For another open neighbo-
rhood V' we have the mapping fy- in the same way for the ultrafilter |V
Assume VN V'2=¢ and let ¢yy be the transition mapping, Then fy|U N U =¢yv
(fo- |UNUD. Thus a holomorphic mapping f is defined on U U U'. So we have
a holomorphic mapping f defined on Z which is a limit of &#.

THEOREM 4.2. Let X be a fibre bundle with the base space S. Then X is hype-
rbolic if and only if it is /S-hyperbolic and S is hyperbolic.

(PROOF) [6] and Proposition 4.1.
We can prove the next theorem in the same way.

THEOREM 4.3. Let (X, ox) be an /S-space. If for every point s € S, there
exists an open mneighborhood U of s such that o (U) is hyperbolic, then X is /S-
hyperbolic.

5. Mappings to /S—hyperbolic space

PROPOSITION 5.1. Let S be hyperbolic and (Y, oy) be /S-hyperbolic. Then
there is no nonconstant holomorphic mapping of a complex plane C into Y.

kifc‘:k-l‘.’“.::"., i e B AN
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(PROOF) For a holomorphic mapping f € Hol(C, Y), put ¢=oyof. Since S
is hyperbolic, ¢ is a constant mapping [6]. Thus Im ¢gyof= (s} for some s € S.
Hence f(C)=0s%'(s). By Proposition 2.7. the fibre s3'(s) is hyperbolic. So f is a
constant mapping.

Moreover assume Y and S are manifolds, and Y is compact we know that ¥
is hyperbolic when S is hyperbolic [1], [10]

We will generalize Proposition 5.1. For /S-spaces (X, oy) and (Y, oy), wWe
put I';(X, Y) :=(f € Hols(X, Y): f, is constant}, where f; :=f|o%(s), s € S.

PROPOSITION 5.2. If Autg(X) N I'(X, X)==¢ for some s € Sand Y is X/S-
hyperbolic, then Holg(X, Y)=I (X, Y).

(PROOF) Consider an arbitrary mapping f € Hols(X, Y) and points a==3, a,
B € X,. Since Auts(X) N I'y(X, X) = ¢, there is a sequence {¢,} in Auts(X)
such that lim ¢,=¢ € I'\(X, X).

Let ¢(X,)={r}, r € X;. We can take neighborhoods U, of r such that ﬂm
={r} and U, D U, -+ . For any compact set K in X, and any intege; k,
there exists an integer #, such that ¢,(K) C Uk, for all #>#n, Then, putting
Gt =n ay=¢(a) and B,=¢,(B). There is subsequence {¢,,} of {¢,} such that
G (Bnp) = B> Pnplan,)=a. Thus putting g,,=fop,,, we can assume g,,— g €
Holg(X, Y') since Y is X/S-hyperbolic. For an arbitrary compact neighborhood
L of 7, there is an integer k so that g,,(L) D g,,(Ux) =S¢, (Ur) DO f(K) for all
k>ky. Thus g, (L) N f(K) = ¢ for all n, i.e. g € Hols(X, Y). Hence f(B)=
lim f o, (Bn,) =1im g,,(8s;,) and f(a)=lim fo¢, (a, ) =1lim g, (a,,). Since a,,
— 7 and B,, — 7, we have f(a)=f(B). Hence f ¢ I' (X, Y).

REMARK. The complex plane C satisfies the condition Autg(X) N I'y(X, X)*¢.
Hence Proposition 5.2. implies Propesition 5.1.

In the case the projection ¢y is constant or S= {s} we have

COROLLARY 5.3. If Aut(X) NI'X, X) &= ¢ and Y is X-hyerbolic, then Hol(X,
Y)=rx, Y.

PROPOSITION 5.4. Let Y be an /S-hyperbolic space and X be a connected com-
plex space. If there exists a proper discrete holomorphic mapping © of X inio Y,
then X is /S-hyperbolic.
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(PROOF) Let Z be a connected /S-space. Let & be an ultrafilter an Holg
(Z, X). Then (%) is an ultrafilter on Hols(Z Y"). Since Y is /S-hyperbolic,
7,(&) converges in Holgs(Z, Y¥) or to wy, oy being the point at infinity of Y.
Assume 74,(&) converges to a holomorphic mapping f € Hols(Z,Y). For a point
z € Z, put lim & (z2)=x, x € X. Since r is proper discrete, we can ta ke anopen
neighborhood U of x such that, for an arbitrary open neighborhood V of £ and
an arbitrary connected subset M which is contained in 7Y(z(V)), we have M N\ U
=+ ¢ implies M C V. Thus, for the open neighborhood U of x, there exists an
F € & so that F(2) € U. Since F is continuous there exists an open connected
neighborhood W so that F(W) C V.

PROPOSITION 5.5. Let X be a connected compact /S-space. If Y is an /S-hy-
perbolic complex space, then each irreducible component of Hols(X, Y) is an analytic

cover of a subvariety of Y-

(PROOF) The canonical mapping @: XX Holg(X, Y) — X XY is proper and
Holg(X, Y) is a complex space. For any fixed point %, in X we see that @ (%o,
f) — (%o, f(x,)) is proper and holomorphic. Identifying {%¥,} X Hols(X, Y) with
Holg(X, Y and {x)} XY with ¥, we see that the mapping @,,: Hols(X, Y)—Y
is proper and holomorphic. So the set 0z;(») = {f € Hols(X, Y): f(x) =y} is finite
[6], [10]. Thus, by the proper mapping theorem, 0,,(Hols(X, Y)) is a complex
subspace of ¥ and dim Hols(X, Y)=dim mxo(Hols(X, Y)). Let W be one of
irreducible components of Holg(X, Y). Then the mapping @ W — 0, (W) is
a covering mapping. Since Y is /S-hyperbolic, @, ,-image of every component of
Holg(X, Y) is also /S-hyperbolic.

COROLLARY 5.6. Let X be a connected compact complex space and Y be a hype-
rbolic space. Then every irreducible component of Hol(X, Y) is an analytic cover

over a subvariety of Y.
(PROOF) Put S={s} in Proposition 5.5.

COROLLARY 5.7. Let X and Y be compact complex spaces. If Y is hyperbolic,
then Hol(X, Y) is hyperbolic. If Y is /S-hyperbolic, then Holg(X, Y) is /S-hyperbolic.

Let Y be a compact /S-space. Assume Y is /S-hyperbolic. Then Hols(Y,Y)
is compact. Since Y is compact, Aut(Y) is open in Hol(Y, ). Auts(¥Y) is also
open in Holg(Y, Y). Since Y is /S-hyperbolic, Auts(Y) is closed in Hols (Y, Y ).
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Hence Auts(Y) is a union of components of Holg(Y, Y). As a complex subgroup
of Aut (YY), Auts(Y) is a complex Lie group.

PROPOSITION 5.8. Let Y be a connected /S-space. If Y is compact and /S-
hyperbolic, then Auts(Y) is a finite group.

(PROOF) Since Y is /S-hyperbolic, Holg(Y, ¥) is compact. By Proposition
5.5. the mapping @,,: Holg(Y, Y) — Y is proper, fibre discrete and holomorphic.
Then the restriction of @,, onto Autg(Y") defines an analytic covering of Auts(¥)
onto @,,(Auts(¥Y')). But the space 0, (Auts(Y)) is hyperbolic since Yopap is
hyperbolic. Then Auts(Y) is hyperbolic, by Proposition 5.5. Moreover, Auts(Y")
is compact in Holg(Y, Y).

Hence Autg(Y') is a finite group [4].

PROPOSITION 5.9. Let Y be a compact and /S-hyperbolic space. Then any

surjection in Holg(Y, Y) is an automorphism.

(PROOF) Let ¢ € Holg(Y, Y) be a surjection. There exists a sequence {7}
of integers so that lim ¢™*=f, f € Holg(Y, Y). Then f is also a surjection. We
can take a sequence {7} such that my :=mn;,,—n; >0, m;—> + o and lim ¢™ =
g € Holg(X, Y). For an arbitrery point x in X we have ¢™(¢p"(x))=¢ " +1(x).
Hence g(f(x))=f(x). Since f is a surjection g=idy € Auts(Y). As Autg(Y) is
open in Hols(Y, Y), there exists an integer m so that ¢™ ¢ Auts(Y). Hence
¢ € Autg(Y).
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