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1. Introduction

We consider a statistical prediction problem invariant under a certain group
of transformations. Hora and Buehler [2] treated the problem of the point
prediction and obtained a representation of the best invariant predictor by using
the Haar measure on the group. Takada [6] extended the assumptions used by
them and obtained an alternative expression of the best invariant predictor
which is more suitable for applications.

In this paper we consider the problem of the prediction region. We are
concerned with two risks for each prediction regions, the size and average volume
of the region. The best invariant prediction region is defined as the one which
has the smallest average volume among the class of all invariant prediction
regions with the preassigned size 1—e¢. The purpose of this paper is to obtain a
representation of the best invariant prediction region by using the Haar measure
on the group. The method based on an adequate statistic is considered by Ishii
[3] and Takada [7].

In Section 2, we define the statistical prediction problem. Under several
assumptions, we express the best invariant prediction region by using the Haar
measure on the group in Section 3. In Section 4, we obtain an alternative
expression of the best invariant prediction region. In Section 5, some application

is considered.

2. Group invariant structure of the prediction problem

Let X be an observable random variable and Y a future (therefore unobse-
rvable) random variable. Let (X,%) and (9,E&) be spaces of X and Y, respecti-
vely. Let (8, W=(EXY, BXE) and P={P,; 60} be a family of probability
measures on (8,%) such that Z=(X,Y)is distributed according to P,, 6@, and O
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a parameter space. Let ® be a group of one-to-one transformations acting on the
space ¥, 3 and 0, mapping each onto itself, and let © be a group of transforma-

tions on Y-

ASSUMPTION 1. ¢ is invariant under ®, that is,
P, (gA)=Py(A),  Ash gc®, 00
and ® satisfies that
@ D g(x,3) =(gx,[g;%19); ge®, xe¥, yeD,
where [g;%] ®

After observing X=2x, we want to construct the region in which the value
of Y is contained. We consider a randomized prediction region, which is defined
as follows. Let ¢ be a measurable function on 3 with the value in [0,1].
After observing X=X, the prediction region is given by {¥; cb(x,y)zu}, where %
is a realized value of uniform random variable on [0,1] which is independent of

(X,Y)-

DEFINITION 1. A prediction region is said to have a size 1—¢ if
E(p(X,Y)I=1—e f<0.

Another risk of a prediction region that we adopt here is the average volume

of the region,

@ D £, (X, 5]
where & is some s-finite measure on (9, E).

DEFINITION 2. A prediction region is said to be invariant under ® if

(g2, ) =d(%, ), 2:®, xeX, ye.

An invariant prediction region is said to be best if it minimizes (2.2) for all 6@
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among the class of all invariant prediction regions with size 1 —e.

ASSUMPTION 2. €& is a relatively invariant measure with modulus J, i.e.,
£gC)=J(2)E(C), &G, C:E,

and for any ge®, J([g;x]) does not depend on xeX.
Therefore for simplicity, we shall write J(g) instead of J([g;xDD.
ASSUMPTION 3. 0 is isomorphic to ®.

Let 6,0 be the point to corresponding to the identity element e of ®. The
isomorphism is established by =g, if 66 corresponds to ge®. We shall identify
the group element g with the parameter value #and simplify the notation by
letting 6 designate g, so that we shall consider =06

ASSUMPTION 4. ® acts freely on 9), i. e., if g#8&, g@y#y for any ye3 and gs@
where & is the identity element of ©.

The following lemma states the basic property of the transformation [g;x]
introduced in (2.1). For the proof, see Lemma 2 in [6].

LEMMA 1. If Assumption 4 holds, then for any g, g'e® and x&X,
(2.3) [g'; gx]=Lg’; gx1 [g; x],
2.4 [g; 217 =[g™"; gxl.

For a prediction region ¢, let

(2.5) 7100, P)=Eo{1 —¢(X,Y)},

(2.6) a(8,9) =J(67Es ({60 9)8(a).

LEMMA 2. If Assumptions 1 through 4 hold, then for any invariant prediction
region ¢, r1(6,9) and r,(8,¢p) does not depend on 6<6.
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PROOF. It is easy to see that r.(6,¢) does not depend on ge®. By the

invariance of ¢ and Assumption 1,

(6,8 = 7D E( |07 X, 1075 I

R Oe DECY
Since the family of probability distributions of X is invariant under ® by (2.1);
1106, 8)=Ea, (9.9 €@,

which implies the result.
3. Representation of the best jnvariant prediction region

In this section, we shall express the best invariant prediction region by

using the Haar measure on the group.
ASSUMPTION 5. ® is a locally compact topological group with a o-field .

Let p and v, respectively, denote the left and right Haar measures 00 (®,D
and 4 denote the modular function. For the details, see Chapter 2 of Nachbin

[41.

ASSUMPTION 6. There exists a space M and a one-to-one bimeasurable
map = from X onto % M such that if (%)= (h,a), then 7(gx)=(gh, @)

To simlify the presentation, We shall put x=(h, @) and gx=(gh, a). Assu-
mptions 3 and 6 imply that the probability measure on M induced from X does
not depend on g<®. Hence we shall denote it by 4

ASSUMPTION 7. The density function of X with respect to puX A can be

expressed in the form
(8.1) JACE XD he®, asM, 06,

whereas, given X=1%, the conditional density function of Y with respect to £ can
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be expressed in the form

3.2) Fo(067% 2191672 ] (67D, e, xe¥, 00,

where fi(h,@) and f,(y|x) are the density function and conditional density
function under Py, respectively.

Now we shall express the best invariant prediction region by using the
right Haar measure v. For this we need the following lemma.

LEMMA 3. If Assumptions 1 through 7 hold and if ¢ is an invariant prediction
region, then for any he®,

3.9 1o =4 ({§ (1-00h, 017,07, X007 013107, 0757
X E(dy)v(de)i(da),

G0 1o 9 =4 §§§ 60,027,070 @02y 2.
PROOF. By Assumptions 6 and 7,

7o, )= SSS [1—¢Ca, a1 (g, Df L 3lg, DE(d)u(dg)i(da)

— AU SSS [1—C g'h, a0 IfAC g'h @ (3] g ks D)EY)u(dg')i(da),

where the second equality follows from the transformation g=g'% and the fact
that u(dg)=4(h)p(dg").

By the transfromation y'=[g’; »,a] 'y and the invariance of ¢,

1180y ) = () SSS [1—¢h a1 gh ) Folg's haly g ha](g")
X &(dyHu(dg')(da).

Then by the transformation § =g~ and the fact that v(df) =u(dg'), we have (3.3).
By the similar way, (3.4) is obtained.

On the basis of Lemma 3, we sall prove that the following prediction region
is the best invariant prediction region;
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(3.5) =1 if FxN>0
=y if F(x,y)=¢
=0 if Fx,y)<c,
where
Sflca-lh, Df (067 219167 O™ ¥(dd)
(3.6) = e e

(o= n@r@y@n

and ¢ and 7 are constants such that ¢>0 and 0<r<1.

THEOREM 1- If Assumptions 1 through 7 hold, then the prediction region d:*

given by (3.5) is the best invariant prediction region.where ¢ and v are chosen such

that E, (" (X y))=1—e.

PROOF. First we shall show that ¢ is invariant. Substituting g(x,y)=1(g%,
[g; x]y) in place of (x,y), and using the transformation f= g6 and the fact that

v(d(})_—_d(g‘l)y(dﬁl), we have that
(3.7 8 £,(07 ghs Df (167 gh,allg;h,aly07 gh. @] 6~ Hv(d)

=4(g" S £.00 7, D FL(0)75 &hs a1lg h,aly|6' "k, 2 J((ghH™Hv(d".

Since by 2.3 and (2.4)

[(g6)7; gh,allg; h.al= (0~ h,al (g gh,allg: h,al
=[6'";h,al

and J((g0) =7 (g™, (8.7) becomes
g1 Ce™ A hf bl |0 h 60>,
By the similar way, we have
(7.7 g7 62v@0) _ag 1™ | 107 2T GWED,

so that F(g(x,y))=F(x,y), which implies that ¢* is invariant.
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Now we shall show that ¢* is the best invariant. Let ¢ be any invariant
prediction region withe size 1—e. Then from (3.5) and (3.6),

(605,90 — 8, ) (| £107 R @ £.C0075 551070 (67w (a)
~c| 76 70 wam) <o,
so that by Lemma 3,
71060, ™) — 11060, ) <c (72060, ) — 12(60, ™).

Hence by Lemma 2 and ¢ >0, we have the result.

4. Alternative expression of the best invariant prediction region

The main difficulty in applying Theorem 1 to a specific prediction problem
is to verify Assumptions 6 and 7. Therefore we shall present sufficient conditions
for them, assuming always Assumptions 1 to 5. This enables us to rewrite the
best invariant prediction region in a form which is more tractable for some
applications.

CONDITION 1. There exists a relatively invariant measure » on (¥,%) wlth
modulus J; and ® is dominated by % X ¢ and the density function of Z=(X,Y)
can be expressed by

“.1 J:(67DJ (6™ Hp(67 2, 2e3, 0¢6.
Then by (2.1) the density function of X with respect to » is given by
(4.2) J(67D0p.(67 ),  xeX, 620,

where p,(x)= Sp(x,y)é(dy)-

CONDITION 2. There exists a Borel set Be3 (Borel cross section) which
intersects each orbit &x= {gx; ge®) precisely once.

CONDITION 3. X is a separable complete metrizable locally compact space
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and © is a separable complete metrizable locally compact topological group

acting freely and continuously on X.

Under these conditions, it follows from Lemma 4 in [6] that Assumptions 6
and 7 are satisfied by taking B as I, and that

(4.3 (67, @) =T,(67Dp(07%) / S J(Dp:(gadv(dg)
and
4.4 F (L6755 x]yl07 )= (07 (%, ) /56775,

where x=ha. Hence, we have the following result from (3.6), noticing that

]1(0—1}") =]1(0~1)]1(h>-

THEOREM 2. If Assumptions 1 through 5 and Conditions 1 through 3 hold, then

the best invariant prediction region is constructed from <{>* given by (3.5) with
(4.5) F(x,y) = S ]1(6_1)](0'1)P(0‘1(x,y))V(dﬁ) /S ]1(«9_1)](0'1)171(0"136)14(dﬁ),
where ¢ and v are chosen such that Eo (¢ (X, YD) =1—=.

REMARK 1. By applying this result to location, scale, and location-scale
parameter family, we have the result obtained by Takeuchi [8].

5. Example

In this section we consider the example in [6]. Let Xy, .-esXns X,., be inde-
pendently and identically distributed p-dimensional random vectors with the
density function with respect to Lebesgue measure Onl E? (p-dimensional Eucli-

dean space),
LAl A =)D

where f is some known function, A is a lower triangular matrix of order p with

positive diagonal elements and | 4| denotes the determinant.




INVARIANT PREDICTION REGION 87

Suppose that §=(u, 4) is unknown. We shall denote by G(m) the set of all
lower triangular matrices of order m with positive diagonal elements. Then

O={0=(u, A); ucE®, 4¢G(p)}. The following partitions are used in the sequel:

X1> . [ ) <A 0 >
5.1 X1;= 2 ) =1, .euy 2+l = ! B = . ’
G.1) (XZL : " “ K/-lz 4 Az Az

where X; and g, are p; X1, A3eG(p,) and AneG(p,) (py+ p.=p).
We consider the problem of predicting ¥ =X2,, after observing X=(X,,..

LX)

X,, X..). Define the following transformation ge ® on 3,
g(xly e ey xn) xn+1) = (b+ Cxl: =40y b+ an: b+ an+1>, g‘:' (b, c)’

where beE” and CeG(p). We shall view & as the Cartesian product E? X G(p)

with the following group operation;
(bl’ Cl)(b21 Cz) = (bl + Clbz, Clcz>, (b, CD_I =(— C—lb: C—]).

Then it is well known that @ is a locally compact topological group and that
the right Haar measure is given by

" & _
(5.2) v(d) = I (1) P dudA,
i=1

where 2;; (=1,...,p) are the diagonal elements of A, du and dA denote Lebesgue
measures on E” and G(p), respectively (see Fraser [1], p. 148).

Taking Lebesgue measure on E”t as &, we [6] showed that Assumptions and

Conditions in Theorem 2 are satisfied, and that for 8= (u, A4)
]1(0—1)= |A| _nl Aul —-1’ ](0_1> = 1/1221 =

and
PO, y)) = zz FU A = [,

where the same partition as (5.1) is used for 4.

Hence by Theorem 2, the best invariant prediction region is constructed
from ¢* given by (3.5) with
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S | 4]~ ?{lfCI [ A7 e — )| |Dv(at)d

(5.3) F(x,y) = =
(1417 B 117t =d 15 ¥ A5 b= D] 1920,
=1
where F5(|u||D = Sf(] lue| |2+ | |v] |Ddv (ue E** and veEP?) and v is (5.2).
Suppose that the random vectors are normal. Set

X=X/, S=2&-% X-X),

=1

and

W=(wy...,wp) =A"(Kns:1—X),

where AA’'=S and AG(p).
Then the tedious but straightforward calculation shows that F(x,y) defined
by (5.3) is proportional to the conditional density function of Wo= Wy 415+ >

w,) given W.=(w,,...,w,), which is given by
. el
W | W) = II

n+l-p ’

p=py+1 n_uzp(’}—;ﬁ> (1+o2w?) ?

p—1
where a§=1+%+2 wi.
i=1

REMARK. In the case of the normal distribution, the same ¢onclusion can
be obtained by using an adequate statistic. For the detailes, see [3] and [7],
though the conditional density function of W, given W, which is calculated in
[3] is not correct.

The best invariant prediction is very complicated. Schervish [5] proposed
an invariant prediction region which is more useful than the best invariant

prediction region from the practical point of view.
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