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In [2] K. Kishimoto, M. Mimura and K. Yoshida gave some examples of
diffusive Lotka-Volterra system with three or more species which exibits stable
spatio-temporal oscillatory phenomena. We employed there the bifurcation
technique and evaluated the “‘stability constant K’ which was defined by S.-N.
Chow and J. Mallet-Paret in [1]. Since the calculation of K in [2] was long, we
only gave the final result. Thus in this note we not only give a detailed calcu-
ation of K but also show the existence of the center manifold, from which the
Hopf bifurcation theorem follows easily.

The system which we consider in this note is the diffusive Lotka-Volterra

system parameterized by « in one dimensional interval;

W0:1) 1t ) = 0:(a) (U (s %) + (7o + ;3 s 18,Ct )15y )
0<x<n, £330, i=1,--+, d

subject to

(0.2) (2:):(2,0) = (u;) (¢, m)=0,

where - =d/dt. Here u;(,x) is the density of the i-th species at time ¢ and at
position x. The diffusion coefficients ¢;(«) are positive constants. The diagonal
coefficients a@;; are nonpositive constants, which reflects intraspecific competition,
while the off-diagonal coefficients @;;(i7j) are real constants. This means that
the interspecific relations may be competitive, cooperative, prey-predator type

or combinations.

1. Decomposition of the system

Assume that (0.1) has a constant equilibrium solution
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U= col (i, #has + - - » Bha)> %; > 0,
where col (---) means a column vector. Then, (0.1) is written as
4
ty=0;(a) (%) zzt+ 21 ﬂij(uj—ﬁj)%i,
5=
which is rewritten as
a.n U=D(a)U,,+ AU+ N,
if #; is replaced by #;—1; and we use the vector notation : U=col (%1, ...» %a)>
D(a) is the d X d diagonal matrix whose (¢,7)-components are o.(a), ACU) is the
d % d matrix whose (¢, j)-components are —ay;1; and
NU)=col (751(”1,--->ud)’---and(u1:--~,ud))
with

a
10Uy oo e s Ug) = 2 Tiglhilhje
7=1

Let us now consider the eigenvalue problem for the linear part of (1.1) with

zero Neumann boundary condition;

{ AV () =D(a)V(x)+ ADDV(x)
1.2)

V2(0)=V,(m)=0

If we take the Fourier expansion
V(x)=>) @, cos nx
n=0

with constant vectors
m.,,'_—'"COl (@nli cees (Dnd)y
then the eigenvalue problem (1.2) is equivalent to the one

(1.3) 20, = (AT = #D(a))Bn n=0,1, - -
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Throughout this note we assume that

(H.1) for some n=mn, there exists a real number 6 > 0 such that, for any a with
—0< a<4d, the eigenvalue problem (1.3) has a unique pair of complex conjugate
eigenvalues A(a) and :2-(2_)- such that

Aa)=pla)+iv(a)=w, >0,

where p/(a) is the derivative with respect to a,

(H.2) all the eigenvalues except for A(a) and —X(_a) have strictly negative real
part for any n.

Under these assumption we have the spectral decomposition

L0, )=PDQ,

where L2([0,71)=(L*[0,7]))? and P it the two-dimensional eigenspace correspo-
nding to the eigenvalues (@) and A(a).

In what follows we decompose the system (1.1) into the one restricted to P
and the other. Let @, be the eigenvector corresponding to A(a) and put

@=col (@y,...,0,)=Re @, and TF=col (¥,,...,¥z)=Im @D,

Then @ and ¥ are linearly independent but not necessarily orthogonal.

Let us put
(1.4) U(t, x)=2(1)®,, cos n0x+£(t—)5no cos mx+ W(t, x)
with a complex valued scalar function
2(8)=u(t) +iv(t)
and define the projection I from L*([0,7z]) to P by
IV )]1=IL(V)®cos nyx~+ ILLVITcos nx

with

H[V]=61<S: V(x) cos n,dx, ¢>+32<S: V(%) cos ndx,T >,
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Ez[V]=ez<S V(x) cos nyxdx, ®> —l—e3<S V(%) cos nexdx, T >,
0 0
where < -, ->> stands for the scalar product in RY,
dx = 2 dax, ’
w

0= <T,T>/(<0,0><T,T>—<0,T>Y,
€= — <!D,T>/(<¢,Q)> <w',w> - <Q’w>2)7
0= <0,0>/(0,0><T,T>—<0,T>".

Insert (1.4) into (1.1) and apply II to the both sides. Then we have

4(8) = () — a(adv(®) + 5 T INCDI,

1.6 | 58 = o(@u( + ula(® — 3 LN,

W=D()W,+ AU+ [1—H][NTDJ.

2. The center manifold and the Hopf bifurcation

Let HZ([0,7]) be the space of real vector valued L? functions whose deriva-
tives of order up to two belong to L*([0,7]) and put H%([0,z)= (V€ H*[0,x]);
V,(0)=V,(x)=0}. Then by the same way as in [3] we have

THEOREM 1. Let k be an arbitrary fixed positive integer. Then there exist a
zero meighborhood # XI in R*%(—0,0) and a k times continuwously differentiable
Function G on Z X I with values in QH 2, satisfying the following conditions:

i) G(0,0,&) = 0, (8G/8%,)(0,0,0)=(8G/8%,)(0,0,0) = 0

i) for any a€ I, let

()= {(VEHY; V(x)=u® cos ngx+v¥ cos mx+ G(u,v,a), (u,v) € Z}.

Then (&) is locally invariant in the sense that if, for any V€ A (a) 'such that
(I, [V], ILLVD) € %, the solution (u(?), v()) of

a(5) = iau(®) — w(adv(® + -5 TLNWU:)]
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1

o) = w(adu(®) + p(adv(®) — 5 I, [IN(Ug) ]

with
1 1
u(0) = 5 I, [V], v(0)= — o IL[V],

Us(t, ) =2()@,, cos nex+2(8) By, cos nyx+ Gu(d), v(D), a,
2()=u(t) +iv(®

stays in %, then Ug(2, x) defined as above with the solution (u(t), v(1)) is the unique
solution of (1.1) with zero Neumann boundary condition.

A (@) is locally attractive, that is, if the solution U(t, x) of (1.1) with zero
Neumann boundary condition satisfies (I, [U(t, +)], II, (U, <)1) € & for 0< t <T,
then there exist positive constants C and v independent of t such that

”U<t: '>_H[U(t, ')]_ G(M(t), U(t), a)”ﬂzgce—Yt“U(O’ .)”HZ’

where u($) =11, [U(t, - )] and v(£)=ILLU(, -)].
From Theorem 1 we have, easily,

THEOREM 2. Under the assumption (H.1) and (H.2) the spatially inhomogene-

ous Hopf bifurcation occures a a=0.

3. Calculation of stability costant K

As is stated in Introduction, we make use of S. -N. Chow and J. Mallet-
Paret’s theory in order to investigate the stability of the Hopf bifurcation. To
do so let us remember their theory.

Let us write, in general, an evolution equation

(3.1 z=A(a)z+ F(z, o)
F(z,a)=0(]z|%
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in a certain Banach space X, where A(a) is a closed operator from X to X with
domain Y CX, Y being a Banach space continuously and densely contained in X.

Assume that
F: Y X(—08,0)—X

is sufficiently smooth, and further assume that A(a) has only eigenvalues which
have the following properties;
i) A pair of complex conjugate eigenvalues 2(a) and 2(«) such that

W) = pla) +io(a), w(0)=w>0
2(0)=0, £ (0)70.

ii) (H.2) holds
Then we have, as usual, the spectral decomposition

X=PDa,

where P is the two- dimensional eigenspace of A(a) corresponding to 2(a) and

2(a). By making use of this decomposition we rewrite as 3.1

x=Ap(a)x+ Fp(x,y,a),

(3.2) {
y=A¢(ady+ Folx,y, ),

where z=x+y € P®Q and 4p(a) (resp. Ag(@)) and Fp(x,y,a) (resp. Folx,y,a))
are restrictions of A(«) and F(x,y,a) to P (resp. Q). Let us denote the matrix
representation of Ap(a) by

|:ﬂ(0é) —o(a) }
o(a) pla) J-

Expanding (3.2) in the Taylor series we have

).:1:/1(&>x1_(1)(d)x2 + 22 Bl’(x!y! Cl),
=
:‘Cz=w(a)x2+ﬂ(a)x2 _l_ 22 Bg<x9y:a)y
=
7=

= Ag(a)y +J()x*+ N(@)xy+ E@y' + T(x,ady’+ ...,
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which, in polar coordinates x=(7cos 6, 7sin ), becomes

7"=F1(07 a>y2+ r{ﬂ(“) + G2<a1 y’ a)y} + 72(:3(0: y’ d) + rac4(0, y7 a) + ..
(3.3) 19=a)o+7’D3<ﬁ’y,d)+7’2D4(0,y,6¥)‘I‘--

y=as above but with x=(rcos 6, rsin §).

Then let us define K by

K=EK* 4 K,
K*— 1 (% 1
= e {C4<0y 07 O) - — Cs(ﬁ, 0’ O)D3(6’ 0» 0>}dﬁy
27 Jo wq
, 27
g %g w*(6)T(0)(cos 6, sin 0)°d6,
0

where w*(6) is the unique 2z-periodic solution of
G G(6,0,0) + (6w, + w*(6) Ao(0) =0.

As is stated in [1], note that for each @ € (—4,6), J(a) is a bilinear form in the
x-space R’ taking values in the y-space; in the above definition J(0) acts on the
point (cos 6, sin §) € R®. Since G,(6,0,0) arises as a coefficient of y in the diffe-
rential equation involving 7, G,(6,0,0) for each 6 is linear functional on y. Also
note that the property K70 depends on the differential equation at «=0.

THEOREM (S. -N. Chow and J. Mallet-Paret). Suppose that there exists a
center manifold taking value in QNY. If £ (0)K<O0, then the Hopf bifurcation is
stable.

Now let us write (1.6) in polar coordinates as

P il % (ILNCDIcos 6— IL,L N Jsing},

1

3.5) 3 b=wla) — E7

{ILLN(U)] sin 6+ ILLN(U)] cos 6},

W =as in (1.6) but with (%,v) = (vcos 4, rsin ).

Then,
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C,(6,0,0)=C4(6,0,00=0
and so
K*=0.

In order to calculate K™ we first determine J(0) (cos 6, sin #)? and G,(0,0,0) W.
But these are easily obtained as

(3.6) J(0)(cos 6, sin 8)*=col (J,(0)(cos 8, sin 6)%..., Ja(0)(cos 6, sin )P
with

4
(3.7)  J;(0)(cos 6, sin 0)*=4>] a;.(®;cos §—;sin ) (Dycos 6—;sin 0) cos’nex
=1

and

(3.8) G,(6,0,00W

d a
= 21 kzl a; ((e,0;+eF ;) {cos 60— (e,0;+e¥;) sin ).
i
T

-{(®; cos 6—¥; sin H)S w(x) cos® mxdx

0
+ (@, cos 6—, sin '6)8 w;(x) cos® ngxdx}.
0

As in [1] let us write G,(6,0,0) as a Fourier series:

o

G,(0,0,0) = 3 .6, g.€ (QNH™.

n=—0c0

By expanding w*(#) as a Fourier series

e .
w*(0) = w,e'™,
L=}

inserting this into (3.4) and equating coefficients, we arrive at
Wy=— gnCAQ'*‘inﬂ)o)ﬂl,

where Ag is the restriction of D(0)(d/dx)*+ A(U) to Q. Then

2r
3.9 K** = 2_171 S S e, [J(0) (cos 6, sin §)*1dO
0
2
=— 21—77:8 S g, (Ag +inw,) ™ [J(0) (cos 6, sin )°] db.
0




Since

we have

(3.10)

(3.11)

(3.12)

and

(3.14)

Next we
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9 | —if i0__ —ib
e’ +e . e e
———— andsinf=-"—F—,

6= c
cos 2 o

a T
¥ > ajk(ellpj—i—ezfﬂj)g (O;wy + Orw;) cos® nyxdx
0

(W) =

Do| =

<.
—-
o

Pt

+
po| =
Me
Ma

<
I
-
)
I
-

T
a;(e,0;+ el ;) S Fjwi + T rw;) cos® nyxdx,
0

g(W)= g_(W)=0,

&(W)=g_,(W)

a a T
= %- > ajk(ele-l-ezgfj)g (0w, + Orw;) cos® nexdx
j=1 k=1 0
a a T
+ % > kZ a;1(e0;+ e ;) So (Djw+ Orw;) cos® nyxdx
7=1 k=1
= a a T
+ % M ]CZ] ajk(eld)j—l-ezllfj)g (T jwi + T w;) cos® nexdx
i=1 k=1 0
1 d d | T 9
- T > kZ} aj,,(ezd)j—l—eg?F,-)S W jwy+Tw;) cos® nexdx
7=1 k=1 0

g (W) =g_,(W)=0 for n=3,4, ....

determine

F(0,x)=(Aq+ inw,) "' (J(0) (cos 6, sind)?) for =0, +2,

that is, find F of

which is

(3.14) {

(Ag+inw)F=J(0)(cos 6, sin 6),

equivalent to

D(O)F ;. + inw, F=A(U)F=J(0)(cos 6, sin §)*
Fr<0;0):Fx (ﬁﬂf):O:
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because J(0)(cos 68, sin 8)* € QNH([0,7]). From (8.7) we have

J;(0)(cos 0, sin 6)°=a;(6) +a;(6) cos 2nx,

where
d
a;(0)=2 >} a;x(®; cos 6—¥;sin ) (@rcos 60— sin 6).
k=1
By expanding F as
F= >\ F; cos kx,
k=0

inserting this into (3.14) and equating coefficients, we have, for =0, +2,

(3.15) F=(Aq+inwy) *J(0)(cos 6, sin 6)°
— CACD) + inawo) ~'al0) + (ACD) + inw,— 4n5D(0)) "a(B)cos 2nmo%,

where
a(®) =col(a,(0),..., a;(6)).

Consequently we have
27
K — _21; SO 20 LACD) "a(8) + AT — 4n2D(0)) "*a(f)cos 2mpx] df
27
— L (" Re (gL A + 2i00)"al®)
+ (AT + 2w, — 4n3D(0)) a(6) cos 2mox]} df=1I,+I,.

Since

1 2 a
_2; 80 a](ﬁ)da b 112-1 ajk((Djwk+lellfk),

by putting

a
b=C01(b1, PR bd) With b] = Z a]k(@J(Dk—f-ng’k),
k

=1
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bP=A)7'b and b =(AU)—4nD(0)) b,
we have
L=—g[b"] — g, [6®cos 2n9x]

aq
> ai(ed;+e¥ ;) (0,5 + 0568

| =

j=

bl
-

a;i(ed;+ eawj)(grjbg) +7,0)

M=
Ma.

<
I

o)
I

1

a;1(e.0;+ e¥ D(0,;6P + 0,59)

<.
U
-
&
]
-

ajk(ez@j + egw.j)(w.jb,(bz) + ?I/kb;z)>.

[
N T S R T
‘Ma 'Ma‘ ™:
Ma DM

<
I
-
)
I
-

Since
1 (% s 2 - .
7; . e aj(ﬁ) dﬂ = }:21 ajk(w,-——zilfj) (mk—lwk),
by putting

a
c=col(cy, *++, ¢g) with ¢;= ;:Z:' i (0; —1¥) (0, —i¥ ),

¢V =(ATU) + 2iwy) "'c and ¢® = (AT) + 2w, — 4n2D(0)) e,

we have

I,=—Re g, [c¢'’] —Re g, [c® cos 2mx]

= — % Re g é aj, [{(e0;+e¥ ) +i(e,0;+ e )} (¢’ + 0ctP
+ i{(e0;+ ¥ ) +i (e,0;+e¥ )} (Wicl +,.cP)]
= 1 Re é ﬁ a;: [ {(e.0;+ e ) +i(e,0;+ e )} (0;¢L + 0,5

8 =1 ES

+ i {(e0;+ e ) +i(e,0;+e¥ )} (e + . cP)].

Consequently we have
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12
THEOREM 3.
a a
K=— % ST a;(el;+ e ) (20050 + 0.5 + (068 + 0,57))
j=1 k=1
a a
N % SUSY 45,005+ e¥ ) (2T B0 +¥,00) + (T b + 7,57}
j=1 k=1
1 a a 3
— 4 Re X kz a;:((e0;+ e )+ i (e.0;+ eV ) -
j=1 k=1
(P + 0P + i el + TS}
a a
- % Re 313} g (a0, + e +iCes0+ el D)
E i C=
(0,2 + 0;¢) + i e + i),
where
=<T,T>/(L0,0><T,T>—<0,T>,
€= — <¢, ¢>/(<0; ¢> <w’ qT> - <¢’w>2))
0,=<0,0>/(<0,0><T,T>—<0,T>?,
B = ACT)D, b® = (AD) —4niD(0))™'b
with
d
b=col (b, *++, by, bj= kZ‘l a;1(0;0: + ¥ ¥ )
and
¢® = (A + 2iwg) ¢, ¢® = (AD) + Ziwy — 4n5D(0)) e
with

d
c=col (¢, ***,Ca)s C;= g a; . (0; — ¥ (D —i¥ ).




L1]

L2]
£3]
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