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1. Imtroduction

The data to which statistical methods are applied in reliability usually
results from life tests. A life test is one in which a sample of M items from a
population of interest is put into an environment as similar as possible to the
one which the items will experience in actual use. Since the failures occur in
order, it often takes a long time to continue the experiment until the last failure.
So usually censoring is used. If the life test is terminated at a specified time,
the censoring is called Type I. If the life test is terminated at the time of a
particular failure, it is called Type II.

In this paper, an extension of Type II censoring is considered, that is, the
number of failures are determined sequentially.

As a failure model, we assume the exponential distribution with the probabi-
lity density function

f(x)=06"exp(—x/6), x>0, 6>0.

A life test is conducted under two different situations. One is the non-
replacement case in which a failed item is not replaced by a new item. The
other is the replacement case where a failed item is replaced at once by the new
item drawn at random from the same population. Epstein and Sobel [4], [5] and
Epstein [6] considered the problem of estimating the mean life § for Type II
censoring case. In these papers the number of failures is given beforéhand. But
it is also important to decide the number. The greater the number of failures
taken, the more accurately we can estimate 6. But in the case that the cost of
the test time must be considered, the fewer number of failures should be taken.
Therefore the decision of the number of failures becomes important in addition
to that of estimation rule. We apply a sequential method to this problem, that
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is, the decision to stop the experiment at the nth failure is based on the failure
times of the first through the nth failures.

We adopt a relative squared error loss, (§—6)°/6°, where § is an estimate
of 6, and a cost function proportional to the test time, i. e., cx,/0 if we stop the
experiment at nth failure and x, is the failure time, where c is some positive
constant,

In non-replacement case, we [11] obtained that a non-sequential rule is the
best invariant sequential rule. The purpose of this paper is to show that a non-
sequential rule is minimax in both replacement and non-replacement cases.

In non-replacment case, Sen [10] treated this problem under different loss
and cost structure. In replacement case, Shapiro and Wardrop [9] considered
the Bayes sequential rule under the same loss and different cost structure.

Although this problem can be treated by continuous time sequential method,
we restrict ourselves to rules stopping the experiment at each failure time.
Continuous time sequential rules have been studied by Chen and Wardrop [1] in
non-replacement case, and by El-Sayyad and Freeman [3] and Shapiro and
Wardrop [10] in replacement case.

In Section 2, we consider the non-replacement case. The replacement case
is treated in Section 3. In Section 4, another minimax property of non-sequential

rules is considered.

2. Non—-replacement case

In this section the non-replacement case is considered. We denote the nth
failure time by X, (n=1,...,M).
First assuming the following prior distribution for 6,

(2.1 n()=2%6"*Vexp(—2/6)/I'(a), 6>0,

we shall seek the minimum Bayes risk.
Since the density function of X,=(X,,...,X,) given @ is

P )= sy €t = (3 et (U= m)x,) /)

the posterior density of # given X, is

R (6)=(2+S,)" 0~ " Vexp(— 2+ S,)/60) /T (n+ ),
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where S,=>] X;+(M—n)X,. Therefore the Bayes estimator of # with respect to
=1

the relative squared error loss given X, is
0,=Q+S)/(n+a+1),
and the posterior expected loss and posterior expected cost given X, become
E{(§,—0) /6| X} =1/(n+a+1)

and

E{cX,/01X,})=c(n+ad)X,/(2+S,),
respectively. Hence the total cost given X, is
(2.2) L,=n+ta+D 7 +c(n+adX,/QA+S,), n=1,...,M,
and we set

L0=1/(a+ 1)’

which is the Bayes risk of the rule of not having the life test. The Bayes
stopping rule minimizes ELy among all stopping rules N, where the expectation
is taken with respect to the marginal distribution of (Xi,...,Xy). For details
see Chapter 7 of Ferguson [7].

It is easy to see that

{ -X'n.+1 IX } s 1 + (n+ a)-an,
A+Sne " (M—n)(n+a-+1) n+a+1)Q2+S,)

so that from (2.2)
E{Lyn| X} =L,+c(M—n)"'"—(ntat+1)(nt+at+2)™

Letting
€2.3) m(a)=Min {0<n<M such that c>(M—n) n+a+1)"' n+a+2)"Y,

the finite version of the monotone case theorem (Theorem 3.3 of Chow ,et al.
[2]) shows that the non-sequential rule which stops the experiment at the
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n(a)th failure and estimate § by the Bayes estimate Onw is the Bayes sequential

rule. Therefore from (2.2) the minimum Bayes risk is given by

(2.4) V(a)=ELw o
= () +a+1)7+ S (M—i+ D™

Now we have the following theorem.

THEOREM 1. The non-sequential rule that the experiment is terminated at the
n*th failure and 0 is estimated by Sy+/(w*+1) is minimax, where

(2.5) k= Min (0<n<M such that c=(M—n) (n+1)7" (n+2)7"}.

PROOF. It follows from (2.3) and (2.4) that

g

n

(2.6) Im V(a)=(w+1)+c S (M—i+1D7,

a—>0 i=1
where #* is defined by (2.5). It is easy to see that the non-sequential rule in
the theorem has a constant risk function, which is equal to the right hand side
of (2.6). Therefore from the well known result (e.g. Theorem 2 of Ferguson
[7], p.90), the rule is minimax.

REMARK. We [11] showed that the rule in Theorem 1 is the best invariant

sequential rule. Therefore Theorem 1 is an extension of the result.

3. Replacement case

In this section we consider the replacemen case. We shall show that a non-
sequential rule is minimax by the same method as that in the non-replacement
case.

Denoting the nth failure time by X, (n=1,2,...), the density function of X,
=(X...,X,) is given by

Fo(&1senns %) =(M/0)"exp(— Mx,/6)

Assuming the prior distribution given by (2.1), the posterior density of 6 given
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ha(0)= A+ Mzx,) *"9~ "D exp (—(A+Mx,)/0) /T (a+ n).
Therefore the Bayes estimator of § given X, is
b=+ Mx,)/(n+a+1),

and the posterior expected loss and posterior expected cost given X, become

E{(6,—0)/0°| X,} = (n+a+1)"
and

E(cX,/01X,}=c(n+a)X,/(A+MX,).
Hence the total cost at the nth failure given X, is
3.1 L,=n+a+1)'+c(n+a)X,/(3+MX,), n=1,2,...,
and we set

Ly=(a+1)7,

which is the Bayes risk of the rule not having the life test.

The Bayes stopping rule is defined by the stopping rule which minimizes
ELy among all stopping rules N where the expectation is taken to the marginal
distribution of (X, X,,...).

It is easy to see that

E { Xn+1 IX } — 1 + <n+a)Xn
A+MXn T Mn+a+1) = (n+a+1DQ+MX,)’

so that from (3.1)
E{Lyu| X)) =L+ M7~ (n+at+ D) (nt+at+2)™

Therefore from the monotone case theorem by Chow, et al. [2], we have that
the non-sequential rule which stops the experiment at the n(a)th failure and
estimates 6 by 8, is the Bayes sequential rule where
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(3.2) #(a)=Min {#>0 such that c>Mn+a+D)(n+ta+2)7)
By (3.1) the minimum Bayes risk is given by

(3.3) V(a)=EL,«4
=(n(a) +a+1) +enla)M ™.

Now we shall show the following theorem.

THEOREM 2. The non-sequential rule which terminates the experiment at the

w*th failure and estimates 0 by MX,«/(n*+1) is minimax where

(3.4) gx=Min {(n=>0 such that c=>M(n+1)" (n+ 2)71.

PROOF. It follows from (3.2) and (3.3) that

(3.5) LimV(a)=(n*+1)" +en*M ™,

a0

where 7* is defined by (3.4). It is easy to see that the risk function of the rule
in the theorem is constant and equal to the right hand side of (8.5). Hence it is

minimax.

4. Another optimality of non-sequential rules

In this section we study another desirable properties of non-sequential rules.

Let us consider the following non-sequential rules; the experiment is stop-
ped at the rth failure and @ is estimated by 6=3S,/(r+1) in the non-replacement
case (r=0,1,..., M, Sy=0) and 8=MZX,/(r+1) in the replacement case (=0,
1,..., Xo=0), respectively.

Difine
a,=E{(6—06)%/6%
and

b,=E(X,/8},
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which are independent of §. Then we shall show the following desirable prope-
rties of the non-sequential rules.

THEOREM 3. () Let (N,8y) be any sequential rule which satisfies
E{(Gy—0)"/6") <a. for all 6,
then
Sg;p E{Xy/6)>b,.
(i1) Let (N,B8y) be any sequential rule which satisfies
E{Xy/6} <b, for all 6,

then
Sup E{Oy—0)"/0%) >a,.
PROOF. From (2.5) and (3.4), there exists a positive constant ¢ such that
n*=y. Therefore from Theorems 1 and 2,
Sup[{(8y —67/6°) +cE(Xy/6)1>a,+cb,
which implies
SZ‘PE{@N —0)°/6%) — aTZC[bT—SgtpE{XN/ﬁ} 1.

The results follow from this inequality.
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