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Introduction

In this paper we prove an affine isoperimetric inequality for a strongly
convex closed hypersurface in the unimodular affine space A™'. Here A™! is
the affine space endowed with an invariant volume form.

Let M be a smooth immersed hypersurface in A" which is locally strongly
convex. Then we can always endow M with the Riemannian metric called the
affine metric. In §1 we will recall the definition of this metric and some termi-
nologies, and will give relevant known results.

Further let M be embedded and closed, i. e. the boundary of a convex body.
We denote by V(M) the volume of this convex body and by A(M) the surface
area of M with respect to the affine metric. Both are invariant under unimodular

affine transformations. Then in §2 we will prove
A. A" < (n+ 1) 02 VM)".

Here w, is the volume of the unit %-sphere. The proof which we will give here
is for almost part the same as that for z=2 given by W. Blaschke [1].

In §3 we will study the case that the equality is attained in A. This is
reduced to the study of a variational problem of the surface area and accom-
plished making use of computations due to E. Calabi [4]. We reproduce some
of these computations in terms of the moving frame. The result is

B. The equality holds only when the affine mean curvature is positively constant.

Then by a theorem of [3] on an elliptic affine hypersphere and by a theorem
of [10] on a hypersurface with constant affine mean curvature, we can see

THEOREM 1. Let M be a strongly convex closed hypersurface in the unimodular
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affine space A™*'. Then the affine area A(M) and the volume V(M) of the convex
body bounded by M satisfies an inequality ACM)" "> < (n+1)"wi V(M)™ and the equality
holds if and only if M is a hyperquadric.

§1. Affine metric on a hypersurface

In this section we will recall fundamental definitions and properties in the
affine geometry of a (locally) strongly convex hypersurface in the unimodular
affine space. Since this material is not so familiar, we are going to describe it
in a rather detailed manner. For proofs and other properties, see [1], [6], [4],

[91.

"*1 is an affine space endowed with a

The unimodular affine (#-+1)-space A4
unimodular structure, with the distinguished element (., ...,.) giving the deter-
minant of z#-+1 vectors. The family {x; e, ...,e,.1) of a point ¥ and n—+1

vectors e; is called an affine frame when it satisfies
a.1) (e, euvs €p)=1.

Let G be the unimodular affine group. Then any affine frame is carried to another

ﬂ+l}

frame by an element of G. The dual frame {0', ..., ® is given by

1.2) dx=>\w",.

The change of the frame is written as
(1. 3) dem= 2&)3 €g.

Then 0%, w? are the Maurer-Cartan forms of the group G. The structure equa-

tions of A"*' are

>z =0,
(1.4) dw, =>ws w3,
dof =S, /\a)? .

Our object here is to study properties of a hypersurface invariant under the
group G. Given a hypersurface M, we choose a frame whose first # vectors e,
.., e, span the tangent space of M at x. Then
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(1.5) o"tt=0.
This gives do""'=Sw’ Aw?"'=0 and we have
(1.6) a)i"“=2hija)j; h,;j=hj-,;-

Here we use the index range as 1<%, j, ... <# and 1<a, B, ... <n+1. We
also use the summation convention when no fear of ambiguity. Let us assume
M is locally strongly convex. Then the appropriate choice of the orientation
implies 2= (h;;)>0. Put

a.n H=det(h;;)>0.
Then the quadratic form
1.8 II=H"""p, 0'e’

is called the second fundamental form of M. It is sasily verified that this form
is invariant under the group G. Hence this defines a Riemannian metric on M
called the affine metric. The (n+1)-th vector e,., of the frame is until now not
specified. But we can see that there is a unique way to choose e,,; that the

quation

1.9 (n+2)wrii+dlog H=0

is satisfied. In this case e, is called the affine normal at x and the vector
(1.10) y=H""*%, ,

is called the affine normal vector. The latter is affinely defined and invariant.
As for its geometrical meaning see §43 in [1]. Moreover one has

(1.11D) Adx=ny,

which also shows that v is uniquely defined. We define the derivatives Rijip of hyj
by

(1.12) hijpo®=dh; 4+ hi 0t — hie® — hiol,
J ) J J

where (%;;;) is symmetric in all indices. The quantity
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(1.13) F=|hij|*=hijihimah BB

is called the Fubini-Pick invariant. Here (") is the inverse of h. F measures the
deviation of the hypersurface from the hyperquadric: F vanishes if and only if
M is a hyperquadric ([9]). When e,,, is the affine normal, (hij) satisfy the

special relation
(1.14) 1hi=0

which is called the apolarity condition. Let &} be the Riemannian connection
form of the affine metric. It is determined by properties do‘=w"/\ @} and dh;,=

hij@} + hy;@) . In fact we have

(1.15) &) i =3 W humo™

We next take a derivation of (1.9) and get

1.16) wn 1 /Nw; =0,

which gives

(1.17) 0= — 1"t =15

Let us lower indices using 7;: lij=hiklmhm,-, and define the quadratic form
(1.18) III=1;;0'0’,

that is called the third fundamental form of M. This form is also invariant under
a unimodular transformation which keeps the affine normal invarinat. As is
easily imagined, the form III plays the role of the second fundamental form in
the hypersurface theory in the Riemannian geometry. In fact the curvature

tensor R;;;; of the metric IT is given, under the assumption H=1, by
1
(1_19) Rijkl= E {lj;hik_'l“hjk—ljkhil+likhjl} +
1 mn
o Z (hjkmhiln—hjlmhikn)h .

This is the Gauss equation. Codazzi-Minardi equations are

(1.20) hijk.m_ hz‘jm,k: likhj‘m.+ ljkhim— limhjk - ijhik’

;
:

=

&
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and
1 .
1.21) ljk,m - ljm,k = E (hijmlkn _— hijklmnDhm,

Moreover (%;;;) satisfies a Ricci identity:
(1- 22) hijkypq - hijk,qp = hmz‘kRimqp -+ himkijqp + hiijkmqp 2

These formulas (1.19)—(1.22) are proved similarly to those formulas in the
Riemannian geometry.

Let %, ..., kB, be eigenvalues of (I;;) with respect to II. The elementary
symmetric functions of k; are the scalar invariants. We list only two of them

for later use.

(1.23) L= 2 5b,= L Trace (1)),
7 7
L= 2 _ 5. ki,
2= Ty i<t Biks

L is called the affine mean curvature. Its vanishing is the condition that the first
variation of the affine area is trivial (Proposition 4). And a hypersurface with
L=0 is called the affine maximal hypersurface ([7], [4]).

Let us consider the condition
1.24) III=K II,

which may be called the affine umbilic property. The hypersurface with this
property is called an affine hypersphere. The scalar function X is known to be
constant and equal to the affine mean curvature L by the Codazzi-Minardi equa-
tion (1.21). Further one can see, using (1.11), the condition (1.24) is equivalent
to

1,55 f —L(x—a) L#0
. y =
la L=0,

where a is a constant vector. This is a geometrical description of hyperspheres.
According as L>0, =0 or <0, the hypersphere is called of type elliptic, parabolic

...
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or hyperbolic. For these matters see [11], [3], [6], [12]. We here cite one of
structure theorems for later use: )

THEOREM A. ([3], [11]) The only complete affine hyperspheres of elliptic or parabolic
types are hyperquadrics.

At the last of this section we prepare some other [notations. Let dA be

the surface element given by

(1.26) dA=H""To N\, N\o"
We introduce a function p on M by

1.2m p)=—C(ey ..., €y, %),

which is called the affine support function of M. It is positive when the origin of
A™1!is chosen in the concave side of M. Assume M bounds a convex body. Then

the volume V(M) of this convex body is given by

1

(1.28) VoD = 1o Sﬂp JA.

When A™* is equipped with an euclidean structure so that the determinant (...)
comes from the euclidean inner product, then V(M) turns out to be the euclidean

volume.

EXAMPLE. ([7]) Let f be a strongly convex function of x'=(«%, ..., ™) and

M= {(x', f(x'))} be the graph of f. Then, setting w'=dx" ande ;= (0,...,0,v1,0, s
0,f), €pe1=(0, ..., 0,1), we can easily see dei=fija)jen+1 and hence
(1.29) II=(det f;;))™"**f, dx'dx’.

The area element is given by

(1.30) dA=(det f;)""** dx*...dx".

§ 2. Affine isoperimetric inequality

In the book [1], W. B aschke has given isoperimetric inequalities of several
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types for the surface in A’ One of them which seems to be fundamental is the
following

THEOREM ([11). For any closed strongly convex surface M in A°, the affine area
A(M) and the volume V(M) of the convex body bounded by M satisfies an inequality

AMY’ <127 V(M)
and the equality holds if and only if M is an ellipsoid.

In the following we will give a proof of Theorem 1 in Introduction which is
a generalization of this inequality in higher dimension. The proof of the ine-
quality part A, which is the aim of this section, is almost the same as that of
Blaschke. The equality part B will be treated in the next sectiorn.

Throughout this section M will be a smooth strongly convex closed hyper-

surface.
Take an affine hyperplane A" in A" and fix a coordinate system («', ...,
x"*) such that (&% ..., ™) is a coordinate system of A". Let p be the projection

along #""': A""——A". Let D=p(M) and C=p""(8D)\M. Then C is a hyper-
surface in M and M— C is composed of two connected parts whose closures we
denote by M.. Each of M. is written as a graph over D:

2.1 M, = {x""=—f" ..., ™)
M ={x""=g(s', ..., x™).

Define a new function % by

2.2) 1) = 2 (FC) + ()
and set
2.9 M = {£""=—n(x))

M= {x""=nlx)).

Then as is easily seen, the set M = M, \UM" is a smooth closed convex hypersur-
face over D and this is called a Steiner symmetrization of M. By definition we
can see
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2.0 V(M) =VD.

PROPOSITION 1. Let notations be as above. Then
(2.5) AMNDNZA).
The equality holds only when C is planar and f— g is a linear function.

PROOF. By the formula in §1 the areas are given by

AM) = S {(det £ )V" 2+ (det gDV dx'... dx",
D
A= 2\ Cdet b dR L dx
D

Hence we have only to show the inequality
2(det hij)l/n”g(det fij)l/nﬂ—!-(det gij)l/n+2.

This follows from the next lemma. If the equality holds, then Lemma also shows
fi;=gi;, which implies f— g is linear. Since —f=g on 8D, C becomes planar.

LEMMA. Let A, B be nXn positive definite symmetric matrices. Set

Q(t)=det (A+1(B—A)).
Then QY™ is comvex for 0 <t<1, and strongly convex unless A=2B for some
positive constant A.

PROOF OF LEMMA. It is enough to see the convexity of the function f(#)=
Q(HY". Moreover it is enough to see f/(0)<0 replacing A and B if necessary.

A direct calculation shows

1 _1_ (1-2n)/n " E,l, /2
f'= ” Q (QQ 7 Q.
Denote by P the complete polarized form of the determinant. Then
QO)=PA, ..., A)

Q(0)=nP(A, ..., A,B—A)
Q') =n(n—1) P(A,..., A, B—A,B—A).
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Hence the value of QQ"—(%2—1)/2Q"* at t=0 is equal to
n(n—1){P(A ..., A) P(A, ..., A,B,B)—P(A, ..., A,B)?.

And it is known that’ this is nonpositive and negative unless A=2B for some
positive constant A.

We next fix an euclidean structure of A®*' and choose an orthonormal frame
{e;} with respect to the euclidean inner product. Then h=(h;;) defined in (1.6)
is the second fundamental form tensor of M. H=det hi; is the Gaussian curva-
ture. On the other hand the affine area element dA is given by

AA=HY"*"* ! \... \o™
Since dAz: =o'/\... /\o" is the euclidean area element of M, we have
(2.6) dA=H"""*dA,.

Hence by the Holder inequality we have

AMY™ 2= <SdA>"”g <SMH dAD AU,

where Az(M) is the euclidean surface area. But the integral g HdAy is known

to be equal to the area of the unit n-sphere w, by Chern-Lashof [8], since M

bounds a convex body. Therefore we have proved
2.7 AD " <w, Ag(M O™,

Note that the equality holds when M is a sphere.

PROPOSITION 2. Assume M is contained in the interior of a closed convex hyper-.

quadric Q. Then A(M) <A(Q).

PROOF. By thy invariance of the affine area, we may assume @ is an euclidean
sphere. Then the twice use of (2.7) imlies

AM L0, Ap(M )™ <w, Ax(Q)" = A(Q)™?,

which proves the proposition.
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PROOF OF THE INEQUALITY PART A oF THEOREM 1. Fix a number ¢>0. Then
we know the following fact due to Blaschke [2] and W. Gross: There exists a
euclidean sphere Sand a closed hypersurface M’', which is obtained by certain
number of succesive operations of a Steiner symmetrization on M, such that S

contains M| and
V(SHZ A+ VD).

Then from (2.4), (2.5) and Prorosition 2, we get
A" e, VM (1 + )"

where c¢,=A(S)**?/V(S)"=(n+1)"wi. Letting here ¢ — 0, we complete the

proof.

We will give some remarks on the equality part. As the proof shows, the
equality arises only when A(M)=A(M") for any Steiner symmetrization M’ of
M. In this case by Proposion 1 the surface C is planar. Let II be the hyperplane
containing C. The hypersurface M is symmetric with respect to II. Next
picking a vector v in I7 we do the process of a Steiner symmetrization along v.
Then the midpoint of the line segment cutted out by C along v moves on a plane
of dimension #—1. Does this property assure C is a quadric? When n =2, the
answer is yes, [2]. But the author does not know the answer in general. Even
if all sections C are quadrics, there remains another question whether this
implies that M is itself a hyperquadric. So in the next section we will investigate
the meaning of the equality in terms of the affine mean curvature and prove the

latter part of Theorem 1.

§ 3. The equality case —— Hypersurface with

constant affine mean curvature

The problem we treat in this section is to find convex hypersurfaces which
have critical values of the surface area A with the fixed volume V. Let M be a
given hypersurface which is closed and strongly convex. The deformations of
M which we consider shall be also closed and strongly convex. Let us denote
deformed hypersurfaces by M, with parameter #; Mo=D. Then the problem is
to study the property ‘
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d -
B.D a5 AM) ] 10=0,

under the condition V(,) =const.. This is equivalent to find a constant 1, which
is the Lagrange multiplier, satisfying

a d _
€2 T AMD im0+ 2 -2 VM| 1o=0

for all deformations of M. The calculation of the first variation of A(M) is done
already in [4], which we follow first in the moving frame description. Second,
we calculate the first variation of V().

We choose an affine frame (e, ..., e,,,) so that H=1 and €,.. is the affine
normal vector. The point of the deformed surface M, is written as

{3.3) x,=x-+a'(4, x)e;(x)+v(t, x)e, (%)

giving the correspondence M — M, by x — x,. Then a suitable choice may
allow us to pose the condition that the e,.,(x)-component of dx, is trivial (see
Proposition 4.1 in [4]). Since an easy calculation using formulas in §1 show

dx,=dx+ (da’ + d'w} + vl De;+ (@0 +dv)e, .,
this condition is equivalent to
€3.4) dv+d'o? ' =0.
If we set dv=y;0°, then
(3.5) vi=—d’hy;.
From now on we assume this condition is satisfied. Then
(3.6) dx,=wie; ; wi=w'+da' +dwi+vol,,.
Now letting a',; denote the covariant derivation of &', we have by (1.15)

a',;0’ =da* + dlwt + % BEhyme™.
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Hence, making use of (3.5) and (1.17), we see
3.7 wi=Clo* where Ci=0}— vl — '™, — 5 &l
Put C=det (C.). We have

PROPOSITION 3. Let dA, be the surface area element of M,; dA,=dA. Then dA,
- C(n+1)/(n+2)dA_

PROOF. Let (D¥) be the inverse of (CL). We use (e, ..., €,+1) as an affine
frame at x,. By definition (1.6) the second fundamental tensor ,;; of M, is given

by
htia‘:hikDf',
Since we have chosen H=1, det (;;)=C"". Hence the affiine metric of M, is
IIc=Cl/n+2htija)§w]t‘=C1/2+2hijci; w'o”.

From this we get dA,=C"*/"*** »'/\...\w" and completes the proof from the
fact dA=w'/\... \o".

The above proposition implies
A(Mg) — S C‘n+1/7b+2 dA.
M

Let us compute 6A=dA(M,)/dt|,~. (In the following we denote the infinitesimal
variation at £ =0 by ) From the formula (3.7) we get
5, 0Ci= — Buli— (@ — 5 Sah

= —nLdéy—4(0v) (by (1.14) and (1.23)).
Therefore we have

__ n+2 __n+2
(3.8) 0A = g S (nLoy+4(6v)) dA= el S nLoy dA.
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Note that the above calculations are valid even if M is not closed but when

the deformations are compactly supported. Namely

PROPOSITION 4 ([7],:[4]). The first variation 6A is zero for all compactly sup-
ported deformations of a locally strongly convex hypersurface if and only if the mean

curvature L vanishes.

Let us next recall the integral (1.28) giving the volume of the convex body
bounded by M. The volume element dV is given by

1
3.9 adV=— e (e, ooy €y %) 0'/\... N0" = m p dA,

where p is the affine support function. For the surface A,, we have

th= {(elr cee en’ x)_'"y}wi/\---/\(l)?-

n+1
Then by (3.7) we get
(3.10) v, = n+1 (p—») C dA.
Hence we have
1 .
(3.11) V= mg (poC—dv) dA
-- A S (8v+ p(nLby+ A(3)))dA
1
= — mg QA+ nLp+4p)ov dA.

However we have the following identity for p.
PROPOSITION 5 ([101). 4p=n(1—Lp).
PROOF. Differentiating p= —(e;, ..., e,, x) and using identities in § 1 we can see

3

3.12) Di=—(€1, cvvs Cpits vy €y X).
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Let p,;; denote the covariant differentiation of Ip;: pijo’ =dp,—p;&i. To simplify
the calculation we choose the affine frame satisfying %;;=20;;. Then

(8.13) vt wi=— hijkwk'

We have

i

-

—dp; =2 (€1 vuvs ACjy iy Cuits wovs Epy x)
+(el’ s ey den+19 ey Ep, x)+(e1, v sy Eps dx)

Making use of (1.1)—(1.6), we get
—dpi=Zipj0}— 0"~ Prrr -
Then using (3.13)
s’ =0+ 5 hipbse — plia
Hence by the apolarity condition 1.14),

4p=2 py=n(1—Lp).

From this proposition, the variation of the volume is given by
(3.14) oV= —S ov dA .
Combining this with (3.8) we have proved

PROPOSITION 6. 8A+20V = — S Q+n(n+1DL/(n+2)) dvdA.

THEOREM 2. Assume the hypersurface M has a critical value of the area function
with the fixed volume. Then the affine mean curvature must be a positive constant.

PROOF. L>0 is seen from

o-L(apaa- S da~L p aa=a00-@+OLVOD.

With this theorem 2 the proof of the latter part of Theorem 1 is complete.
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The remaining implication is provided by the next

THEOREM B. Let M be a closed strongly convex hypersurface with a constani mean
curvature. Then M is a hyperquadric.

REMARK. Under the assumption of Theorem B, Hsiung and Shahin [10] proved
that A is an elliptic affine hypersphere. But Theorem A in §1, then implies M
is a hyperquadric. Hence we have this theorem. For the sake of completeness we
will give a sketch of proof due to [10] modifying a little. They proved first the
equality

n—2

(3.15) % dCx, dx/N. NdxAdeysn, €y, =(Lp—L) dA.

This is seen by the formulas (1.17), (1.23) and (1.27). Then by integration and
by the Stokes theorem

(3.16) S LdA— S L.p dA.

Next note that an elementary inequality
(8.17) (LY =L

The equality is attained only if all %k, are equal. Then, taking an origin in the

interior so that p > 0 and assuming L is constant, we have

LSdA=SLdA=SL2p dAgSLZpdA=L’SLpdA=LS dA.

Hence S (L,—L?»p dA=0 and the equality holds in (3.17). Therefore we must

have ky=...=k,, which implies [//=LII, namely M is an elliptic affine hyper-
sphere.

Generalizations of (3.15) and interesting integral formulas like (3.16) have
been given in [10].
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