ON THE AUTOMNRPHISMS OF CHEVALLEY GROUPS OVER \$\mu-ADIC INTEGER RINGS

Dedicated to Professor Kenzo Iizuka on his 60th birthday

Kazuo Suzuki

(Recived November 18, 1983)

Introduction. Let G be a simple and simply connected Chevalley-Demazure group scheme assocated with a connected complex simple Lie group of type \emptyset . For any commutative ring R with 1, let G(R) be the group of R-points of G (for the defintion see E. Abe [1]). It is well known that if R is a perfect field, then any automorphism of G(R) can be expressed as the product of an inner, a diagonal, a graph and a field automorphism (see R. Steinberg [5]).

In this note, for a local ring, we shall give a sufficient condition for an automorphism of G(R) to be expressed by the same product as above, and futhermore for a complete p-adic integer ring $\mathfrak{o}_{\mathfrak{p}}$, we shall show that any automorphism of $G(\mathfrak{o}_{\mathfrak{p}})$ is expressed by the same product as above except some cases. The main theorems are stated in Section 1 and are proved in Section 2 and 3.

1. The statement of the main theorems.

1.1. Let G be a simple and simply conneced Chevalley-Demazure group scheme and R be a local ring. Let $x_{\alpha}(t)$ be the unipotent element of G(R) associated with a root α of \emptyset and $t \in R$. Assume that 2 is a unit elemet of R if G is symplectic. Then in M. Stein [4], it is known that for rank $\emptyset > 1$ (resp. rank $\emptyset = 1$), the following relations A, B, C, (resp. A, B', C) is a complete set of relations for G(R).

A)
$$x_{\alpha}(s)x_{\alpha}(t) = x_{\alpha}(s+t)$$
 for root $\alpha \in \emptyset$ and $s, t \in R$

B)
$$[x_{\alpha}(s), x_{\alpha}(t)] = \prod_{i\alpha+j\beta} x_{i\alpha+j\beta} (N_{\alpha\beta ij} s^i t^j)$$

for all $\alpha, \beta \in \emptyset$ such that $\alpha + \beta \neq 0$, where the product is in some order and $N_{\alpha\beta ij}$ are certain integers depend only the root system (for elements a, b of a group, we denote by $[a, b] = aba^{-1}b^{-1}$).

$$B'$$
) $w_{\alpha}(t)x_{\alpha}(u)w_{\alpha}(-t)=x_{-\alpha}(-t^{-2}u)$ for $t\in R^*$ and $u\in R$.

where R^* is the set of unit elements of R and $w_{\alpha}(t) = x_{\alpha}(t)x_{-\alpha}(-t^{-1})x_{\alpha}(t)$ for

 $t \in R^*$.

C) $h_{\alpha}(uv) = h_{\alpha}(u)h_{\alpha}(v)$ for $u, v \in \mathbb{R}^*$, where $h_{\alpha}(u) = w_{\alpha}(u)w_{-\alpha}(-1)$ for $u \in \mathbb{R}^*$.

Now we descrive the three kinds of automorphisms of G(R). Denote by L_0 the Z-module generated by all simple roots. Let $f_{\alpha} \in R^*$ for any simple root $\alpha \in \emptyset$. Let f be extended to a homomorphism of L_0 into R^* . Define the map ϕ_1 of $\{x_{\alpha}(t)\}_{\alpha \in \Phi, t \in R}$ onto itself by

$$x_{\alpha}(t) \longrightarrow x_{\alpha}(f_{\alpha}t)$$
 for all $\alpha \in \emptyset$, $t \in R$.

On the other hand, let γ be a ring automorphism of R. Define the map ϕ_2 of $\{x_{\alpha}(t)\}_{\alpha\in\Phi,\,t\in R}$ onto itself by

$$x_{\alpha}(t) \longrightarrow x_{\alpha}(t^{\gamma})$$
 for all $\alpha \in \emptyset$, $t \in R$.

Then the maps ϕ_1 and ϕ_2 can be extended to automorphisms $\bar{\phi}_1$ and $\bar{\phi}_2$ of G(R) respectively since the relations A, B and C are preserved by them. $\bar{\phi}_1$ and $\bar{\phi}_2$ are called the diagonal and the ring automorphism of G(R) respectively.

Let $p=(\alpha_0, \alpha_0)/(\beta_0, \beta_0)$ with α_0 long, β_0 short. Let σ be an angle preserving permutation of the simple root, $\sigma \neq 1$. If two length occur, assume that p is equal to 0 in R and the map: $x \longrightarrow x^p$ is a ring automorphism of R. Then there exists an automorphism ϕ_3 of G(R) and signs ε_{α} ($\varepsilon_{\alpha}=1$ if α or $-\alpha$ simple) such that

$$\phi_{3}x_{\alpha}(t) = \begin{cases} x_{\sigma\alpha}(\varepsilon_{\alpha}t) \text{ if } \alpha \text{ is long or all roots are of one length.} \\ x_{\sigma\alpha}(\varepsilon_{\alpha}t^{p}) \text{ if } \alpha \text{ is short.} \end{cases}$$

The automorphism of G(R) of this type are called graph automorphisms (see R. Steinberg [5]).

- 1.2. THEOREM A. Let G be a simple and simply connected Chevalley-Demazure group scheme, R a local ring, M the maximal ideal of R, k=R/M the residue class field. Assume that $ch(k)\neq 2$, and further if G is of type A_1 then $k\neq F_3$, if G is of type G_2 then $ch(k)\neq 3$. Let σ be an automorphism of G(R) such that $\sigma U(R)=U(R)$ where U(R) is the subgroup of G(R) generated by $x_{\alpha}(t)$ for all positive roots and $t\in R$. Then σ is expressed by the product of an inner, a graph and a ring automorphism.
- N. B. Under the hypotheses of the above Theorem, there exists no graph automorphism of G(R) if two length occur.

1.3. Let K be an algebraic number field of finite degree over Q, $\mathfrak o$ its ring of integers, $\mathfrak p$ a prime of $\mathfrak o$, $K_{\mathfrak p}$ the completion of K at the valution with respect to $\mathfrak p$, $\mathfrak o_{\mathfrak p}$ the ring of integers of $K_{\mathfrak p}$, $\mathfrak p'$ the maximal ideal of $\mathfrak o_{\mathfrak p}$ and $k=\mathfrak o_{\mathfrak p}/\mathfrak p'$.

THEOREM B. Let G be the same as theorem A. Assume that $ch(k)\neq 2$, and if G are of type A_3 , $B_m(m\geq 2)$, C_n , D_n $(n\geq 3)$ and F_4 then $k\neq F_3$ and if G is of type G_2 then $ch(k)\neq 3$. Then any automorphism of $G(\mathfrak{o}_{\mathfrak{p}})$ can be expressed as the product of an inner, a diagonal, a graph and a ring automorphism.

2 A proof of theorem A.

- 2.1. Under the same notations as above, let α be an ideal of a commutative ring R. Denote by $U(\alpha)$ (resp. $V(\alpha)$) the subgroup of G(R) generated by $x_{\alpha}(t)$ for all positive (resp. all negarive) roots α of \emptyset and $t \in \alpha$. Let T be the maximal torus of G. Set B(R) = U(R)T(R), and let N(R) be the subgroup of G(R) generated by $w_{\alpha}(u)$ for all roots α of \emptyset and $u \in R^*$ where denote $w_{\alpha}(u) = x_{\alpha}(u)x_{-\alpha}(-u^{-1})x_{\alpha}(u)$ and $N(R)/T(R) \cong W(\emptyset)$. Let $G(f): G(R) \longrightarrow G(R/\alpha)$ be the group homomorphism induced by the natural homomorphism $R \longrightarrow R/\alpha$. Denote by $G(R,\alpha)$ (resp. $G^*(R,\alpha)$) the kernel (resp. the inverse image of the center of $G(R/\alpha)$) of G(f).
- 2.2. LEMMA. Let G be a simple and simply connected Chevalley-Demazure group scheme, R a local ring, \mathfrak{m} the maximal ideal of R and $k=R/\mathfrak{m}$. Assume that if G is of type A_1 then $ch(k)\neq 2$ and $k\neq F_3$, and if G is of type B_2 or G_2 then $k\neq F_2$. Then $G^*(R,\mathfrak{m})$, $G(R,\mathfrak{m})$ are characteristic subgroups of G(R).

PROOF. Let σ be any automorphism of G(R). By a characterization of normal subgroups of G(R) in E. Abe [1], there exists an ideal \mathfrak{a} of R such that

$$G^*(R, \mathfrak{a}) \supset \sigma G^*(R, \mathfrak{m}) \supset G(R, \mathfrak{a}).$$

Let E(R) be the subgroup of G(R) generated by $x_{\alpha}(t)$ for all roots α and $t \in R$. Then by the simply connectedness of G, G(R) = E(R), hence the map: $G(R) \longrightarrow G(R/\mathfrak{b})$ is surjective for any ideal \mathfrak{b} of R, therefore we have $G^*(R,\mathfrak{m}) \supset G^*(R,\mathfrak{a})$. By the maximality of $\sigma G^*(R,\mathfrak{m})$, we have $\sigma G^*(R,\mathfrak{m}) = G^*(R,\mathfrak{m})$.

On the other hand, for the normal subgroup $\sigma G(R,\mathfrak{m})$, there exists an ideal c such that

$G^*(R,\mathfrak{c}) \supset \sigma G(R,\mathfrak{m}) \supset G(R,\mathfrak{c}).$

Firstly assume $\mathfrak{m}=\mathfrak{c}$. Since $G^*(R,\mathfrak{m})/G(R,\mathfrak{m})$ is isomorphic to the center of G(k), we have $[G^*(R,\mathfrak{m})\colon G(R,\mathfrak{m})]<\infty$ where for a subgroup B of a group A, we denote by $[A\colon B]$ the index of B in A. Then we have $\sigma G(R,\mathfrak{m})\supset G(R,\mathfrak{m})$ and

$$\lceil G^*(R,\mathfrak{m}) \colon G(R,\mathfrak{m}) \rceil = \lceil \sigma G^*(R,\mathfrak{m}) \colon \sigma G(R,\mathfrak{m}) \rceil = \lceil G^*(R,\mathfrak{m}) \colon \sigma G(R,\mathfrak{m}) \rceil$$

and so $G(R, \mathfrak{m}) = \sigma G(R, \mathfrak{m})$. Secondly we will show that $\mathfrak{m} = \mathfrak{c}$. Assume $\mathfrak{m} \supseteq \mathfrak{c}$. In E. Abe [1] we have seen that

 $G^*(R, b) = U(b)T^*(b)V(b)$ for any proper ideal b of R where $T^*(b) = T(R) \cap G(R, b)$. For $m \in \mathfrak{m}$, $m \notin \mathfrak{c}$,

 $[x_{\alpha}(m), x_{-\alpha}(1)] = x_{\alpha}(-m^2/(1-m))h_{\alpha}(1/(1-m))x_{-\alpha}(m/(1-m)) \notin G^*(R, c).$ On the other hand,

$$[x_{\alpha}(m), x_{-\alpha}(1)] \in G(R, \mathfrak{m}).$$

Therefore, $G^*(R,\mathfrak{c}) \not\supset \sigma G[R,\mathfrak{m})$. This is a contradiction, and it must be $\mathfrak{m} = \mathfrak{c}$.

2.4. LEMMA. Assume the hypothese of Theorem A, Set B(R) = U(R)T(R), $B^-(R) = V(R)T(R)$. Then for an automorphism σ of G(R) such that $\sigma(U(R)) = U(R)$, there exists an element u in U(R) which satisfy the followings

 $u \circ \sigma(B(R)) = (R)$, $u \circ \sigma(B^-(R)) = R^-(B)$, $u \circ \sigma(V(R)) = V(R)$, $u \circ \sigma(T(R)) = T(R)$ where $u \circ \sigma$ is the product of σ and the inner automorphism induced by u.

PROOF. By 2.1. Lemma, we see that σ induces the automorphism $\bar{\sigma}$ of G(k) and $\bar{\sigma}U(k)=U(k)$. There exists an element \bar{w}_0 of N(k) such that $\bar{w}_0U(k)\bar{w}_0^{-1}=U(k)$ and $\bar{w}_0=\bar{w}_{\alpha_1}(1)\cdot\cdots\bar{w}_{\alpha_r}(1)$ where $\bar{w}_{\alpha_i}(1)$ is the image of $w_{\alpha_i}(1)$ under the map: $G(R)\longrightarrow G(k)$. We can write $\bar{\sigma}(\bar{w}_0)=\bar{u}\bar{w}\bar{u}'\bar{t}$ where $\bar{u},\bar{u}'\in U(k),\bar{w}\in N(k),\bar{t}\in T((k),$ then $\bar{\sigma}(V(k))=\bar{\sigma}(\bar{w}_0)\bar{\sigma}(U(k))\bar{\sigma}(\bar{w}_0)^{-1}=\bar{u}\bar{w}U(k)\bar{w}^{-1}\bar{u}^{-1}$. Since $U(k)\cap V(k)=1$, we have $\bar{u}\bar{w}U(k)\bar{w}^{-1}\bar{u}^{-1}\cap U(k)=1$, hence $\bar{w}U(k)\bar{w}^{-1}\cap U(k)=1$ and so $\bar{w}=\bar{h}\bar{w}_0$ for some $\bar{h}\in T(k)$. Let $T(\mathfrak{m})$ be the subgroup of T(R) generated by all $h(\mathfrak{X})$ such that $\mathfrak{X}(\alpha)\equiv 1$ mod \mathfrak{m} for all $\alpha \in \mathfrak{G}$. In E. Abe [1] we have seen that $G(R,\mathfrak{m})=U(\mathfrak{m})$ $T(\mathfrak{m})V(\mathfrak{m})$ Setting $w_0=w_{\alpha_1}(1)\cdots w_{\alpha_r}(1)$ in G(R), it holds $\sigma(w_0)=utvw_0u'$ where $u,u'\in U(R)$, $t\in T(R),v\in V(\mathfrak{m})$. Hence we have $\sigma(V(R))=uV(R)u^{-1}$. Setting $\sigma'=u^{-1}\circ\sigma$, we have $\sigma'(U(R))=U(R),\sigma'(V(R))=V(R)$. Since the normalizer of U(R) (resp. V(R)) is B(R) (resp. $B^-(R)$)(see N. B. of 3.2. Lemma), it holds that $\sigma'(B(R))=B(R)$ and

 $\sigma'(B^-(R)) = B^-(R)$. By $B(R) \cap B^-(R) = T(R)$, it holds $\sigma'(T(R)) = T(R)$.

2.5. Let σ be an automorphism of G(R) normalized in above Lemma. Assume that 2 is a unit element of R, then N(R) is the normalizer of T(R), hence σ fixes N(R). Setting $B=B(R)V(\mathfrak{m})$, we have $B=B(R)G(R,\mathfrak{m})$ and $\sigma B=B$. On the other hand α is a simple root if and only if $B\cap Bw_{\alpha}(1)B$ is a subgroup of G(R). Hence we have $\sigma(w_{\alpha}(1))=w_{\beta}(1)t$ for some simple root β and $t\in T(R)$.

 $V(R) \cap w_{\alpha}(1)B(R)w_{\alpha}(1)^{-1} = x_{-\alpha}(R)$ for simple root α , it holds

$$\sigma(x_{-\alpha}(R)) = \sigma(V(R) \cap w_{\alpha}(1)B(R)w_{\alpha}(1)^{-1})$$

= $V(R) \cap w_{\beta}(1)B(R)w_{\beta}(1)^{-1}$
= $x_{-\beta}(R)$.

By the same way we have $\sigma(x_{\alpha}(R)) = x_{\beta}(R)$.

Let ρ be the map of the set of simple roots into itself defined by $\alpha \longrightarrow \beta$. Since $\sigma(x_{\alpha}(1)) = x_{\beta}(t)$ for some $t \in R^*$, we can define the map \mathcal{X} of the set of simple roots into R^* by $\alpha \longrightarrow t$. Hence by the map $x_{\alpha}(a) \longrightarrow x_{\alpha}(\mathcal{X}(\alpha)^{-1}a)$ for simple roots α , we have the diagonal automorphism ϕ of G(R) such that $\phi \circ \sigma(x_{\alpha}(1)) = x_{\rho\alpha}(1)$ for any simple root α .

The following three Lemmas are proved by the same way as in R. Steinberg [4], therefore we shall omit the proof of them.

- 2.6. LEMMA. Under the hypotheses of Theorem A, an automorphism σ of G(R) such that $\sigma(U(R)) = U(R)$ is mormalized by a diagonal automorphism so that
 - 1) $\sigma x_{\alpha}(1) = x_{\alpha}(1)$ for all simple root α ,
 - 2) $v_{\alpha}(1) = v_{\alpha}(1)$,
 - 3) o preserves angles.
- 2.7. LEMMA. Under the hypotheses of Theorem A, an automorphism σ of G(R) such that $\sigma(U(R)) = U(R)$ is normalized by a diagonal and graph automorphism so that

$$\sigma x_{\alpha}(R) = x_{\alpha}(R)$$
 and $\sigma x_{\alpha}(1) = x_{\alpha}(1)$ for any simple roots α .

2.8. LEMMA. Let σ be an automorphism of G(R). Assume that $\sigma x_{\alpha}(R) = x_{\alpha}(R)$

and $\sigma x_{\alpha}(1) = x_{\alpha}(1)$ for all simple roots α . Then σ is a ring automorphism. Here we have proved Theorem A completely.

3. A proof of Theorem B.

Throughout this Section we shall use the same notation as 3.1. Let $\mathfrak{o}_{\mathfrak{p}}$ be the ring of integers of $K_{\mathfrak{p}}$, \mathfrak{p} the maximal ideal of $\mathfrak{o}_{\mathfrak{p}}$.

3.1. LEMMA. Let G be a simple and simply connected Chevalley-Demazure group scheme. Assume that if G is of type A_1 then $ch(k) \neq 2$ and $k \neq F_3$, and if G is of type B_2 or G_2 then $k \neq F_2$. Then for each rational integer i, $G^*(\mathfrak{o}_{\mathfrak{p}},\mathfrak{p}^i)$ and $G(\mathfrak{o}_{\mathfrak{p}},\mathfrak{p}^i)$ are characteristic subgroups of $G(\mathfrak{o}_{\mathfrak{p}})$.

PROOF. Denoting $R = \mathfrak{o}_{\mathfrak{p}}$, we shall prove this Lemma by using the induction for i. If i=1, then by 1.2. Lemma, our Lemma is clear. For any automorphism σ of G(R), we have that for $G^*(R,\mathfrak{p}^i)$, there exists an ideal \mathfrak{p}^j such that

$$G^*(R, \mathfrak{p}^j) \supset \sigma G^*(R, \mathfrak{p}^i) \supset G(R, \mathfrak{p}^j).$$

Assume i > j. By the induction assumptions $G^*(R, \mathfrak{p}^j)$ and $G(R, \mathfrak{p}^j)$ are characteristic, hence we have

$$G^*(R, \mathfrak{p}^j) \supset G^*(R, \mathfrak{p}^i) \supset G(R, \mathfrak{p}^j).$$

On the other hand, for $t \in \mathfrak{p}^j$ and $t \notin \mathfrak{p}^i$, we have $x_{\alpha}(t) \in G(R, \mathfrak{p}^j)$ and $x_{\alpha}(t) \notin G^*(R, \mathfrak{p}^i)$. Therefore $G^*(R, \mathfrak{p}^i) \not\supset G(R, \mathfrak{p}^j)$, it is contradiction. Hence it must be $i \leq j$. Using the induction assumption, it holds

$$G^{*}(R, \mathfrak{p}^{i-1})/G^{*}(R, \mathfrak{p}^{i}) \cong \sigma G^{*}(R, \mathfrak{p}^{i-1})/\sigma G^{*}(R, \mathfrak{p}^{i})$$
$$\cong G^{*}(R, \mathfrak{p}^{i-1})/\sigma G^{*}(R, \mathfrak{p}^{i}).$$

Since the order of $G(R)/G(R, \mathfrak{p}^j)$ is finite and $G^*(R, \mathfrak{p}^{i-1})/G^*(R, \mathfrak{p}^j)$ is a homomorphic image of $G^*(R, \mathfrak{p}^{i-1})/G^*(R, \mathfrak{p}^i)$, we have

$$[G^*(R, \mathfrak{p}^{i-1}): G^*(R, \mathfrak{p}^i)] \ge [G^*(R, \mathfrak{p}^{i-1}): G^*(R, \mathfrak{p}^j)]$$

On the other hand

$$\begin{split} & [G^*(R, \mathfrak{p}^{i-1}) \colon \ G^*(R, \mathfrak{p}^i)] [G^*(R, \mathfrak{p}^i) \colon \ G^*(R, \mathfrak{p}^j)] \\ & = [G^*(R, \mathfrak{p}^{i-1}) \colon \ G^*(R, \mathfrak{p}^j)] \end{split}$$

Hence $G^*(R, \mathfrak{p}^i) = G^*(R, \mathfrak{p}^j)$. Therefore we have

$$\begin{split} & [G^*(R, \mathfrak{p}^{i-1}) \colon G^*(R, \mathfrak{p}^i)] = [\sigma G^*(R, \mathfrak{p}^{i-1}) \colon \sigma G^*(R, \mathfrak{p}^i)] \\ & = [G^*(R, \mathfrak{p}^{i-1}) \colon G^*(R, \mathfrak{p}^j)] [G^*(R, \mathfrak{p}^j) \colon \sigma G^*(R, \mathfrak{p}^i)] \\ & = [G^*(R, \mathfrak{p}^{i-1}) \colon G^*(R, \mathfrak{p}^i)] [G^*(R, \mathfrak{p}^i) \colon \sigma G^*(R, \mathfrak{p}^i)]. \end{split}$$

Hence $[G^*(R, \mathfrak{p}^i): \sigma G^*(R, \mathfrak{p}^i)] = 1$ and we have $G^*(R, \mathfrak{p}^i) = \sigma G^*(R, \mathfrak{p}^i)$. By the same way, we can easily prove that $G(R, \mathfrak{p}^i)$ is characteristic.

3.2. LEMMA. Let \mathfrak{a} be a non-zero ideal of $\mathfrak{o}_{\mathfrak{p}}$. Then the normalizer of $U(\mathfrak{a})$ in $G(\mathfrak{o}_{\mathfrak{p}})$ is equal to $B(\mathfrak{o}_{\mathfrak{p}})$.

PROOF. Denote $R = \mathfrak{o}_{\mathfrak{p}}$. It is clear that B(R) normalizes $U(\mathfrak{a})$. Hence it is sufficient to show that for any element x of G(R) such that $x \notin B(R)$, it holds ${}^xU(\mathfrak{a}) \Leftrightarrow U(\mathfrak{a})$ where ${}^xA = xAx^{-1}$ for a subgroup A of G(R). By the Bruchat decomposition of G(R), we can write x = uvwtu' where $u, u' \in U(R), v \in V(\mathfrak{p}), w \in W$ where we denote a representative element of w in N(R) by the same symbol w. Firstly assume $w \neq 1$. Denote by $V'(\mathfrak{a})$ the subgroup generated by $x_{w(\mathfrak{a})}(\mathfrak{a})$ for all $w(\mathfrak{a}) < 0$ and $\sigma \in \mathfrak{G}$. Then it holds $V'(\mathfrak{a}) \neq 1$ and so ${}^{uv}V'(\mathfrak{a}) \subset U(\mathfrak{a}) \subset G(R,\mathfrak{a})$, hence ${}^{uv}V'(\mathfrak{a}) \subset U(\mathfrak{a})T(\mathfrak{a})V(\mathfrak{a})$. If ${}^{uv}V'(\mathfrak{a}) \subset U(\mathfrak{a})$, then it holds ${}^{v}V'(\mathfrak{a}) \subset U(\mathfrak{a}) \cap V(\mathfrak{a}) = 1$, it is contradictory to ${}^{v}V'(\mathfrak{a}) \neq 1$. Hence ${}^{x}U(\mathfrak{a}) \not\subset U(\mathfrak{a})$. Secondly assume w = 1. Then we can write x = vut where $u \in U(R)$, $v \in V(P)$, $t \in T(R)$ and $v \neq 1$. Hence ${}^{x}U(\mathfrak{a}) = {}^{v}U(\mathfrak{a})$. Set $v = x_{-\beta_1}(b_1) \cdot \cdots \cdot x_{-\beta_r}(b_r)$ where each β_i are positive roots and $\beta_1 < \ldots < \beta_r$, $b_i \in R$ $(b_i \neq 0)$ $i = 1, 2, \ldots, r$. If β_1 is a simple root, then for $a \in \mathfrak{a}$ $(a \neq 0)$ we have

$$[x_{\beta_1}(a), v] = [x_{\beta_1}(a), x_{-\beta_1}(b_1)]y$$

= $x_{\beta_1}(c)h_{\beta_1}(d)y$

where $c \in \mathfrak{a}$, $d=1/(1+ab_1)\neq 1$, $y \in V(\mathfrak{a})$, hence ${}^vx_{\beta_1}(a) \notin U(\mathfrak{a})$. If β_1 is not simple, then there exists a positive root α such that $\alpha-\beta_1$ is a negative root and $i\alpha-j\beta_k < \alpha-\beta_1$ if $i\alpha-j\beta_k$ are roots. Here let $a \in \mathfrak{a}(a\neq 0)$ and V'' be the subgroup generated by $x_{-\gamma}(t)$ for all roots $-\gamma < \alpha-\beta_1$ and $t \in \mathfrak{v}_v$. We have

$$[x_{\alpha}(a), v]x_{\alpha-\beta_1}(\varepsilon ab_1)y$$

K. SUZUK

where $\varepsilon = \pm 1, \pm 2, \pm 3$ and $y \in V''$. Hence ${}^vx_{\alpha}(a) \notin U(\mathfrak{a})$ and so ${}^xU(\mathfrak{a}) \not \subset U(\mathfrak{a})$.

- N. B. Let R be local ring and assume that $ch(k)\neq 2$ and if G is of type G_2 then $ch(k)\neq 3$. Then observing the above proof of 3.2. Lemma, we can see that the normalizer of U(R) is B(R).
- 3.3. Lemma. Under the hypotheses of Theorem B, let U_0 be a subgroup of $U(\mathfrak{o}_{\mathfrak{p}})$ normalized by $B(\mathfrak{o}_{\mathfrak{p}})$ such that $[U(\mathfrak{o}_{\mathfrak{p}})\colon U^{\mathfrak{o}}] < \infty$. Then there exists a non-zero ideal A of $\mathfrak{o}_{\mathfrak{p}}$ such that $U(\mathfrak{a}) \subset U_0$

PROOF. In K. Suzuki [3], we can see that there exists ideal \mathfrak{a}_x of $\mathfrak{o}_{\mathfrak{p}}$ for each positive root α of \emptyset such that

$$\mathfrak{a}_{\alpha}\mathfrak{a}_{\beta}\subset\mathfrak{a}_{\alpha+\beta}$$
 for positive roots α , β , $\alpha+\beta$, $U_0=II_{\alpha\in\Phi}x_{\alpha}(\mathfrak{a})$

By $[U(\mathfrak{o}_{\mathfrak{p}}): U_{\mathfrak{o}}] < \infty$ we see $\mathfrak{a}_x \neq 0$ for each positive root α . Let \mathfrak{a} be the maximal ideal of $\{\mathfrak{a}_{\alpha}\}_{\alpha \in \Phi^+}$. Then \mathfrak{a} is non-zero and we have $U(\mathfrak{a}) \subset U_{\mathfrak{o}}$.

3.4. Here we shall prove the Theorem B. Let σ be an automorphism of $G(\mathfrak{o}_{\mathfrak{p}})$, $\overline{K}_{\mathfrak{p}}$ the algebraic closure of $K_{\mathfrak{p}}$, $\overline{\sigma B}(\mathfrak{o}_{\mathfrak{p}})$ the closure of $\sigma B(\mathfrak{o}_{\mathfrak{p}})$ in $G(\overline{K}_{\mathfrak{p}})$, $(\overline{\sigma B}(\mathfrak{o}_{\mathfrak{p}}))_{\mathfrak{0}}$ the connected component of the unit element of $\overline{\sigma B}(\mathfrak{o}_{\mathfrak{p}})$. Then $(\overline{\sigma B}(\mathfrak{o}_{\mathfrak{p}}))_{\mathfrak{0}}$ is solvable and defined over $K_{\mathfrak{p}}$. Thus there exists an element g of $G(K_{\mathfrak{p}})$ such that $g(\overline{\sigma B}(\mathfrak{o}_{\mathfrak{p}}))_{\mathfrak{0}}g^{-1}$ $\subset B(\overline{K}_{\mathfrak{p}})$. In [2], it is shown that g=st for some $s\in B(K_{\mathfrak{p}})$ and $t\in G(\mathfrak{o}_{\mathfrak{p}})$. Now let $B_{\mathfrak{0}}$ be the set of elements x of $B(\mathfrak{o}_{\mathfrak{p}})$ such that $\sigma x\in (\overline{\sigma B}(\mathfrak{o}_{\mathfrak{p}}))_{\mathfrak{0}}$. Denoting the commutator subgroup of $B(\mathfrak{o}_{\mathfrak{p}})$ by $\mathfrak{D}B(\mathfrak{o}_{\mathfrak{p}})$, we have $\mathfrak{D}B(\mathfrak{o}_{\mathfrak{p}})=U(\mathfrak{o}_{\mathfrak{p}})$ and $t\sigma \mathfrak{D}B_{\mathfrak{0}}t^{-1}\subset U(\mathfrak{o}_{\mathfrak{p}})$. Since the order of $B(\mathfrak{o}_{\mathfrak{p}})/B_{\mathfrak{0}}$ is finite, by 3.3 Lemma, there exists a non-zero ideal \mathfrak{a} of $\mathfrak{o}_{\mathfrak{p}}$ such that $\mathfrak{D}B_{\mathfrak{0}}\supset U(\mathfrak{a})$. Thus setting $\sigma'=t\circ\sigma$, we have $\sigma'U(\mathfrak{a})\subset U(\mathfrak{a})$ since $G(\mathfrak{o}_{\mathfrak{p}},\mathfrak{a})$ is characteristic and $\sigma'U(\mathfrak{a})\subset G(\mathfrak{o}_{\mathfrak{p}},\mathfrak{a})\cap U(\mathfrak{o}_{\mathfrak{p}})=U(\mathfrak{a})$. For any non-zero ideal \mathfrak{b} contained in \mathfrak{a} , $U(\mathfrak{a}/\mathfrak{b})$ is finite, and so $\sigma'U(\mathfrak{a}/\mathfrak{b})=U(\mathfrak{a}/\mathfrak{b})$. Since $\lim_{t\to\infty} U(\mathfrak{a}/\mathfrak{b})=U(\mathfrak{a})$, we have $\sigma'U(\mathfrak{a})=U(\mathfrak{a})$. By 3.2 Lemma, it holds $\sigma'B(\mathfrak{o}_{\mathfrak{p}})=B(\mathfrak{o}_{\mathfrak{p}})$, hence $\sigma'U(\mathfrak{o}_{\mathfrak{p}})=U(\mathfrak{o}_{\mathfrak{p}})$. Therefore from Theorem A we have proved completely Theorem B.

Ackowledgement The anthor extends his thanks to professor E. Abe for his

kind attention in the preparation of the munuscript.

References

- [1] E. Abe, Chevalley groups over local rings, Tôhoku Math. Jour. 21(1969), 474-494.
- [2] A. Borel, Density and maximality of arithmetic groups, J. Reine Angew. Math. 224 (1966), 78-89.
- [3] K. Suzuki, On parabolic subgroups of Chevalley groups over local rings, Tôhoku Math. Jour. 28 (1976), 57-66
- [4] M. Stein, Central extentions of Chevalley groups over commutative rings, Cloumbia Univ. Ph. D., 1970 Math. .
- [5] R. Steinberg, Lecture on Chevalley groups, Lecture notes, Yale Univ. 1968.

Depertment of Mathematics Faculty of General Education Kumamoto University