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Introduction. Let G be a simple and simply connected Chevalley-Demazure
group scheme assocated with a connected complex simple Lie group of type 0.
For any commutative ring R with 1, let G (R) be the group of R-points of G (for
the defintion see E. Abe [1]). It is well known that if R is a perfect field, then
any automorphism of G (R) can be expressed as the product of an inner, a dia-
gonal, a graph and a field automorphism (see R. Steinberg [5]).

In this note, for a local ring, we shall give a sufficient condition for an
automorphism of G (R) to be expressed by the same product as above, and futhe-
rmore for a complete p-adic integer ring Dy, we shall show that any automorphism
of G(o,) is expressed by the same product as above except some cases. The main
theorems are stated in Section 1 and are proved in Section 2 and 3.

1. The statement of the main theorems.

1.1. Let G be a simple and simply conneced Chevalley-Demazure group
scheme and R be a local ring. Let x,(#) be the unipotent element of G (R) asso-
ciated with a root @ of @ and {€ R. Assume that 2 is a unit elemet of R if G is
symplectic. Then in M. Stein [4], it is known that for rank ®>1 (resp. rank @
=1), the following relations A, B, C, (resp. 4, B, C) is a complete set of rela-
tions for G (R).

A) x,()x,(B) =x,(s+1) for root @€ @ and s, t€ R

B) [x.(s), xa(t)]=m1+7jﬁxm+,-s(Nm3usitj)
for all @, € 0 such that a+ 870, where the product is in some order and Nogi;
are certain integers depend only the root system (for elements @, b of a group,
we denote by [a, b]=aba'b7").

B) w.(®x(wo(—1)=x_,( —t %) for 1€ R* and € R.

where R* is the set of unit elements of R and w,() =x,(Dx_,( —t Dx,(1) for
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1€ R*.

C) ho(uv) =ha(w)h,(v) for u, v€ R¥,
where h,(4) =w,(w)w_,(—1) for u€ R*.

Now we descrive the three kinds of automorphisms of G(R). Denote by L,
the Z-module generated by all simple roots. Let f, € R* for any simple root a € @.
Let f be extended to a homomorphism of L, into R*. Define the map ¢; of
{£2()} wco,:cr ONto itself by

%,(8) — x%,(ft) for all @€ @, t€ R.

On the other hand, let vy be a ring automorphism of R. Define the map ¢, of
{22(8)} weco.:cr ONto itself by

%,(8) — x,(f") for all @€ 0, t€ R.

Then the maps ¢, and ¢, can be extended to automorphisms ¢; and &, of G (R)
respectively since the relations A, B and C are preserved by them. ¢; and ¢, are
called the diagonal and the ring automorphism of G(R) respectively.

Let p=C(ap, a)/(Bs, Bo) With a, long, B, short. Let ¢ be an angle preserving
permutation of the simple root, ¢4 1. If two length occur, assume that p is
equal to 0 in R and the map: x — x” is a ring automorphism of R. Then there
exists an automorphism ¢; of G (R) and signs ¢, (e,=1 if & or —a simple) such
that

[xw(smt) if « is long or all roots are of one length.

lxm(eal‘p) if « is short.

bsx0,(2) =

The automorphism of G(R) of this type are called graph automorphisms (see R.
Steinberg [5]).

1.2. THEOREM A. Let G be a simple and simply connected Chevalley-Demazure
group scheme, R a local ving, M the maximal ideal of R, k=R/M the residue class
field. Assume that ch(B)#2, and further if G is of type A, then k#F;, if G is of
type G, then ch(k)#3. Let o be an automorphism of G(R) such that ¢U(R)=U(R)
where U(R) is the subgroup of G(R) generated by x,(t) for all positive roots and t € R.
Then o is expressed by the product of an inner, a graph and a ring automor phism.

N. B. Under the hypotheses of the above Theorem, there exists no graph
automorphism of G(R) if two length occur.
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1.3. Let K be an algebraic number field of finite degree over @, 0 its ring
of integers, p a prime of o, K, the completion of K at the valution with respect
to p, o, the ring of integers of K,, p' the maximal ideal of 0, and k=0,/y’.

THEOREM B. Let G be the same as theorem A. Assume that ch(B)F#2, and if
G are of type A;, Bn(m=2), C,, D, (n=3) and F, then k#F; and if G is of type
G, then ch(k)#3. Then any automorphism of G(v,) can be expressed as the product

of an inner, a diagonal, a graph and a ring automor phism.

2 A proof of theorem A.

2.1. Under the same notations as above, let a be an ideal of a commutative
ring R. Denote by U(a) (resp. V(a)) the subgroup of G(R) generated by x,(#)
for all positive (resp. all negarive) roots « of @ and {€ a. Let 7 be the maximal
torus of G. Set B(R)=U(R)T(R), and let N(R) be the subgroup of G(R) generated
by w.(2) for all roots « of @ and %€ R* where denote wa(%) = 2,(1)%_o( — 2™ ) %, (26)
and N(R)/T(R)=W(®). Let G(f): G(R) — G(R/a) be the group homomorphism
induced by the natural homomorphism R — R/a. Denote by G(R,a) (resp.
G*(R,a)) the kernel (resp. the inverse image of the center of G(R/a))fof G(f).

2.2. LEMMA. Let G be a simple and simply connected Chevalley-Demazure
group scheme, R a local ring, m the maximal ideal of R and k=R/m. Assume that
if Gis of type A, then ch(k)F#2 and kF#F;, and if G is of type B, or G, then EFF,.
Then GY(R,m), G(R,m) are characteristic subgroups of G(R).

PROOF. Let ¢ be any automorphism of G(R). 'By a characterization of
normal subgroups of G(R) in E. Abe [1], there exists an ideal a of R such that

G*(R,0) D oG (R, m) DG(R,q).

Let E(R) be the subgroup of G(R) generated by x,(¢) for all roots a and € R.
Then by the simply connectedness of G, G(R)=FE(R), hence the map: G(R)—
G(R/b) is surjective for any ideal b of R, therefore we have G*(R,m) DG (R, a).
By the maximality of ¢G*(R,m), we have o¢G*(R,m)=G*(R,m).

On the other hand, for the normal subgroup ¢G(R,m), there exists an ideal ¢
such that
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GH*R, ) DoG(R,m) DGR, ).

Firstly assume m=c. Since G*(R,m)/G(R,m) is isomorphic to the center of G(k),
we have [G*(R,m): G(R,m)]< o where for a subgroup B of a group 4, we denote
by [A: B] the index of B in A. Then we have ¢G(R,m) DG(R, m) and

[G*(R,m): G(R,m)]=[cG*(R,m): ¢ GR,mM)]=[G"(R,m): ¢G(R,m)]

and so G(R,m) =0¢G(R,m). Secondly we will show that m=c. Assume m=Zc. In
E. Abe [1] we have seen that

G*(R,D)=U®T*(® V() for any proper ideal b of R where T =
T(RNGR,D). For méEm, mese,

[%a(m), %_o(D]=x,(—m*/A—mDha(1/(1—m))x_o(m/(1— m))EGT (R, ). On
the other hand,

[x.(m), x_,(1)] € G(R,m).

Therefore, G*(R,¢)PsG[R,m). This is a contradiction, and it must be m=c.

2.4. LEMMA. Assume the hypothese of Theorem A, Set B(R)=UR)T(R),
B (R)=V(R)T(R). Then for an automorphism o of G(R) such that s(UR))=U(R),
there exists an element u in U(R) which satisfy the followings

wos(B(R))=(R), uos(B (R)=R (B), uos(VIR))=V(R), uco(T(R)=T(R)

where wo o is the product of o and the inner automorphism induced by u.

PROOF. By 2.1. Lemma, we see that ¢ induces the automorphism & of G(k)
and dU(E)=U(kE). There exists an element w, of N(&) such that wl (B w, ' =U(k)
and We=Wa,(1) - - -+ W4, (1) where w,,(1) is the image of 1,,(1) under the map:
G(R)— G(E). We can write (i) =awi'f where @, #' € U(k), w¢€ Nk, t€ T((R,
then &(V(E))=3d(w)s(UE))é(wy) ' =uwlU(w *u~*. Since UXNV(k=1 we
have #UE)T 5 NU(E) =1, hence wU(Rw *NU) =1 and so @=hiw, for some
7€ T(E). Let T(m) be the subgroup of T(R) generated by all 2(%) such that 1)
=1 mod m for all we®. In E. Abe [1] we have seen that G(R, m)=U(m) T(u)V(m)
Setting wo=we (1) ++* w,, (1) in G(R), it holds o(wy) = utvwad where u, # € U(R),
1€ T(R), v€ V(m). Hence we have o(V(R))=uV(R)u™". Setting ¢ =u"'os, we have
JUR)) =U(R), J(V(R)=V(R). Since the normalizer of U(R) (resp. V(R))
is B(R) (resp. B"(R))(see N. B. of 3.2. Lemma), it holds that 7 (B(R))=B(R) and
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d(BT(R)=B"(R). By B(R)NB (R)=T(R), it holds ¢/ (T(R))=T(R).

2.5. Let ¢ be an automorphism of G(R) normalized in above Lemma. Assume
that 2 is a unit element of R, then N(R) is the normalizer of T(R), hence ¢ fixes
N(R). Setting B=B(R)V(m), we have B=B(R)G(R,m) and ¢B=B. On the other
hand « is a simple root if and only if BN Bw,(1)B is a subgroup of G(R). Hence
we have o(w,(1)) =ws(1)¢ for some simple root 2 and € T(R).

VR)Nw(1)BR)w,(1) '=x_,(R) for simple root «, it holds

0(x_a(R)) =o(V(R)Nwa(1DBR)w,(1)™)
=V(R)Nwe(1)BR)we(1)™
=x_B(R>.

By the same way we have o(x,(R))=xs(R).

Let o be the map of the set of simple roots into itself defined by «—— . Since
o(x,(1)) =x5(t) for some ¢€ R*, we can define the map X of the set of simple roots
into R* by a—¢. Hence by the map x,(a) — x,(%(a) ') for simple roots a, we
have the diagonal automorphism ¢ of G(R) such that ¢oo(x,(1))=1x,,(1) for any

simple root a.

The following three Lemmas are proved by the same way as in R. Steinberg

[4], therefore we shall omit the proof of them.

2.6. LEMMA. Under the hypotheses of Theorem A, an automor phism ¢ of G(R)
such that c(U(R)) =U(R) is mormaclized by a diagonal automorphism so that

D o2, =x,,1) for all simple root a,

2) wa(1) =1w,,(1),

3) o preserves angles.

2.7. LEMMA. Under the hypotheses of Theorem A, an automorphism o of G(R)
such that o(U(R))=U(R) is normalized by a diagonal and graph automorphism so

that
0x,(R)=2x,(R) and cx,(1)=x,(1) for any simple roots a.

2.8. LEMMA. Let o be an automorphism of G(R). Assume that cx,(R) = x,(R)

SRR ———

L
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and ox,(1) =x,(1) for all simple roots a. Then ¢ is a ring automor phism.

Here we have proved Theorem A completely.

3. A proof of Theorem B.

Throughout this Section we shall use the same notation as 3.1. Let o, be

the ring of integers of K,, p the maximal ideal of o,.

3.1. LEMMA. Let G be a simple and simply connected Chevalley-Demazure group
scheme. Assume that if G is of type A then ch(B)#2 and k#F,, and if G is of type
B, or G, then k#F,. Then for each rational integer i, G*(0,,0") and G(o,, ") are

characteristic subgroups of G(v,).

PROOF. Denoting R=0,, we shall prove this Lemma by using the induction
for i. If i=1, then by 1.2. Lemma, our Lemma is clear. For any automorphism

s of G(R), we have that for G*(R,p"), there exists an ideal p’ such that
G*(R,p) DG (R, pHI DGR, p).

Assume ¢ > j. By the induction assumptions G*(R,p”) and G(R, p’) are characte-

ristic, hence we have
G*(R,p) DG (R, pH DGR, ).

On the other hand, for £€ ' and t&£p, we have x,(#) € G(R,p") and x,(HEG (R, ).
Therefore G¥(R,p")PG(R,p’), it is contradiction. Hence it must be i<j. Using

the induction assumption, it holds

G*(R,p'™)/G*(R, p) =G (R, ') /6G*(R, 1"
=GR, /0GR, ).

Since the order of G(R)/G(R,p") is finite and G*(R, '™ /G*(R,p’) is a homomo-
rphic image of G*(R,p"™)/G*(R,p"), we have

[GH(R,p'™: G*RPIIZIG* R, p'™): G*(R,p7)]

On the other hand
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[G*(R,p'™: G*R,pHILGH R, p): G*(R,p)]
=[G*R,p'™: G*(R, )]

Hence G*(R,p")=G*(R,p?). Therefore we have

[G*(R,p"™): G*(R,p)]1=[cG*(R,p'™): ¢G*(R, 1]
=[G R, "™ G*R,p)HIG* R, p): «G*(R,p')]
=[G*(R,p'™): G*(R,pILG*(R, 1) ¢G*(R,p)].

Hence [G*(R,p"): ¢G*(R,p)]=1 and we have G*(R,p) =0G (R, p").
By the same way, we can easily prove that G(R,p") is characteristic.

3.2. LEMMA. Let a be a non-zero ideal of v,. Then the normalizer of U(a) in
G(v,) is equal to B(v,).

PROOF. Denote R=vp,. It is clear that B(R) normalizes U(a). Hence it is
sufficient to show that for any element x of G(R) such that x& B(R), it holds “U(a)
dUC) where “A=xAx"" for a subgroup A of G(R). By the Bruchat deco-
mposition of G(R), we can write x =wwvwtu' where u, u' € U(R), v € V(b), w€ W where
we denote a representative element of w in N(R) by the same symbol w. Firstly
assume w71. Denote by V'(a) the subgroup generated by %.,.,(a) for all w(a)< 0
and ¢ € @. Then it holds V/'(a)#1 and so “*V'(a) C*U(a) CG(R,a), hence *’V'(a) C
UT(@V(a). If “V'(a)CU(a), then it holds *V'(a) CU)NV(a)=1, it is contr-
adictory to “V'(a)#1. Hence “U(a)tU(a). Secondly assume w=1. Then we
can write x=vut where usU(R), veV(P), teT(R) and v#1. Hence “U(a)="U(a).
Set v=x_g(b)-"--+ %_p5,(b,) where each {3, are positive roots and 5<....< B,
b;eR (b;7#0) i=1,2, ..., . If B, is a simple root, then for ¢€ a (¢7%0) we have

[x5,(@), v]1=[xp,(a), x-5,(b)]y
=25,(C)hg,(d)y

where c€a, d=1/(1+ab))#1, y€ V(a), hence x6,(@)€EU(a). If B; is not simple,
then there exists a positive root a such that &« —f; is a negative root and ia—j3,
<a—PB;if ia—jB, are roots. Here let a € a(a70) and V" be the subgroup generated
by x_,(#) for all roots —y<{a—p;and € v,. We have

[xo(a), v]xa_p (cab)y
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where e= +1, £2, +3 and y€ V. Hence "x,(a)e=U(a) and so “Ula)FU(a).

N. B. Let R be local ring and assume that ci(k)#2 and if G is of type G,
then ch(k)7#3. Then observing the above proof of 3.2. Lemma, we can see that
the normalizer of U(R) is B(R).

3.3. LEMMA. U=nder the hypotheses of Theorem B, lei U, be a subgroup of U(v,)
normalized by B(v,) such that [U(o,): U']< . Then there exists a non-zero ideal
A of v, such that Ula) CU,

PROOF. In K. Suzuki [3], we can see that there exists ideal a, of o, for each

positive root &« of @ such that

a0 Cagrp for positive roots «, £, a-+ 8.
UO=Hm€¢xw(a)

By [U(o,): Upl< oo we see a,7%0 for each positive root a. Let a be the

maximal ideal of {ay}sco+- Then a is non-zero and we have U(a) CUs.

3.4. Here we shall prove the Theorem B. Let ¢ be an automorphism of G(o,),
[fp the algebraic closure of K, JBTD,,) the closure of ¢B(pn,) in G(K';,), (FCD;))U
the connected component of the unit element of ;l?vp). Then (m})g is solvable
and defined over KX,. Thus there exists an element g of G(X,) such that gC_O‘B—(Dp))gg_l
CB(K;,). In [2], it is shown that g=st for some s€ B(X,) and t€ G(o,). Now
let B, be the set of elements x of B(v,) such that sx¢ (;;BT,J))O. Denoting the
commutator subgroup of B(o,) by DB(v,), we have DB(v,)=U(o,) and teDByt T C
U(o,). Since the order of B(Dp)/Bo is finite, by 3.3 Lemma, there exists a non-zero
ideal a of v, such that DB,DU(a). Thus seiting o' =tos, we have oU(a) CU(a)
since G(o,,a) is characteristic and GIUQI)CG(D?,L‘[)[_\U(DP)=U(Cl>. For any non-
zero ideal b contained in a, U(a/b) is finite, and so ¢U(a/b)=U(a/b). Since
l(z'_;ﬁU(a/b)———U(a), we have /U(a)=U(a). By 3.2 Lemma, it holds a’B(op)=B(op),

b6Ca
hence o'U(v,)=U(vo,). Therefore from Theorem A we have proved completely

Theorem B.
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