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1. Introduction

Let p be a prime number and G be a finite group. The structures of p-blocks
with abelian defect groups and with inertial index 1 are well known (see Lemma
2). In this paper we study p-blocks with abelian defect groups and with inertial
index 2, 3, 4 and 5. Let B be a p-block of G, ¥ be an ordinary irreducible
character in B and = be a p-element of G. Then we have

A(mod)=>1 >V dZ, =, $IPp(o)
b GEIBr(d)
for all p-regular elements p of the centralizer C(x) of = in G. Here & runs over
the p-blocks of C(z) with 6°=B. After Brauer [1], let x™" be the central
function on G which is defined as folllows. For a p-regular element p of C(xn),
X(””"(np):(b%] d(x, =, $)p(p) and 1™” vanishes outside of the p-section of .
Let D be a defect group of B, b be a root of B in C(D)D and T(bd) be the inertial
group of & in N(D), where C(D) and N(D) are the centralizer of D in G and the
normalizer of D in G, respectively. Here we suppose D is abelian. Then by
Brauer [3, (4G) and (6C)] each subsection associated with B is conjugate to a
subsection (z, 8°™) (z € D). Furthermore, for =y, 7 € D, (71, 5™ and (m,, 55"
are conjugate if and only if 7; and =, are conjugate in 7(d). Therefore by Broué
and Puig [5, Theorem], if % is a T(d)-invariant character of D, then X¥y is a
generalized character of G. Here
Akp= S p(m)A™?¢™
v

where U is a set of representatives for the T(d)-conjugacy classes of D. This
fact plays an important rdle in our arguments. If B has inertial index 1, then
the ordinary irreducible characters in B are X*X's, where 2 runs over the linear

characters of D (see Lemma 2). If B has inertial index 2 or 3 and if some

assumptions are satisfied, then we have the following.
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THEOREM 1. Let G be a finite group and B be a p-block of G with an abelian
defect group D and with inertial index e, and b be a root of B in C(D). We denote
D,=DNC(T(D)) and D,=[T(b), D]. Lei A, be the set of non trivial linear characters
of D, and 4, be a set of representatives for the T(b)-conjugacy classes of non trivial
linear characters of D,. If p=5, e=2 or 3 and if |D.| <p°, then the followings hold.

(i) B contains exactly e irreducible Brauer characters and exactly |D.|(e-+
(ID,| =1)/e) ordinary irreducible characters %, 1<i<e, X, n€ Ay, Lx2, 1<i<e,
2€ Ay and X2, A€ Ay, p€ A,

(4i) There exist ¢, €1, €y...,6.= x 1 such that

Z,_,,“‘B] = gl eixi(x,B) (€ A)

(#i7) Let = be an element of D such that C(z)N\T(H)=C(D). Then b°'™
contains a unique irreducible Brauer character ¢'™. There exists a sign v.,= =1 such
that

d<xi’ T, d)(ﬂ)):EiTz (1§de),

dCZp.y 7Ty qS(ﬂ)):ETnvu(ﬂ) (/«‘ E /1'.2)’

where 3, is the sum of characters of D which is T(b)-conjugate to ,.

The proof of Theorem 1 is given in §3. In § 4 we show that if p=>19 anl G
has an abelian Sylow p-subgroup P such that |N(P):C(P)| =2, 3, 4 or 5, then
the the principal p-block of G contains exactly 2, 3, 4 or 5 irreducible Brauer
characters, respectively.

Let K be the algebraic closure of the p-adic number field, v be the ring of
local integers in K and p be the maximal ideal of v. For a p-block B, Irr(B)
denotes the set of ordinary irreducible characters in B and IBr(B) denotes the
set of irreducible Brauer characters in B. We put 2(B)=|Irr(B)| and I(B)=
|IBr(B)].

2. Lemmas.

In this section we fix a p-block B of G and we assume that a defect group D
of B is abelian and &4 is a root of B in C(D).
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LEMMA 1. Let % be an ordinary irreducible character in B and p be a linear
character of D. Then any ordinary irreducible character appearing in L*z, belongs
to Irr(B), where v, is the sum of characters of D which is T(b)-conjugate to p. If
X is of height 0 and X' is an ordinary irreducible character in B, then X' appears in

L#y, for some linear character n of D.

Proof. By the definition of X#7, and by the second main theorem on p-blocks,
the first half is evident. Let 4 be a set of representatives for the 7(b)-conjugacy
classes of linear characters of D. Then we have

S 2Hg.= | D] 24P,
REN

By [1, (6H)], if X is of height 0, then the inner prodduct (x"®, %) %% 0 for any
72 € Irr(B). This completes the proof.

If B has inertial index 1, then B is a nilpotent p-block. Hence we have the

following by Broué and Puig [4, Theorem 1. 2].

LEMMA 2. If B has inertial index 1, then the followings hold.

(z) I(B)=1 and k(B)=|D|.

(@) {(m, B°™)|n€ D} is a set of representatives for the conjugacy classes of
subsections associated with B. Moyeover b°™ contains a unique irreducible Brauer
character ¢™.

(iii) B contains an ordinary irreducible character X, such that d(Xy, n, ¢'™) =

+1 for all 1€ D. Moreover Irr(B) = {Xo*%2| 2 is a linear character of D}.

In the above lemma, Xy*2 is an irreducible character of G, because the inner

product (Zp*2, ZexA) is equal to 1 and (¥y*2) (1) is positive.
LEMMA 3. Under the assumption of Lemma 2, let ¢ and ¢, be the irreducible
Brauer characters in B and b, respectively. Then we have
[G:C(D)|po(D)/Pp(LD=+£1 (mod p).

Proof. We prove by induction on |G|. We may assume G#C(D). There
exists an element = ¢ D such that C(z)7#G. Since 5°™ has a defect group D and
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inertial index 1, by the induction hypothesis,
@ |C(x): C(D) | o)/ (D= %1 (mod p),

where ¢ is the irreducible Brauer character in °”. On the other hand, by

[1, (4B)],
|G:C() | 2= () /2 (D)= |T(B): TBNC|=1  (mod P,

for all X € Irr(B). Lemma 2 implies that for any X € Irr(B), d(X, n, ¢™)==1
(mod p) and % is irreducible as a Brauer character. In particular 2(1)=¢(D).

So we obtain
2 |G:C(m) | PV /p(1)=£1 (mod p).
(1) and (2) yield |G:C(D)|¢o(1)/Pp(1)= 1 (mod p).
LEMMA 4. If m and w, are elements of D such that T(5)NC(r) =T(b) N Clms)

=C(D) and if ¢$"Pand ¢ are the irreducible Brauer characters in b°™V and b°'™,

respectively, then there exists a sign v= £1 with the property that

d(t, m, ¢T)=7d(X, m, &) (mod )

for all X € Irr(B).

Proof. By the assumption and by [1, (4B)],
|G:C(a ) |d(X, mi ™™D/ x(D=|T(5):C(D)] (mod )

for all % € Irr(B) and for i=1, 2. Since °* has the same defect as B has, Z(1)/
|G:C(x;) | p™?(1) belongs to v. Therefore we have

d(x, my, )= ((|ClaD) | (1))/(| Clm) | $ AL, 72 ™) (mod p)
for all Z € Irr(B). Applying Lemma 3 to 57,
|C(r): C(D) (/W) =%1  (mod p).
Hence we have
(JCaD ™)/ (| Clr) |p™ ()= =£1 (mod p).

This completes thz proof.

UR———
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3. Proof of Theorem 1.

Proof of Theorem 1. We prove by induction on |G|. We put p%=|D|, p%=
| D,| and pdz: |D,|. By [8, Chapter 5, Theorem 2. 3], D=D;XD,. Let S be a set
of representatives for the 7'(d)-conjugacy classes of D and put U=S—D,. Then
|U| =p™(p™—1)/e. For €S, we put b,=b". Then {(r. b,)|c€S) is a set of
representatives for the conjugacy classes of subsections associated with B. For X,
1" € Irr(B), we denote my% the contribution of (z, &.) to the inner product (%,
2. By [1, (5B)],

€)) pl= Zb i, for all % € Irr(B).

If # €U, then b, has inertial index 1 and hence &, contains a unique irreducible

Brauer character ¢™. Moreover p%m/,=|d(X, =, $®)|>. The orthogonality

relations for the decomposition numbers yield

4 pd=x§ ld(%, n, $™)|>  for all z€ U.

Since p=5 and e=2 or 3, B contains exactly /(B) p-rational ordinary irreducible
characters. Let X; be one of them.

Step 1. ALy m, ¢™)=+1 for all w € U.

Proof of Step 1. For €S and any X € Irr(B), myy does not vanish by [1,
(40)]. In particular =}y, is a positive rational integer. If d(Xs, =, ™= +1
(mod p) for some = € U, then by Lemma 4 and (3), p°>p% +4p*(p™—1)/e. Since
e=2 or 3, pd1+4pdl(pd2—1)/e>pd. This is a contradiction. Hence we have d(X,
7, ¢)==+1 (mod p) for all z € U. We assume p™=1. If d(xy, =, ™%~ +1 for
some = € U, then [d(Xy, m, ¢™)|=|d(x, =, q’;(”k))lgp—l, where (&, p)=1. Since
p=5and e=2or 3, 7 is not T(b)-conjugate to =" for some % Hence Z‘pdm;’lfxng
(p—1)*>|D]|. This contradicts (3). -

Next we assume that p™'41. For ¢ ¢ S, b. be the p-block of C(z)/<{(<> such
that Irr(d,) 2Irr(d,) when we regard the characters of C(z)/{z> as characters
of C(z). If c€D;—{1}, then we can apply the induction hypothesis to 5.(sze
Olsson [10, Theorem 1. 5]. Hence I(b,)=1(b,)=e¢. Therefore we obtain k(B)=
Z(B)+e(pd1—1)+pd1(pd2—1)/e. Let %, be an element of Irr(B) and F(X,) be the
family of p-conjugate characters in B which contains Z,. By the theorem on

the arithmetical and geometrical mean,
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SV 1d, m, P FW)].

XEFXg)

Suppose that d(Xy, m, ¢™)F 1 for some =€U. Then [d(X#*2 7, ¢™)|°=
[2(m)d(Xy, 7, ™) |P=1d(Ay, 7, $™)|*=(p—1) for all 1€ A;. Since {X#2|2€ A;)
is a union of families of p-conjugate characters in B, by (4) and the assumption,

we have
P2 p (P -1+ k(B) —p*™
>pU(p—10+(e— D" =1+ p(p"—1)/e>p"

Hence d(¥y, w, ¢'™)= £1 for all = € U.

Step 2. Let p, u' be elements of A,. We have
y#nu, X)) =€"—e+1, Kkpu, ZD=e—1.

If /.l#,u/, then (11*77,,,, Xl*n#,)z‘ez—e.

Proof of Step 2. By Step 1, mi",,=1/p* for all = € U. Hence we have (X%,
XD =e>en, M+ 1/ ; 7.(). By the way (3) yields Sl,ep, miry,=1— lUl/p°,
7€o

so we have

5) > miDy, = ((e—1)p%+ p™)/ep®.

o< D;

On the other hand, by the orthogonality relations for the irreducible characters
of D, ) gu()=ep™+e > 5.(x)=0. Hence
TED Ty

6 33 pu(m) = —p™.

ey

By (5) and (6), we obtain (X7, X;)=e—1. This yields
Ky, Aiknn) =y, xl*(mm—l))=ez—e+1,
(Xl*mn xl*‘”#/):<xly Zl*(ﬁ#’”g—l)>=62_e-

Step 3. I(B)=e and k(B)=p"(e+ (p™—1)/e).

Proof of Step 3. By Step 2 and by the assumption e=2 or 3, there exist
e—1+(pd2—1)/e distinct ordinary irreducible characters %;, 2<0<e, X, p# € Ay,
in B and signs ¢, ¢/ ==*1, 2<i<e¢, such that
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7 Atpa=(e— D+ Se/Z+<'%, for all u€ A,
i=2

except for the case ¢e=2 and pd2=7. If e=2 and pd2=7, then (7) or the following
(7') holds. Let As= {113, g2, p3}.

Li¥nu, = X1+ 0,4, + 8575,
" Lpn, = A1+ 0,05+ 04y,

xl*vHs oy Xl + 63%3 + 64;(41

where 0, 05, 0y= %1 and X,, %, X,€Irr(B). We assume that pd1=1. Then the
trivial character 1, of D and 4, form a set of representatives for the 7(5)-
conjugacy classes of linear characters of D. If e#2 or pd27&7, then by (7) and
Lemma 1, 2(B)=e+(p"—1)/e and hence I((B)=e. If e=2 and pdz———?, then the
statement follows from Dade’s theorem on p-blocks with cyclic defect groups
(Dade [6]), and hence (7') does not hold.

We assume that p™=1. (Ipt U4\ JA\J {Au] 2 € Ay, 1 € A,) is a set of repre-
sentatives for the 7(d)-conjugacy classes of linear characters of D. Let 1€ A,.
(7) and (7") yield

® k= (e =D D) + 2] &' U*D + ' (X*42) for all p€ A,
i

11*77#1,\= Xk A+ 0,(Ax2) + 0,(A3x2),
€D) 2 Xrkgupn = Ak 2+ 8,(Aak 2) + 8,(A % D),

L nupn = Xpkd + 05(X#2) + 0,(Ay%2),

respectively. If (7) holds, then by Lemma 1 the set {X;|1<i<e}\U{Z.|u€ 4,)
U (xx2]1<i<e, 2€ A} U {X,%2|2€ Ay, 1 € 4, coincides with Irr(B). If (7) holds,
then {Xy, X, %3 ZJ\U{X*2]1<i<4, 2€ A;) coincides with Irr(B). Suppose that
(7) holds and put I'={X;[1<¢<e} U (Xl p € A} U (22| 1<i<e, 2€ A1) U (Xux2] 2 € A,
w€ A} If X=%" for some X, %' € I, then Z*2=2X'%2 for all 2€ A, and the
cardinal number |I]| does not exceed (e—l)ple.-pdl(pdz—l)/e. On the other hand,
k(B)gl-l-e(pdl—1)~i—pdl(pd2—1)/e by the induction hypothesis. Since p=>5 and
e=2 or 3, this is a contradiction. Hence the characters in I are distinct, and so
k(B)=ep™ +p™(p™—1)/e and I(B)=e. If (7') holds, then we have A(B)<4p™.
This contradicts 2(B)=1+2(p" —1)+3p" =5p"—1. Hence (7') does not holds.
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Step 4. Conclusion. By (7), we can show that X, (1<i<e) is a p-rational
character. By Step 1 and Lemma 4, there exist signs ¢;, r.=*1 (1<i<e, 7 €U)
such that d(X;, =, "™)=¢e;r,. Then we can show (Xpy,, 1;)= —ee; for all i>2.
In fact

(7(1*7&;, 1)=e Z m;cf.)xi + 2184 ; 77;4.(71')/?‘1-
€y

ot D]

Since zaeul mgg,)xi+€1€ilU,/Pd=(xl, 1)=0, ZUEDl ma(c?xt= —516ipd1(15d2—1)/€j7d-
This and (6) yield (Xy#p,, X;)= —ee;- So (7) can be written as

Xy, = (e—l)xl—g e Xy +eeiXy,
where e=¢'e;. This implies
) 2u() %" = (e — 1), —;’ e16:%: 77 + ee1X, 0
~forall ¢€S. If ¢=1, then by (9)

e
ezl(l,B) — (e __1)X1(1,B) __2 slsixi(l,B) + Ealx“(l,B)'

7=2

Hence we have (i7). If = €U, then by (9)
77#(77:)517’7::851(1(%“, T, ¢)(7Z))'

This complets the proof of Theorem 1°

REMARK 1. Theorem 1 holds for p=2 and 3.

REMARK 2. If Gis a p-solvable group, then the conclusion in Theorem 1
holds without the assumption that =5 and |D,| <p* (see Watanabe [11]).

4. Principal blocks

Let G be a finite group with an abelian Sylow p-subgroup P and B, be the
principal p-block of G throghout this section. A root & of B, in C(P) is the
principal p-block of C(P) and hence T(d)=N(P). For an element = € P, %™ is
also the principal p-block of C(n). We put b,=06°™. For a linear character u
of P, 5, denotes the sum of the characters of P which is N(P)-conjugate to 4.
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THEOREM 2. Suppose that B is the principal p-block B, in Theorem 1 and
suppose that p=>3 and e=2 or 3. Then the conclusion in Theorem 1 holds.

Proof. Steps 1 and 2 in the proof of Theorem 1 hold for the trivial charac-
ter 1 of G. Hence by Step 3, B contains exactly e irreducible Brauer characters
and exactly |D;|(e+ (|D,] —1)/e) distinct ordinary irreducible characters Z;=1g,
X, 2<i<e, A, n€ Ay Lixd 1<i<e, 2€ Ay, Xu*d, A€ A1, p € A, Moreover we have

(10> 15*77“,=(e—1)1a+§ Ei/xi—!‘ E/x’u

for all € A,, where ¢, ¢’= +1. By (10) we can show that X; is p-rational. Let

7 be an element of D—D;. b, has a unique irreducible Brauer character l¢m-
e

Set d(X;, 7, low) =a;, 2<i<e, and set c=e¢—1+3>) ¢;/a;. Then a; is a rational
i=2

integer and @;70, because &, has the same defect as B has. By the argument of
Step 4, if @;= +1, then Theorem 2 is proved. By (10), it follows that

d(xy., . 10(7[))‘:5/(7751.(7[)_(:),
d(Xyx2, m, 1o ) =2(m)ay,

d(X;.L*Z; 7, 10(7{))':5/2(77)('77#(7-[)—‘6')

for all i (1<i<e), 2 (A€ A) and u (u€ A,). Since ) 1d(%, =, lew)|’=1D]|, we

e B

have
DI =Dy +3] @it 35 [ —cl®)
= KE N2

> 7.0 +e(ID,] =D/,

Mz Ny

— DA+ @+ 3 |l —c 3 7(m) —c
i=2 KE A e Ny

By the orthogonality relations for the irreduicble characters of Dy, >l n,l7.(m)|?
=|D,| —e and S.cam(m)= —1. Hence it follows that

|D,| =1+4252 &+ |D,| —e+2c+c*(|D,] —1)/e.

This yields

e

1+3d—e+2c+c%(| D, —1)/e=0.

(=

o

Since 1+3) @2—e>0 and 2c+c*(|D,| —1)/e=0, @;= =1 for all i. This completes

(=2
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the proof.
We add the following to Theorem 2,

PROPOSITION. Suppose that in Theorem 1 B is the principal p-block B, and
suppose that p=>3 and e=2 or 3. Then we have

a&®, 157®)={(e—1)|D,| +1}/e|D]|.

Proof. We prove by induction on |G|]. We use the notation in the proof
of Theorem 1. Let ¢€ D;—{1}. Then applying the induction hypothesis to b,,
we obtain (142, 1% = {(e—1)p™+1}/ep®. It is evident that (1’7, 1§"7) =
&2, 134, If = € U, then (1§, 1&*)=1/p". By (3), we can show (1'%,
19 ") = ((e=1p™+1)/ep”.

THEOREM 3. If p=19 and N(P)/C(P) is a cyclic group of order 4, then
l(Bo)=4.

Proof. We prove by induction on |G|. Let ¢ be a generator of N(P)/C(P).
{t) acts on P and on the set of linear characters of P. We call the orbits
{t>-conjugacy classes. If P;=Cp(t), P,=[t, Cp(#*)] and P,=[¢’, PJ, where
Cp(#) is the set of elements of P which is fixed by ¢# and Cp(#*) is the set of
elements of P which is fixed by #, then by [8, chapter 5, Theorem 2.3],

P=Cp(t) X[, P1=Cpr(®) X[t, Cp( D] X Py=P; X P, X P,.

We put p®=|P| and p**=|P;| for i=1, 2, 3. Let U be a set of representatives
for the <{¢)-conjugacy classes of P,XP,—P; and T be a set of representatives
for the {¢)-conjugacy classes of P—P;XP, If m€U, the stabilizer of = in
(ty is <#>. If €T, then the stabilizer of r in <¢) is the identity group.
Hence |U|=(p"p"*—p")/2 and |T|=(p*—p"p"?)/4. Moreover P,UUUT is a
set of representatives for the {#)-conjugacy classes of P. For any element
s € P, we put mP=01g", 1&°). If ¢€ P;—(1}. then &, has inertial index 4
and hence [(b,)=4 by the induction hypothesis. If = € U, then b, has inertial
index 2 and I(b,)=2 by Theorem 2. Moreover by Proposition,

an m'™ =(p"+1)/2p°.

If €T, then b, has inertial index 1 and hence m™=1/p". Since >),cp m'+

g
3

e et s
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me Sk gmm=(la,1a)=1,

e U

(12) Zm(w=<2pa+palﬁa3+ﬁal)/4ﬂa.

cEP

Let A; be a set of representatives for the {t>-conjugacy classes of non trivial
linear characters of P;, i=1, 2, 3. If £ € A, then the stabilizer of pin () is
{#>. If v€ A, then the stabilzer of v in {t> is the identity group. Moreover
W UMUALUAU (av|n € 4y, v € A U™ € Ay vEAYUARIAE Ay #€ A4}U
(W[2€ 4y, v €AYV Q| A€ Ay, 1€ Ay, v € Ay) U{Ae™ 1€ 4y n€ 4, vE A} is a set
of representatives for the {t>-conjugacy classes of linear characters of P.

By the orthogonality relations for the characters of P, we obtain

GE)) EE ()= —p*p™ (v € 4.
Fs T T

Combining this with (11) and (12),

(14) (1g*y., 1g)=3 (v € 4y).

This yields the following.

15 Qe 1g#p) = 1a, 1a*(y,-m,)) =13 (v € Ay).

(16> Qe*n, 1e¥n) =g, le*Cp-mp))=12 (3, V € Ay, v£)').

By (15) and (16) and the assumption p=19, there exist 4+ (p**—1)/4 distinct
ordinary irreducible characters X,=1¢, Xy, Zs Xy X, v € A3, in B such that

an lg#n, =3 1o+ X+ 343+ ey + X,

for all v € A;, where &, e, ¢, ¢ = +1. Therefore if p 1p*2=1, then by Lemma
1 k(B)=4+(p"—1)/4. Since k(By)=1(By)+ (p**—1)/4, I(B,)=4.

Next we suppose that p™#1 and p*=1. By Lemma 1, I= (X;|1<i <4} U
v e AU {X:*211<i <4, 2€ 4) U{X*A|2€ Ay, vE A} is the set of ordinary
irreducible characters in B. Since the. cardinal number |I| does not exceed
4"+ (p"p™—p")/4 and since A(B)21+4(p"—1)+(p*p®—p™)4 by the in-
duction hypothesis, we can see that the characters in I are distinct. Hence we
obtain &(By)=4p"' + (p"'p" —p™)/4 and I(By) =A4.

We assume that p**31 in the rest of the proof. By the orthogonality
relations for the linear characters of P, and P,, the following hold.

(18) 2= —p" and B (=0 (€M),
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a9 62 puw(n) = —2p"" and EE () =0 (€ Ay, v € A).
ey TEeT

By (11), (12) and (18), we have

(20) Ae*7u 1) =1, Ag#n le*p) =3  (u€ 1),
€4D) (Ae#7nu, le¥pu) =2 Cu, ¢ € Ay n7=4).

By (11), (12) and (19), we have

@2) (Lo*pum, 1) =2 (p € Ay, v € ).

By (20) and (21), there exist 1+ (p*—1)/2 distinct ordinary irreducible characters
%, Xy, 22 € Ay, in B, such that

(23) ledpu=1le+e'% —'%,  (w€ M),

where ¢ = *1. Since (Ig*np, letp)=1e*(u-1+ 7)., le)=4 by (22), we may
assume X, =%, and ¢ =e,. Moreover %, is different from %, X, and % (v € A5).

Hence (23) can be written as
4 letpu=1g+ X — 274, (p € As).

By (14), (20) and (22), we can show the following. Let x, # € 4, and v, VvV € A4
and p7#% 4 and vV

(25) (Le*Pw» loFpw) =11

(26) (Le#pu, 1g¥yu)=10.

@27 (Le*pus 1¥7,-1,) = Le*7u, lo#y,-1,)=10.
(28) (Le*nu, le*nw)=>5.

29 (Le*pw, le*pw) =4

(30) Ao*nus L6%7u0) = La¥ 16%7u0) =8.
(3D g#n, leFgw) = Ae*n, leFyg.) =8

By (22), (24), (25), (28), (29) and the assumption p=19, (1g¥9w, 42)=2s, and
(1lg*pm, Xu)= —e,. Hence by (22), (26) and (27), B contains ordinary irreducible
characters %, (# € 4, X and X,_,, (2 € 4, and v € 4;) with the property that

1o¥pw =2 1o+ 26,2, — exXu + 6,/ X + Xy
(32)

1o, -1, =2 1o+ 2%, — e Xu+ 6/ L + 6,7, -1,

SRR A R RT

S
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for all p€ 4, and v € 4, where ¢/, e,==%1. Then for u€ A, lg, X % Xy Xu
and %,-,, (v € 4;) are distinct. From (29), if »'#p, then X, is different from %/,
Zw and X,_,, (v € 4;). Combining this with (30), if u74' (u, ' € 45), then %,/#X,/,
Xs Xy, 0 € 43D, T Xty Xy (v, V' € Ay) @and X, # X, -y, (v, V' € 45). This and
(81) yield that X;, %, and X%, (v € 4,) are different from Z,/, X, and X1, (M€ 4,
and v € A4,).

If p* =1, then by Lemma 1, (17), (24) and (32), k(By) =4+2| A,| + | 4| +2] |
| 4] =4+ p"—1+p™(p*—1)/4. By the induction hypothesis and Theorem 2,
R(B)=UBy) +2|U| +|T| =1(B)+p* =1+ (s —p*)/4, so I(B)=4. If p™#1,
then by the same argument as in the case p*#1 and p**=1, we can show I(B,) =
4.

THEOREM 4. If p=5 and N(P)/C(P) is an elementary abelian group of order
4, then I(B,) =4.

Proof. We prove by induction on |G|. Put X=N(P)/C(P) and X={1, £,
L, 1), where 1 is the identity element of X. By [8, chapter 5, Theorem 2.3] we
have

P=P0XP1XP3><P3,

where Py=Cp(X), PyXP;=Cp(#;) and P; is X-invariant for all . For o; £ P, —
{1)G=1, 2, 3), if j#i, then aitj=ai_1. Let U; be a set of representatives for the
X-conjugacy classes of P;— (1} for ¢=1, 2 and 3. Then P, {vs;|s € Py, o; €U,
1=1, 2, 3}\U {0010,|0 € Py, 61 € Uy, 0, € Uy \U {00105| 0 € Py, 61 € Uy, 05 € Uy} U {70s03] 0 € Py,
02 €Uy, 03 € Ush\U (00102050 € Py, 05 € U} \U {001 0p05|0 € Py, 0, € U;} is a set of rep-
resentatives for the X-conjugacy classes of P. We put p®=|P| and p* =|P,]
(z=0, 1, 2, 3). Since the stabilizer of so; in X is <#;> and the stabilizers of
ooi0; and goyo,0; In X are >, by the induction hypothesis and Theorem 2 we
can show

3 N
(33) E(B) =1(By) +4(p™—1)+2p™ > (p* —=1)/2
+ (P =P —1)/4+ p™(p™ — 1D (p™ —1)/4
+ (PP —D(Pp® —1)/a+p"(p™ —1)(pT —1)(p** —1)/4.

We put S;=PyXP;—P, (=1, 2, 3) and S=P—(P,US,US,\US,). If 7, €S,, then
by Proposition
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ai

(34) m™P=1/2p*+1/2p*p

If # €S, then

(35) m™=1/p"
g (o) 1 2 (g) 1 ()
Since >¢pm =l—— SV S eies, mTE ~4 > m'™, we have
i=1 z€S
N 1 & a ap, aq
(36) 5w =1-{3 STzt + /2" IS
o€ Py i=

+% (*—X p“°p“"+2p“°>/p“}-

If x; is a non trivial linear character of P; (=1, 2, 3), then by the orthogonality

relations for the characters of P,

€1 ) 9, (@)= —2p" and 3 5., (W) =4p"—2 S} p“p“.
TES; eSS j#,0
If 4 is a linear character of P whose stabilizer in X is <i>, then
—4p",  u#lp, on P,
(38) Z 77#(77-'): o s .
TS 4p"p™ —4p™,  p=1p, on P,
3
(39 Z 77;L<7T> = —<4pa0+2 2 77M(7f>)-
e s i=1 wESy

By (34), (35), (86) and (37), if u; is a non trivial linear character of P; (=1, 2,
3), then

(40) (16*77/“: 1G)=1

By (34), (35), (36), (38) and (39), if u; is a non trivial linear character of P; (=1,
2, 3), then

(41) Aty 1)=1 G,
(42) (10*“0#1#2#3, 1) =0.

Let A; be a set of representatives for the X-conjugacy classes of non trivial
linear charactrs of P;, and let u; and ﬂi/ be distinct characters in 4, i=1, 2, 3.
By (40), (41) and (42) we can show the following.

(43) <1G*7],u.i: 1G*77y.i):3: (l(}*vy.i’ 16*77;1,;’>=2-

(44) e*7u, 1G*v}"]‘)=1 GF5D.
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(45) Ae*p; 1o¥pgu, ) =3 GFED.
(46) Qe*n,,, L uu,) =2 G#7D.
) Qg 16%pu ) =9 G#D.
48 Aoty Lo V=6 G-
(49 (10*77p-wja 16*77#1;’#/):4 EFEpD.-

If 7, j and % are distinct, then
(50> <1G*7]_u«,;’ 1G*77/J-j}l-k>:O‘

If 7, j and & are distinct, then

(51) Qe sn s 16%7m0,) =25 L6y s 16%9 10, ) =0
(52) Q¥ Trpipugy 16 Puyugug) =7-

(53) ey Le¥puup,) =1

G4 Qo5 16%Yurpigu,) =0

(55) Qe s 16%Turpugny) =4 G#5)

(56) QMg 16%Tuugpg) =2 G#D.

Gp) Qe ugrijn 16®Nupugme) =0 G#ED.

(58) Qe Puyruyings 16%uspgug) = 0.

(59) ety 160 ugus) =2-

(60) Q¥ Tuyupny 16*Puruguy) = 4-

We may assume that p™, p*#1. By (40) and (43), B contains ordinary
irreducible characters 1g, %1, X, %, (u; € 4, Zu, (uz € 4,) such that

(61) lg*vﬂi=lg+si1i—ai:@i

for all #; € 4; and i=1, 2, where ¢=+1. If pasil, then B contains ordinary
irreduicble characters s, X,, (u; € A;) such that
(62) 1(;*77,,,3 = 1(; + 5313 = 63:(“,3

for all u; € A;, where ¢s= +1. By (44), 1, Loy Xay Xy Qi € A, X, (i € 4,) and
Aus (us € A3) are distinct.
Let x4, € A, and g, € 4,. By (41), (45), (46), (47), (49) and the assumption p=5,
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we obtain the following.

Qe*pugny i) =¢; and (Lepupy, L) = — &
for i=1, 2. Moreover (1g¥pu,, X)=0, 1 or —1 for any % € Irr(B,). By the way,
(63) 1e#guu, = (Le¥pu ) ¥pu, = Lo + 2 Xp — &2 Xy, + &1 X 57, — &1 X %7y,

Hence (X, Xi#n.,)=3 and (Xu ¥y, Zu*7.,)=3, because (Xpiyu,, X#p,)<3 and
Ky X9, ) <3. In particular we have (X, X2 =1 and (X, %u*7.2) =1,

and hence (X;, Xp*9,,)=1 and (X, Z.*n.,)=1 for all g, € 4,. These yield

(64) Xk, = X1+ %y + 6/XH-2/’ X¥uy = Xy + smlxl-’q/ + 6#1/1#1#2
for all u, € 4,, where %3, %/, %, X, € Irr(By) and &, ¢, ¢/, 8,/= £1. Here we

note that X/, X., %', X', #s € 4,, are distinct and that X, u, € 4, are distinct.
On substituting (64) in (63), we have

1%, = Lo+ eX1— e1¥u, + 2% — e X, + X + 0,2, + e X, + 00Xy

for all 4 € A; and u, € A, where ¢, 05, e, 0u,= £1. If uy, o/ € 4, and w747, then
(16¥%uyups 16%9uym,) =6 for any u, € 4,. From this we see %,/#X,,/. On the other
hand for ps, 1, € Az, (A¥puyy Xu®9u,) = (X*uyuy—15 Xu) =0 by (64). Hence X, 7 Xuyuy-
It also holds that

(63 Lo puu, = (La#pu, ) %9, = Lo + 1y — 1, + €2 X9, — e2X %0, -
By the above argument we have
(647 Lprgu =Xy £ 7(3 + Xuv Ly, = Ly = Zuz £ Lsapso

for all g, & 4, Where &y Ly Lo s € exlBy). Then Xy Ty Fow Fup 2.€ A, 1€
distinct and 7(,%2, € A, are distinct. If g, o€ A, and us7 s, then Zﬁziiw.
Moreover if s, gy € Ay, then X, #X, ,.,. On substituting (64) in (63",

lo¥pup, =1+ e1ki — a1 Xy, + X, — & X, + &, + 512,,_1 + 5“22“,_, + 3,,_21#1#2

for all u; € A, and s, € A,, where & 6y, Z,, 0,

= +1. Therefore we can see X, =1,
Y [

2
=01 Xu/ =%, 0:=54, u, =Zu, 0., =0, and X ., =7%..,. We put 6,=20,=20

Hence we have
(65) 16%pu, =1g+ eXs— e, + eoXp — e2X, + eXs' + 6oy, + 6.0 + 012X,

Furthermore if s, u/ € A, then X.'#X,., .- Hence by (48) we can see that if
mF o, then %, #%., Xuu,- On the other hand if s, € 4, and 2,7z, by (48)
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Xy Xy Xppuye By (49) we can show if m%4/ and u,%u,)/, then Zyin 7 Xy
Hence 15, X, X, X5, %uy(ats € 4D, X' (g € 4D, %, (115 € 45), X' Cuz € 4y Xy Cts € Ay,
e € A,) are distinct.

Suppose that p®=1 and p*=1. Then {15} U4\ (mpsl iy € Ay g2 € A} is
a set of representatives for the X-conjugacy classes of linear characters of P.
Hence by Lemma 1, (61) and (65), k(By) =4+2|4;| +2|4,] + | 4;| | 4,]. Since | 4;] =
(p* —1)/2, we have I((B,)=4 by (33). Suppose that p®=1and p™#1. Then A,\U
{Au1| A€ Aoy 11 € AU {Auz| A€ Aoy 15 € A} U {Apap02| 2 € Aoy 111 € Ay, 11, € A,) is a set of
representatives for the X-conjugacy classes of linear characters of P, where 4,
is the set of linear characters of P,. By Lemma 1, (61) and (65) we can show
R(B) <4p™+2p"(p™ ~1)/2+2p™(p™ —1)/2+ p™(p™ —1)(p*—1)/4. On the other
hand by (33) 2(Bo)=I(By) —4+4p™+2p"(p™ —1)/242p"( p** —1)/2+ p*(p™ —1)
(p*—1)/4. Since p=5, by the same argument as in Step 3 in Theorem 1, we
have I(B,) =4.

We suppose that p*%1 in the rest of the proof. By (50) and the assumption
p=5, e= —¢ and %' =%,. By (51) and (65) we can show the following.

¢ % 16Ty = 1o + esdly — &1y — &%+ &5%s — e3Xuy + 012, + 032, + 013 %ourn;
66)
Lo¥upus =16 — er¥s+ Xz — e3%uy + €525 — €3 ¥ug + 8o2,| + 05Xy + 0357
for all p; € 4, i=1, 2, 3, where %, Xusuy Xusu, € Ir(By) and 6y, 0y, 05= + 1.
Let €4, i=1, 2, 3. By (42), (52), (563), (54), (55), (56) and by the as-
Sumption PZ5, (16*77/&1#2}Ly Xi>:0, (18*'”#1#2#3: Xp..,): —¢e; and (16‘*77,11.1;1.2;;.39 ;{M/):é‘i
for 7=1, 2, 3. Therefore we have

3 3
j 1G*77u.1/.4.2-.'3 = —_geix”i + Zlb‘zxy,z =z 6X;L1M2]J3,
(67D 3 3
Z 10*771“-1"1/“2.‘1-3 ot Zsixf*£ —+ 2161.%#1 + axl-'q“l.“ql-hgy

where Xy uu,y Xuy-1uge, € Irr(By) and 0= +1. By (51), (54), (56), (57), (58), (59) and
B0, 1, Xy Zoy %y Xuy (ui€ Aiy i=1, 2, 3), X, (i € My i=1, 2 3), Zup, (s € Ay,
M2 & Az)» xI-L]Ing <,U1 € Ay, M3 € A3>, X,Lgus (/lz € Ay p3 € As)» ZIJqI-LzIJfg (ﬂi € Ay, 1=1, 2, 3),
=1y Cres € A5, 1=1, 2, 3) are distinct. AU (A | A€ Agy ps € Ay, i=1, 2, 3} U {Au15 |
A€ Aoy 113 € Ay, 13 € A} {Qyns] 2 € Aoy 23 € Ay 23 € )\ (Qgaas| 1€ Moy s € Mgy 15 € M3)
U {2uataps| 2 € Aoy p2i € AN\ {Apg=1pap25] A€ Aoy s € A;) is a set of representatives for
the X-conjugacy classes of linear characters of P. If %=1, then by (61), (62),
(65), (66) and (67) we obtain k(By)=4+2| 4| +2]| 4,] +2|)13] + | Ay ] | Ay + | A1) | A5 +
| As| [ 45] + 2] 4;] | 4,] | 45]. Hence by (33), I(B)=4. If p™=£1, then we can show
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I(B,) =4 by the same argument as in the case p*=1and p™£1. Thus the theorem

is proved.

THEOREM 5. If p=7 and | N(P)/C(P)| =5, then I(By)=5.

Proof. We prove by induction on |G|. We may assume that the maximal
normal p'-subgroup O,.(G) of G is the identity group. We put P,=C(N(P))P
and P,=[N(P), P]. By [8, chapter 5, Theorem 2. 3], P=P,XP,. Let A be a
set of the representatives for the N(P)-conjugacy classes of non trivial linear

characters of P,. For u, x4 € A with 7./, we have

(68) Aetgu Le) =4, Qg*np., lg*np) =21,
(13*77;1.7 16*7711.‘):20

by Step 2 in Theorem 1. We assume that lgky.,=41s+2eZ;— Xy, for some s € 4,
where e=+1 and %;, ¥, € Irr(By). Then by (68),

(69 1 =415+ 2e¥; — Xy
for all u € A, where %, € Irr(B,). For any linear character 2 of Py,
1G*77/\;L=4(1G*2> + 25(7(1*7») - é(Z,J.*ID-

Hency by Lemma 1, 2(B)<|P,|(2+ | 4]). Since k(Bo)=UBy) +5(|Pi| =1+ |P:| 4]
by the induction hypothesis, we have |P,| =1 and I(B,)=2. If Gis p-solvable,
then I(B,) =5 by Fong [7, Theorem (3C)] and Okuyama and Wajima [9, Theorem].
Hence G is not solvable, and as is well known G has even order. Let = be an
element of P—{1}. We put d(X;, 7, 1¢ . )=d and c=2d+4s. We note that X, is
p-rational by (69) and hence d is a rational integer. (69) implies d(X., 7, l¢ »)=
c—enu(m). On substituting these in |P| =g |d(%, m, lewe )% we have d°—4+
2ce+ (| P,] —1)¢%/5=0. Then we see ¢=0, and hence

70) A%y, 7, lom) = —2¢ and d(Xus 7, Low) = — epu(m).

Let ¢ be an involution of G. Then Z.(#)=2%,(t)—& and X,(1)=2%,(1) —e. Since
r and 7! are not conjugate by the assumption, by Brauer [2, II, Proposition 4

and Corollary 1],
SV, m, 1o)X/ x(1)=0.

%€ Bo

From this we obtain ¥,(2)=%,(1) and X,.(#)=x.(1) for all x€ 4. Hence t€0,(&
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by Brauer [2, I Theorem 1]. This contradicts 0,.(G)={1}. Therefore (69) does
not hold and hence the following holds by the assumption H=7 and (68).

71 lodpu=41g+ ey + eadls+ eala+ eshs+ 6%,

for all 4 € 4, where ¢, 6= +1 and %,, 2. € Irr(B,). Furthermore 1, Z;, 2<:<5,
and X,, # € A are distinct. Hence if |P;| =1, then by Lemma 1 and (71) we have
I(Bp)=5. If |P,|#1, by the same argument as in Step 3 in Theorem 1, A2(B,) =
|P|(5+4 |A4]) and hence I(B,)=5.

REMARK 3. Theorems 2, 3, 4 and 5 hold for all prime numbers.
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