SOME STUDIES ON p-BLOCKS WITH ABELIAN DEFECT GROUPS

Atumi WATANABE

(Received October 31, 1984)

1. Introduction

Let p be a prime number and G be a finite group. The structures of p-blocks with abelian defect groups and with inertial index 1 are well known (see Lemma 2). In this paper we study p-blocks with abelian defect groups and with inertial index 2, 3, 4 and 5. Let B be a p-block of G, χ be an ordinary irreducible character in B and π be a p-element of G. Then we have

$$\chi(\pi\rho) = \sum_{b} \sum_{\phi \in IBr(b)} d(\chi, \pi, \phi) \phi(\rho)$$

for all p-regular elements ρ of the centralizer $C(\pi)$ of π in G. Here b runs over the p-blocks of $C(\pi)$ with $b^G=B$. After Brauer [1], let $\chi^{(\pi,b)}$ be the central function on G which is defined as follows. For a p-regular element ρ of $C(\pi)$, $\chi^{(\pi,b)}(\pi\rho)=\sum_{\phi\in b}d(\chi,\pi,\phi)\phi(\rho)$ and $\chi^{(\pi,b)}$ vanishes outside of the p-section of π . Let D be a defect group of B, b be a root of B in C(D)D and T(b) be the inertial group of b in N(D), where C(D) and N(D) are the centralizer of D in G and the normalizer of D in G, respectively. Here we suppose D is abelian. Then by Brauer [3, (4G) and (6C)] each subsection associated with B is conjugate to a subsection $(\pi,b^{C(\pi)})(\pi\in D)$. Furthermore, for $\pi_1,\pi_2\in D$, $(\pi_1,b^{C(\pi_1)})$ and $(\pi_2,b^{C(\pi_2)})$ are conjugate if and only if π_1 and π_2 are conjugate in T(b). Therefore by Broué and Puig [5, Theorem], if η is a T(b)-invariant character of D, then $\chi*_{\eta}$ is a generalized character of G. Here

$$\chi*\eta = \sum_{\pi \in U} \eta(\pi) \chi^{(\pi, b^{C(\pi)})}$$

where U is a set of representatives for the T(b)-conjugacy classes of D. This fact plays an important rôle in our arguments. If B has inertial index 1, then the ordinary irreducible characters in B are $\chi*\chi'$ s, where χ runs over the linear characters of D (see Lemma 2). If B has inertial index 2 or 3 and if some assumptions are satisfied, then we have the following.

THEOREM 1. Let G be a finite group and B be a p-block of G with an abelian defect group D and with inertial index e, and b be a root of B in C(D). We denote $D_1=D\cap C(T(b))$ and $D_2=[T(b),D]$. Let Λ_1 be the set of non trivial linear characters of D_1 and Λ_2 be a set of representatives for the T(b)-conjugacy classes of non trivial linear characters of D_2 . If $p\geq 5$, e=2 or 3 and if $|D_2|\leq p^2$, then the followings hold.

- (i) B contains exactly e irreducible Brauer characters and exactly $|D_1|(e+(|D_2|-1)/e)$ ordinary irreducible characters χ_i , $1 \leq i \leq e$, χ_μ , $\mu \in \Lambda_2$, $\chi_i * \lambda$, $1 \leq i \leq e$, $\lambda \in \Lambda_1$ and $\chi_\mu * \lambda$, $\lambda \in \Lambda_1$, $\mu \in \Lambda_2$.
 - (ii) There exist ε , ε_1 , ε_2 ,..., $\varepsilon_e = \pm 1$ such that

$$\chi_{\mu}^{(1,B)} = \varepsilon \sum_{i=1}^{e} \varepsilon_{i} \chi_{i}^{(1,B)} \qquad (\mu \in \Lambda_{2})$$

(iii) Let π be an element of D such that $C(\pi) \cap T(b) = C(D)$. Then $b^{C(\pi)}$ contains a unique irreducible Brauer character $\phi^{(\pi)}$. There exists a sign $\gamma_{\pi} = \pm 1$ such that

$$\begin{split} d(\chi_i, \ \pi, \ \phi^{(\pi)}) &= \varepsilon_i \gamma_{\pi} \qquad (1 \leq i \leq e), \\ d(\chi_{\mu}, \ \pi, \ \phi^{(\pi)}) &= \varepsilon \gamma_{\pi} \gamma_{\mu}(\pi) \qquad (\mu \in \Lambda_2), \end{split}$$

where η_{μ} is the sum of characters of D which is T(b)-conjugate to μ .

The proof of Theorem 1 is given in § 3. In § 4 we show that if $p \ge 19$ and G has an abelian Sylow p-subgroup P such that |N(P):C(P)|=2, 3, 4 or 5, then the principal p-block of G contains exactly 2, 3, 4 or 5 irreducible Brauer characters, respectively.

Let K be the algebraic closure of the p-adic number field, v be the ring of local integers in K and v be the maximal ideal of v. For a p-block B, Irr(B) denotes the set of ordinary irreducible characters in B and IBr(B) denotes the set of irreducible Brauer characters in B. We put k(B) = |Irr(B)| and l(B) = |IBr(B)|.

2. Lemmas.

In this section we fix a p-block B of G and we assume that a defect group D of B is abelian and b is a root of B in C(D).

LEMMA 1. Let χ be an ordinary irreducible character in B and μ be a linear character of D. Then any ordinary irreducible character appearing in $\chi*_{\eta_{\mu}}$ belongs to Irr(B), where η_{μ} is the sum of characters of D which is T(b)-conjugate to μ . If χ is of height 0 and χ' is an ordinary irreducible character in B, then χ' appears in $\chi*_{\eta_{\mu}}$ for some linear character μ of D.

Proof. By the definition of $\mathcal{X}*\eta_{\mu}$ and by the second main theorem on p-blocks, the first half is evident. Let Λ be a set of representatives for the T(b)-conjugacy classes of linear characters of D. Then we have

$$\sum_{\mu \in \Lambda} \chi * \gamma_{\mu} = |D| \chi^{(1,B)}.$$

By [1, (5H)], if χ is of height 0, then the inner prodduct $(\chi^{(1,B)}, \chi') \neq 0$ for any $\chi' \in Irr(B)$. This completes the proof.

If B has inertial index 1, then B is a nilpotent p-block. Hence we have the following by Broué and Puig [4, Theorem 1. 2].

LEMMA 2. If B has inertial index 1, then the followings hold.

- (i) l(B) = 1 and k(B) = |D|.
- (ii) $\{(\pi, b^{C(\pi)}) | \pi \in D\}$ is a set of representatives for the conjugacy classes of subsections associated with B. Moreover $b^{C(\pi)}$ contains a unique irreducible Brauer character $\phi^{(\pi)}$.
- (iii) B contains an ordinary irreducible character χ_0 such that $d(\chi_0, \pi, \phi^{(\pi)}) = \pm 1$ for all $\pi \in D$. Moreover $Irr(B) = (\chi_0 * \lambda | \lambda \text{ is a linear character of } D)$.

In the above lemma, $\chi_0 * \lambda$ is an irreducible character of G, because the inner product $(\chi_0 * \lambda, \chi_0 * \lambda)$ is equal to 1 and $(\chi_0 * \lambda)$ (1) is positive.

LEMMA 3. Under the assumption of Lemma 2, let ϕ and ϕ_0 be the irreducible Brauer characters in B and b, respectively. Then we have

$$|G:C(D)|\phi_0(1)/\phi(1) \equiv \pm 1 \pmod{p}$$
.

Proof. We prove by induction on |G|. We may assume $G \neq C(D)$. There exists an element $\pi \in D$ such that $C(\pi) \neq G$. Since $b^{C(\pi)}$ has a defect group D and

inertial index 1, by the induction hypothesis,

(1)
$$|C(\pi):C(D)|\phi_0(1)/\phi^{(\pi)}(1) \equiv \pm 1 \pmod{p},$$

where $\phi^{(\pi)}$ is the irreducible Brauer character in $b^{C(\pi)}$. On the other hand, by [1, (4B)],

$$|G:C(\pi)|\chi^{(\pi,b^{C(\pi)})}(\pi)/\chi(1) \equiv |T(b):T(b)\cap C(\pi)| \equiv 1 \pmod{\mathfrak{p}},$$

for all $\chi \in Irr(B)$. Lemma 2 implies that for any $\chi \in Irr(B)$, $d(\chi, \pi, \phi^{(\pi)}) \equiv \pm 1 \pmod{\mathfrak{p}}$ and χ is irreducible as a Brauer character. In particular $\chi(1) = \phi(1)$. So we obtain

(2)
$$|G:C(\pi)|\phi^{(\pi)}(1)/\phi(1) \equiv \pm 1 \pmod{p}.$$

(1) and (2) yield $|G:C(D)|\phi_0(1)/\phi(1) \equiv \pm 1 \pmod{p}$.

LEMMA 4. If π_1 and π_2 are elements of D such that $T(b) \cap C(\pi_1) = T(b) \cap C(\pi_2) = C(D)$ and if $\phi^{(\pi_1)}$ and $\phi^{(\pi_2)}$ are the irreducible Brauer characters in $b^{C(\pi_1)}$ and $b^{C(\pi_2)}$, respectively, then there exists a sign $\gamma = \pm 1$ with the property that

$$d(\chi, \pi_1, \phi^{(\pi_1)}) \equiv \gamma d(\chi, \pi_2, \phi^{(\pi_2)}) \pmod{\mathfrak{p}}$$

for all $\chi \in Irr(B)$.

Proof. By the assumption and by [1, (4B)],

$$|G:C(\pi_i)|d(\chi, \pi_i, \phi^{(\pi_i)})\phi^{(\pi_i)}(1)/\chi(1) \equiv |T(b):C(D)| \pmod{\mathfrak{p}}$$

for all $\chi \in Irr(B)$ and for i=1, 2. Since $b^{C(\pi_i)}$ has the same defect as B has, $\chi(1)/|G:C(\pi_i)|\phi^{(\pi_i)}(1)$ belongs to v. Therefore we have

$$d(\chi, \pi_1, \phi^{(\pi_1)}) \equiv \{(|C(\pi_1)|\phi^{(\pi_2)}(1))/(|C(\pi_2)|\phi^{(\pi_1)}(1))\}d(\chi, \pi_2, \phi^{(\pi_2)}) \pmod{\mathfrak{p}}$$

for all $\chi \in Irr(B)$. Applying Lemma 3 to $b^{C(\pi_i)}$,

$$|C(\pi_i):C(D)|\phi_0(1)/\phi^{(\pi_i)}(1) \equiv \pm 1 \pmod{p}.$$

Hence we have

$$(|C(\pi_1)|\phi^{(\pi_2)}(1))/(|C(\pi_2)|\phi^{(\pi_1)}(1)) \equiv \pm 1 \pmod{p}.$$

This completes the proof.

3. Proof of Theorem 1.

Proof of Theorem 1. We prove by induction on |G|. We put $p^d = |D|$, $p^{d_1} = |D_1|$ and $p^{d_2} = |D_2|$. By [8, Chapter 5, Theorem 2. 3], $D = D_1 \times D_2$. Let S be a set of representatives for the T(b)-conjugacy classes of D and put $U = S - D_1$. Then $|U| = p^{d_1}(p^{d_2} - 1)/e$. For $\tau \in S$, we put $b_\tau = b^{C(\tau)}$. Then $\{(\tau, b_\tau) | \tau \in S\}$ is a set of representatives for the conjugacy classes of subsections associated with B. For X, $X' \in Irr(B)$, we denote $m_{X,X'}^{(\tau)}$ the contribution of (τ, b_τ) to the inner product (X, X'). By [1, (5B)],

(3)
$$p^d = \sum_{\tau \in S} p^d m_{\chi,\chi}^{(\tau)} \quad \text{for all } \chi \in \operatorname{Irr}(B).$$

If $\pi \in U$, then b_{π} has inertial index 1 and hence b_{π} contains a unique irreducible Brauer character $\phi^{(\pi)}$. Moreover $p^d m_{\chi,\chi}^{(\tau)} = |d(\chi, \pi, \phi^{(\pi)})|^2$. The orthogonality relations for the decomposition numbers yield

(4)
$$p^d = \sum_{\mathbf{x} \in B} |d(\mathbf{x}, \pi, \phi^{(\pi)})|^2 \quad \text{for all } \pi \in U.$$

Since $p \ge 5$ and e = 2 or 3, B contains exactly l(B) p-rational ordinary irreducible characters. Let χ_1 be one of them.

Step 1.
$$d(\chi_1, \pi, \phi^{(\pi)}) = \pm 1 \quad \text{for all } \pi \in U.$$

Proof of Step 1. For $\tau \in S$ and any $\chi \in \operatorname{Irr}(B)$, $m_{\chi,\chi}^{(\tau)}$ does not vanish by [1, (4C)]. In particular $m_{\chi_1,\chi_1}^{(\tau)}$ is a positive rational integer. If $d(\chi_1,\pi,\phi^{(\pi)})\not\equiv\pm1$ (mod p) for some $\pi \in U$, then by Lemma 4 and (3), $p^d \geq p^{d_1} + 4p^{d_1}(p^{d_2} - 1)/e$. Since e=2 or 3, $p^{d_1} + 4p^{d_1}(p^{d_2} - 1)/e > p^d$. This is a contradiction. Hence we have $d(\chi_1,\pi,\phi^{(\pi)})\equiv\pm1$ (mod p) for all $\pi \in U$. We assume $p^{d_1}=1$. If $d(\chi_1,\pi,\phi^{(\pi)})\not=\pm1$ for some $\pi \in U$, then $|d(\chi_1,\pi,\phi^{(\pi)})|=|d(\chi_1,\pi^k,\phi^{(\pi^k)})|\geq p-1$, where (k,p)=1. Since $p\geq 5$ and e=2 or 3, π is not T(b)-conjugate to π^k for some k. Hence $\sum_{\tau\in S}p^dm_{\chi_1,\chi_1}^{(\tau)}\geq 2$ $(p-1)^2>|D|$. This contradicts (3).

$$\sum_{\chi \in F(\chi_0)} |d(\chi, \pi, \phi^{(\pi)})|^2 \ge |F(\chi_0)|.$$

Suppose that $d(\chi_1, \pi, \phi^{(\pi)}) \neq \pm 1$ for some $\pi \in U$. Then $|d(\chi_1 * \lambda, \pi, \phi^{(\pi)})|^2 = |\lambda(\pi)d(\chi_1, \pi, \phi^{(\pi)})|^2 = |d(\chi_1, \pi, \phi^{(\pi)})|^2 \geq (p-1)^2$ for all $\lambda \in \Lambda_1$. Since $\{\chi_1 * \lambda | \lambda \in \Lambda_1\}$ is a union of families of p-conjugate characters in B, by (4) and the assumption, we have

$$\begin{split} p^d & \geq p^{d_1} (p-1)^2 + k(B) - p^{d_1} \\ & \geq p^{d_1} (p-1)^2 + (e-1)(p^{d_1}-1) + p^{d_1}(p^{d_2}-1)/e > p^d. \end{split}$$

Hence $d(\chi_1, \pi, \phi^{(\pi)}) = \pm 1$ for all $\pi \in U$.

Step 2. Let μ , μ' be elements of Λ_2 . We have

$$(\chi_1 * \eta_\mu, \chi_1 * \eta_\mu) = e^2 - e + 1, \qquad (\chi_1 * \eta_\mu, \chi_1) = e - 1.$$

If $\mu \neq \mu'$, then $(\chi_1 * \eta_\mu, \chi_1 * \eta_{\mu'}) = e^2 - e$.

Proof of Step 2. By Step 1, $m_{\chi_1,\chi_1}^{(\pi)} = 1/p^d$ for all $\pi \in U$. Hence we have $(\chi_1 * \eta_\mu, \chi_1) = e \sum_{\sigma \in D_1} m_{\chi_1,\chi_1}^{(\sigma)} + (1/p^d) \sum_{\pi \in U} \eta_\mu(\pi)$. By the way (3) yields $\sum_{\sigma \in D_1} m_{\chi_1,\chi_1}^{(\sigma)} = 1 - |U|/p^d$, so we have

(5)
$$\sum_{\sigma \in D_1} m_{\chi_1, \chi_1}^{(\sigma)} = ((e-1)p^d + p^{d_1})/ep^d.$$

On the other hand, by the orthogonality relations for the irreducible characters of D, $\sum_{\tau \in D} \eta_{\mu}(\tau) = ep^{d_1} + e\sum_{\pi \in U} \eta_{\mu}(\pi) = 0$. Hence

$$\sum_{\pi \in \mathcal{U}} \eta_{\mu}(\pi) = -p^{d_1}.$$

By (5) and (6), we obtain $(\chi_1 * \eta_u, \chi_1) = e - 1$. This yields

$$\begin{split} & (\chi_1 * \eta_\mu, \ \chi_1 * \eta_\mu) = (\chi_1, \ \chi_1 * (\eta_\mu \eta_{\mu-1})) = e^2 - e + 1, \\ & (\chi_1 * \eta_\mu, \ \chi_1 * \eta_{\mu'}) = (\chi_1, \ \chi_1 * (\eta_\mu \eta_{\mu-1})) = e^2 - e. \end{split}$$

Step 3.
$$l(B) = e$$
 and $k(B) = p^{d_1}(e + (p^{d_2} - 1)/e)$.

Proof of Step 3. By Step 2 and by the assumption e=2 or 3, there exist $e-1+(p^{d_2}-1)/e$ distinct ordinary irreducible characters χ_i , $2 \leq i \leq e$, χ_μ , $\mu \in \Lambda_2$, in B and signs ε' , $\varepsilon_i'=\pm 1$, $2 \leq i \leq e$, such that

(7)
$$\chi_1 * \eta_\mu = (e-1)\chi_1 + \sum_{i=2}^e \varepsilon_i' \chi_i + \varepsilon' \chi_\mu \text{ for all } \mu \in \Lambda_2$$

except for the case e=2 and $p^{d_2}=7$. If e=2 and $p^{d_2}=7$, then (7) or the following (7') holds. Let $\Lambda_2 = \{\mu_1, \mu_2, \mu_3\}$.

$$\left\{ \begin{array}{l} \chi_1 * \eta_{\mu_1} = \chi_1 + \delta_2 \chi_2 + \delta_3 \chi_3, \\ \chi_1 * \eta_{\mu_2} = \chi_1 + \delta_2 \chi_2 + \delta_4 \chi_4, \\ \chi_1 * \eta_{\mu_3} = \chi_1 + \delta_3 \chi_3 + \delta_4 \chi_4, \end{array} \right.$$

where δ_2 , δ_3 , $\delta_4=\pm 1$ and χ_2 , χ_3 , $\chi_4\in {\rm Irr}(B)$. We assume that $p^{d_1}=1$. Then the trivial character 1_D of D and Λ_2 form a set of representatives for the T(b)-conjugacy classes of linear characters of D. If $e\neq 2$ or $p^{d_2}\neq 7$, then by (7) and Lemma 1, $k(B)=e+(p^{d_2}-1)/e$ and hence l(B)=e. If e=2 and $p^{d_2}=7$, then the statement follows from Dade's theorem on p-blocks with cyclic defect groups (Dade [6]), and hence (7') does not hold.

We assume that $p^{d_1} \neq 1$. $\{1_D\} \cup \Lambda_1 \cup \Lambda_2 \cup \{\lambda \mu | \lambda \in \Lambda_1, \mu \in \Lambda_2\}$ is a set of representatives for the T(b)-conjugacy classes of linear characters of D. Let $\lambda \in \Lambda_1$. (7) and (7') yield

(8)
$$\chi_1 * \eta_{\lambda\mu} = (e-1)(\chi_1 * \lambda) + \sum_{i=2}^{e} \varepsilon_i'(\chi_i * \lambda) + \varepsilon'(\chi_\mu * \lambda) \text{ for all } \mu \in \Lambda_2,$$

$$\begin{cases} \chi_1 * \eta_{\mu_1 \lambda} = \chi_1 * \lambda + \delta_2(\chi_2 * \lambda) + \delta_3(\chi_3 * \lambda), \\ \chi_1 * \eta_{\mu_2 \lambda} = \chi_1 * \lambda + \delta_2(\chi_2 * \lambda) + \delta_4(\chi_4 * \lambda), \\ \chi_1 * \eta_{\mu_3 \lambda} = \chi_1 * \lambda + \delta_3(\chi_3 * \lambda) + \delta_4(\chi_4 * \lambda), \end{cases}$$

respectively. If (7) holds, then by Lemma 1 the set $\{\chi_i | 1 \leq i \leq e\} \cup \{\chi_\mu | \mu \in \varLambda_2\} \cup \{\chi_i * \lambda | 1 \leq i \leq e, \lambda \in \varLambda_1\} \cup \{\chi_\mu * \lambda | \lambda \in \varLambda_1, \mu \in \varLambda_2\}$ coincides with Irr(B). If (7') holds, then $\{\chi_1, \chi_2, \chi_3, \chi_4\} \cup \{\chi_i * \lambda | 1 \leq i \leq 4, \lambda \in \varLambda_1\}$ coincides with Irr(B). Suppose that (7) holds and put $I = \{\chi_i | 1 \leq i \leq e\} \cup \{\chi_\mu | \mu \in \varLambda_2\} \cup \{\chi_i * \lambda | 1 \leq i \leq e, \lambda \in \varLambda_1\} \cup \{\chi_\mu * \lambda | \lambda \in \varLambda_1, \mu \in \varLambda_2\}$. If $\chi = \chi'$ for some χ , $\chi' \in I$, then $\chi * \lambda = \chi' * \lambda$ for all $\lambda \in \varLambda_1$, and the cardinal number |I| does not exceed $(e-1)p^{d_1}+p^{d_1}(p^{d_2}-1)/e$. On the other hand, $k(B) \geq 1 + e(p^{d_1}-1) + p^{d_1}(p^{d_2}-1)/e$ by the induction hypothesis. Since $p \geq 5$ and e=2 or 3, this is a contradiction. Hence the characters in I are distinct, and so $k(B) = ep^{d_1}+p^{d_1}(p^{d_2}-1)/e$ and l(B)=e. If (7') holds, then we have $k(B) \leq 4p^{d_1}$. This contradicts $k(B) \geq 1 + 2(p^{d_1}-1) + 3p^{d_1} = 5p^{d_1}-1$. Hence (7') does not holds.

Step 4. Conclusion. By (7), we can show that χ_i $(1 \leq i \leq e)$ is a p-rational character. By Step 1 and Lemma 4, there exist signs ε_i , $\gamma_{\pi} = \pm 1$ $(1 \leq i \leq e, \pi \in U)$ such that $d(\chi_i, \pi, \phi^{(\pi)}) = \varepsilon_i \gamma_{\pi}$. Then we can show $(\chi_1 * \gamma_\mu, \chi_i) = -\varepsilon_1 \varepsilon_i$ for all $i \geq 2$. In fact

$$(\chi_1\!\!*\!\eta_\mu,\;\chi_i)\!=\!e\sum_{\sigma\in D_1}\!m_{\chi_1,\chi_i}^{\scriptscriptstyle(\sigma)}\!+\!\varepsilon_1\varepsilon_i\sum_{\pi\in U}\eta_\mu(\pi)/p^d.$$

Since $\sum_{\sigma \in D_1} m_{\chi_1, \chi_i}^{(\sigma)} + \varepsilon_1 \varepsilon_i |U|/p^d = (\chi_1, \chi_i) = 0$, $\sum_{\sigma \in D_1} m_{\chi_1, \chi_i}^{(\sigma)} = -\varepsilon_1 \varepsilon_i p^{d_1} (p^{d_2} - 1)/e p^d$. This and (6) yield $(\chi_1 * \eta_\mu, \chi_i) = -\varepsilon_1 \varepsilon_i$. So (7) can be written as

$$\chi_1 * \eta_\mu = (e-1)\chi_1 - \sum_{i=2}^e \varepsilon_1 \varepsilon_i \chi_i + \varepsilon \varepsilon_1 \chi_\mu,$$

where $\varepsilon = \varepsilon' \varepsilon_1$. This implies

(9)
$$\eta_{\mu}(\sigma)\chi_{1}^{(\sigma,\,b_{\sigma})} = (e-1)\chi_{1}^{(\sigma,\,b_{\sigma})} - \sum_{i=2}^{e} \varepsilon_{1}\varepsilon_{i}\chi_{i}^{(\sigma,\,b_{\sigma})} + \varepsilon\varepsilon_{1}\chi_{\mu}^{(\sigma,\,b_{\sigma})}$$

for all $\sigma \in S$. If $\sigma = 1$, then by (9)

$$e\chi_{1}^{(1,B)} \!=\! (e-1)\chi_{1}^{(1,B)} - \sum_{i=2}^{e} \varepsilon_{1}\varepsilon_{i}\chi_{i}^{(1,B)} + \varepsilon\varepsilon_{1}\chi_{\mu}^{(1,B)}.$$

Hence we have (ii). If $\pi \in U$, then by (9)

$$\eta_{\mu}(\pi)\varepsilon_{1}\gamma_{\pi} = \varepsilon\varepsilon_{1}d(\chi_{\mu}, \pi, \phi^{(\pi)}).$$

This complets the proof of Theorem 1.

REMARK 1. Theorem 1 holds for p=2 and 3.

REMARK 2. If G is a p-solvable group, then the conclusion in Theorem 1 holds without the assumption that $p \ge 5$ and $|D_2| \le p^2$ (see Watanabe [11]).

4. Principal blocks

Let G be a finite group with an abelian Sylow p-subgroup P and B_0 be the principal p-block of G throghout this section. A root b of B_0 in C(P) is the principal p-block of C(P) and hence T(b) = N(P). For an element $\pi \in P$, $b^{C(\pi)}$ is also the principal p-block of $C(\pi)$. We put $b_{\pi} = b^{C(\pi)}$. For a linear character μ of P, η_{μ} denotes the sum of the characters of P which is N(P)-conjugate to μ .

THEOREM 2. Suppose that B is the principal p-block B_0 in Theorem 1 and suppose that $p \ge 3$ and e = 2 or 3. Then the conclusion in Theorem 1 holds.

Proof. Steps 1 and 2 in the proof of Theorem 1 hold for the trivial character 1_G of G. Hence by Step 3, B contains exactly e irreducible Brauer characters and exactly $|D_1|(e+(|D_2|-1)/e)$ distinct ordinary irreducible characters $\chi_1=1_G$, χ_i , $2 \le i \le e$, χ_μ , $\mu \in \Lambda_2$, $\chi_i * \lambda$, $1 \le i \le e$, $\lambda \in \Lambda_1$, $\chi_\mu * \lambda$, $\lambda \in \Lambda_1$, $\mu \in \Lambda_2$. Moreover we have

(10)
$$1_{G}*\eta_{\mu} = (e-1)1_{G} + \sum_{i=2}^{e} \varepsilon_{i}'\chi_{i} + \varepsilon'\chi_{\mu}$$

for all $\mu \in \Lambda_2$, where ε_i' , $\varepsilon' = \pm 1$. By (10) we can show that χ_i is p-rational. Let π be an element of $D - D_1$. b_{π} has a unique irreducible Brauer character $1_{C(\pi)}$. Set $d(\chi_i, \pi, 1_{C(\pi)}) = a_i$, $2 \le i \le e$, and set $c = e - 1 + \sum_{i=2}^{e} \varepsilon_i' a_i$. Then a_i is a rational integer and $a_i \ne 0$, because b_{π} has the same defect as B has. By the argument of Step 4, if $a_i = \pm 1$, then Theorem 2 is proved. By (10), it follows that

$$\begin{split} &d(\chi_{\mu},\ \pi,\ 1_{C(\pi)}) = \varepsilon'(\eta_{\mu}(\pi) - c),\\ &d(\chi_{i} * \lambda,\ \pi,\ 1_{C(\pi)}) = \lambda(\pi)a_{i},\\ &d(\chi_{\mu} * \lambda,\ \pi,\ 1_{C(\pi)}) = \varepsilon'\lambda(\pi)(\eta_{\mu}(\pi) - c) \end{split}$$

for all i $(1 \le i \le e)$, λ $(\lambda \in \Lambda_1)$ and μ $(\mu \in \Lambda_2)$. Since $\sum_{\chi \in B} |d(\chi, \pi, 1_{C(\pi)})|^2 = |D|$, we have

$$\begin{split} |D| &= |D_1| \, (1 + \sum_{i=2}^e \, a_i^2 + \sum_{\mu \in \Lambda_2} |\eta_\mu(\pi) - c|^2) \\ &= |D_1| \, (1 + \sum_{i=2}^e \, a_i^2 + \sum_{\mu \in \Lambda_2} |\eta_\mu(\pi)|^2 - c \sum_{\mu \in \Lambda_2} \eta_\mu(\pi) - c \, \sum_{\mu \in \Lambda_2} \eta_\kappa(\pi^{-1})) + c^2 (|D_2| - 1)/e). \end{split}$$

By the orthogonality relations for the irreduicble characters of D_2 , $\sum_{\mu \in \Lambda_2} |\eta_{\mu}(\pi)|^2 = |D_2| - e$ and $\sum_{\mu \in \Lambda_2} \eta_{\mu}(\pi) = -1$. Hence it follows that

$$|D_2| = 1 + \sum_{i=2}^{e} a_i^2 + |D_2| - e + 2c + c^2(|D_2| - 1)/e.$$

This yields

$$1 + \sum_{i=2}^{e} a_i^2 - e + 2c + c^2(|D_2| - 1)/e = 0.$$

Since $1+\sum_{i=2}^e a_i^2-e\geq 0$ and $2c+c^2(|D_2|-1)/e\geq 0$, $a_i=\pm 1$ for all *i*. This completes

the proof.

We add the following to Theorem 2,

PROPOSITION. Suppose that in Theorem 1 B is the principal p-block B_0 and suppose that $p \ge 3$ and e = 2 or 3. Then we have

$$(1_{6}^{(1,B)}, 1_{G}^{(1,B)}) = \{(e-1)|D_{2}|+1\}/e|D|.$$

Proof. We prove by induction on |G|. We use the notation in the proof of Theorem 1. Let $\sigma \in D_1 - \{1\}$. Then applying the induction hypothesis to \bar{b}_{σ} , we obtain $(1_{C(\sigma)}^{(1,b_{\sigma})}, 1_{C(\sigma)}^{(1,b_{\sigma})}) = \{(e-1)p^{d_2}+1\}/ep^d$. It is evident that $(1_G^{(\sigma,b_{\sigma})}, 1_G^{(\sigma,b_{\sigma})}) = (1_{C(\sigma)}^{(1,b_{\sigma})}, 1_{C(\sigma)}^{(1,b_{\sigma})})$. If $\pi \in U$, then $(1_G^{(\pi,b_{\pi})}, 1_G^{(\pi,b_{\pi})}) = 1/p^d$. By (3), we can show $(1_G^{(1,B)}, 1_G^{(1,B)}) = \{(e-1)p^{d_2}+1\}/ep^d$.

THEOREM 3. If $p \ge 19$ and N(P)/C(P) is a cyclic group of order 4, then $l(B_0) = 4$.

Proof. We prove by induction on |G|. Let t be a generator of N(P)/C(P). $\langle t \rangle$ acts on P and on the set of linear characters of P. We call the orbits $\langle t \rangle$ -conjugacy classes. If $P_1 = C_P(t)$, $P_2 = [t, C_P(t^2)]$ and $P_3 = [t^2, P]$, where $C_P(t)$ is the set of elements of P which is fixed by t and $C_P(t^2)$ is the set of elements of P which is fixed by t^2 , then by [8, chapter 5, Theorem 2.3],

$$P = C_P(t^2) \times [t^2, P] = C_P(t) \times [t, C_P(t^2)] \times P_3 = P_1 \times P_2 \times P_3.$$

We put $p^a = |P|$ and $p^{a_i} = |P_i|$ for i = 1, 2, 3. Let U be a set of representatives for the $\langle t \rangle$ -conjugacy classes of $P_1 \times P_2 - P_1$ and T be a set of representatives for the $\langle t \rangle$ -conjugacy classes of $P - P_1 \times P_2$. If $\pi \in U$, the stabilizer of π in $\langle t \rangle$ is $\langle t^2 \rangle$. If $\tau \in T$, then the stabilizer of τ in $\langle t \rangle$ is the identity group. Hence $|U| = (p^{a_1}p^{a_2} - p^{a_1})/2$ and $|T| = (p^a - p^{a_1}p^{a_2})/4$. Moreover $P_1 \cup U \cup T$ is a set of representatives for the $\langle t \rangle$ -conjugacy classes of P. For any element $\sigma \in P$, we put $m^{(\sigma)} = (1_G^{(\sigma, \delta_\sigma)}, 1_G^{(\sigma, \delta_\sigma)})$. If $\sigma \in P_1 - \{1\}$, then b_σ has inertial index 4 and hence $l(b_\sigma) = 4$ by the induction hypothesis. If $\pi \in U$, then b_π has inertial index 2 and $l(b_\pi) = 2$ by Theorem 2. Moreover by Proposition,

(11)
$$m^{(\pi)} = (p^{a_3} + 1)/2p^a.$$

If $\tau \in T$, then b_{τ} has inertial index 1 and hence $m^{(\tau)} = 1/p^a$. Since $\sum_{\tau \in P_1} m^{(\sigma)} +$

$$\sum_{\pi \in U} m^{(\pi)} + \sum_{\tau \in T} m^{(\tau)} = (1_G, 1_G) = 1,$$

(12)
$$\sum_{\sigma \in P_1} m^{(\sigma)} = (2p^a + p^{a_1}p^{a_3} + p^{a_1})/4p^a.$$

Let Λ_i be a set of representatives for the $\langle t \rangle$ -conjugacy classes of non trivial linear characters of P_i , i=1, 2, 3. If $\mu \in \Lambda_2$, then the stabilizer of μ in $\langle t \rangle$ is $\langle t^2 \rangle$. If $\nu \in \Lambda_3$, then the stabilizer of ν in $\langle t \rangle$ is the identity group. Moreover $\{1_D\} \bigcup \Lambda_1 \bigcup \Lambda_2 \bigcup \Lambda_3 \bigcup \{\mu\nu \mid \mu \in \Lambda_2, \quad \nu \in \Lambda_3\} \bigcup \{\mu^{-1}\nu \mid \mu \in \Lambda_2, \quad \nu \in \Lambda_3\} \bigcup \{\lambda\mu \mid \lambda \in \Lambda_1, \quad \mu \in \Lambda_2\} \bigcup \{\lambda\nu \mid \lambda \in \Lambda_1, \quad \nu \in \Lambda_3\} \bigcup \{\lambda\mu\nu \mid \lambda \in \Lambda_1, \quad \mu \in \Lambda_2, \quad \nu \in \Lambda_3\} \bigcup \{\lambda\mu^{-1}\nu \mid \lambda \in \Lambda_1, \quad \mu \in \Lambda_2, \quad \nu \in \Lambda_3\}$ is a set of representatives for the $\langle t \rangle$ -conjugacy classes of linear characters of P.

By the orthogonality relations for the characters of P_3 we obtain

(13)
$$\sum_{\tau \in T} \eta_{\nu}(\tau) = -p^{a_1} p^{a_2} \qquad (\nu \in \Lambda_3).$$

Combining this with (11) and (12),

$$(1_G * \eta_{\nu}, 1_G) = 3 \qquad (\nu \in \Lambda_2).$$

This yields the following.

(16)
$$(1_G * \eta_{\nu}, 1_G * \eta_{\nu'}) = (1_G, 1_G * (\eta_{\nu-1} \eta_{\nu'})) = 12 (\nu, \nu' \in \Lambda_3, \nu \neq \nu').$$

By (15) and (16) and the assumption $p \ge 19$, there exist $4 + (p^{a_3} - 1)/4$ distinct ordinary irreducible characters $\chi_1 = 1_G$, χ_2 , χ_3 , χ_4 , χ_ν , $\nu \in A_3$, in B such that

(17)
$$1_G * \eta_{\nu} = 3 1_G + \varepsilon_2 \chi_2 + \varepsilon_3 \chi_3 + \varepsilon_4 \chi_4 + \varepsilon \chi_{\nu}$$

for all $\nu \in \Lambda_3$, where ε_2 , ε_3 , ε_4 , $\varepsilon = \pm 1$. Therefore if $p^{a_1}p^{a_2} = 1$, then by Lemma $1 \ k(B_0) = 4 + (p^{a_3} - 1)/4$. Since $k(B_0) = 1(B_0) + (p^{a_3} - 1)/4$, $l(B_0) = 4$.

Next we suppose that $p^{a_1} \neq 1$ and $p^{a_2} = 1$. By Lemma 1, $I = \{\chi_i | 1 \leq i \leq 4\} \cup \{\chi_i \nmid \nu \in \Lambda_3\} \cup \{\chi_i * \lambda | 1 \leq i \leq 4, \quad \lambda \in \Lambda_1\} \cup \{\chi_i * \lambda | \lambda \in \Lambda_1, \quad \nu \in \Lambda_3\}$ is the set of ordinary irreducible characters in B. Since the cardinal number |I| does not exceed $4p^{a_1} + (p^{a_1}p^{a_3} - p^{a_1})/4$ and since $k(B_0) \geq 1 + 4(p^{a_1} - 1) + (p^{a_1}p^{a_3} - p^{a_1})/4$ by the induction hypothesis, we can see that the characters in I are distinct. Hence we obtain $k(B_0) = 4p^{a_1} + (p^{a_1}p^{a_3} - p^{a_1})/4$ and $l(B_0) = 4$.

We assume that $p^{a_2} \neq 1$ in the rest of the proof. By the orthogonality relations for the linear characters of P_2 and P_3 , the following hold.

(18)
$$\sum_{\pi \in U} \eta_{\mu}(\pi) = -p^{a_1} \text{ and } \sum_{\tau \in T} \eta_{\mu}(\tau) = 0 \qquad (\mu \in \Lambda_2),$$

(19)
$$\sum_{\pi \in U} \eta_{\mu\nu}(\pi) = -2p^{a_1} \text{ and } \sum_{\tau \in T} \eta_{\mu\nu}(\tau) = 0 \qquad (\mu \in \Lambda_2, \nu \in \Lambda_3).$$

By (11), (12) and (18), we have

(20)
$$(1_G*\eta_\mu, 1_G)=1, (1_G*\eta_\mu, 1_G*\eta_\mu)=3 (\mu \in \Lambda_2),$$

(21)
$$(1_{G}*\eta_{\mu}, 1_{G}*\eta_{\mu'}) = 2 (\mu, \mu' \in \Lambda_2, \mu \neq \mu').$$

By (11), (12) and (19), we have

$$(22) (1_G * \eta_{\mu\nu}, 1_G) = 2 (\mu \in \Lambda_2, \nu \in \Lambda_3).$$

By (20) and (21), there exist $1+(p^{a_2}-1)/2$ distinct ordinary irreducible characters χ_2' , χ_μ , $\mu \in \Lambda_2$, in B_0 such that

(23)
$$1_{G}*\eta_{\mu}=1_{G}+\varepsilon'\chi_{2}'-\varepsilon'\chi_{\mu} \qquad (\mu\in\Lambda_{2}),$$

where $\varepsilon'=\pm 1$. Since $(1_G*\eta_{\nu},\ 1_G*\eta_{\mu})=(1_G*(\eta_{\mu_{\nu}-1}+\eta_{\mu\nu}),\ 1_G)=4$ by (22), we may assume $\chi_2'=\chi_2$ and $\varepsilon'=\varepsilon_2$. Moreover χ_{μ} is different from χ_3 , χ_4 and χ_{ν} ($\nu\in\Lambda_3$). Hence (23) can be written as

(24)
$$1_G * \eta_{\mu} = 1_G + \varepsilon_2 \chi_2 - \varepsilon_2 \chi_{\mu} (\mu \in \Lambda_2).$$

By (14), (20) and (22), we can show the following. Let μ , $\mu' \in \Lambda_2$ and ν , $\nu' \in \Lambda_3$ and $\mu \neq \mu'$ and $\nu \neq \nu'$.

(25)
$$(1_G * \eta_{\mu\nu}, 1_G * \eta_{\mu\nu}) = 11.$$

(26)
$$(1_G * \eta_{\mu\nu}, 1_G * \eta_{\mu\nu'}) = 10.$$

(27)
$$(1_G * \eta_{\mu\nu}, 1_G * \eta_{\mu-1_{\nu}}) = (1_G * \eta_{\mu\nu}, 1_G * \eta_{\mu-1_{\nu'}}) = 10.$$

(28)
$$(1_G*\eta_\mu, 1_G*\eta_{\mu\nu})=5.$$

(29)
$$(1_G * \eta_{\mu}, 1_G * \eta_{\mu\nu}) = 4.$$

(30)
$$(1_G * \eta_{\mu\nu}, 1_G * \eta_{\mu\nu}) = (1_G * \eta_{\mu\nu}, 1_G * \eta_{\mu\nu}) = 8.$$

(31)
$$(1_G * \eta_{\nu}, 1_G * \eta_{\mu\nu}) = (1_G * \eta_{\nu}, 1_G * \eta_{\mu\nu}) = 8.$$

By (22), (24), (25), (28), (29) and the assumption $p \ge 19$, $(1_G * \eta_{\mu\nu}, \chi_2) = 2\varepsilon_2$ and $(1_G * \eta_{\mu\nu}, \chi_{\mu}) = -\varepsilon_2$. Hence by (22), (26) and (27), B contains ordinary irreducible characters $\chi_{\mu}{}'$ ($\mu \in \Lambda_2$), $\chi_{\mu\nu}$ and $\chi_{\mu-1\nu}$ ($\mu \in \Lambda_2$ and $\nu \in \Lambda_3$) with the property that

(32)
$$\begin{cases} 1_{G} * \eta_{\mu\nu} = 2 1_{G} + 2\varepsilon_{2} \chi_{2} - \varepsilon_{2} \chi_{\mu} + \varepsilon_{\mu}' \chi_{\mu}' + \varepsilon_{\mu} \chi_{\mu\nu}, \\ 1_{G} * \eta_{\mu-1\nu} = 2 1_{G} + 2\varepsilon_{2} \chi_{2} - \varepsilon_{2} \chi_{\mu} + \varepsilon_{\mu}' \chi_{\mu}' + \varepsilon_{\mu} \chi_{\mu-1\nu} \end{cases}$$

for all $\mu \in \Lambda_2$ and $\nu \in \Lambda_3$, where ε_{μ}' , $\varepsilon_{\mu} = \pm 1$. Then for $\mu \in \Lambda_2$, 1_G , χ_2 , χ_{μ} , $\chi_{\mu'}$, $\chi_{\mu\nu}$ and $\chi_{\mu^{-1}\nu}$ ($\nu \in \Lambda_3$) are distinct. From (29), if $\mu' \neq \mu$, then $\chi_{\mu'}$ is different from $\chi_{\mu'}$, $\chi_{\mu\nu}$ and $\chi_{\mu^{-1}\nu}$ ($\nu \in \Lambda_3$). Combining this with (30), if $\mu \neq \mu'$ (μ , $\mu' \in \Lambda_2$), then $\chi_{\mu'} \neq \chi_{\mu'}$, $\chi_{\mu\nu}$, $\chi_{\mu^{-1}\nu}$ ($\nu \in \Lambda_3$), $\chi_{\mu\nu} \neq \chi_{\mu\nu'}$, $\chi_{\mu^{-1}\nu'}$ (ν , $\nu' \in \Lambda_3$) and $\chi_{\mu'^{-1}\nu'} \neq \chi_{\mu^{-1}\nu}$ (ν , $\nu' \in \Lambda_3$). This and (31) yield that χ_3 , χ_4 and χ_{ν} ($\nu \in \Lambda_3$) are different from $\chi_{\mu'}$, $\chi_{\mu\nu}$ and $\chi_{\mu^{-1}\nu}$ ($\mu \in \Lambda_2$ and $\nu \in \Lambda_3$).

If $p^{a_1}=1$, then by Lemma 1, (17), (24) and (32), $k(B_0)=4+2|A_2|+|A_3|+2|A_2|$ $|A_3|=4+p^{a_2}-1+p^{a_2}(p^{a_3}-1)/4$. By the induction hypothesis and Theorem 2, $k(B_0)=l(B_0)+2|U|+|T|=l(B_0)+p^{a_2}-1+(p^{a_2}p^{a_3}-p^{a_2})/4$, so $l(B_0)=4$. If $p^{a_1}\neq 1$, then by the same argument as in the case $p^{a_1}\neq 1$ and $p^{a_2}=1$, we can show $l(B_0)=4$.

THEOREM 4. If $p \ge 5$ and N(P)/C(P) is an elementary abelian group of order 4, then $l(B_0) = 4$.

Proof. We prove by induction on |G|. Put X=N(P)/C(P) and $X=\{\bar{1},\ t_1,\ t_2,\ t_3\}$, where $\bar{1}$ is the identity element of X. By [8, chapter 5, Theorem 2.3] we have

$$P = P_0 \times P_1 \times P_2 \times P_3$$

where $P_0=C_P(X)$, $P_0\times P_i=C_P(t_i)$ and P_i is X-invariant for all i. For $\sigma_i\in P_i-\{1\}$ $(i=1,\ 2,\ 3)$, if $j\neq i$, then ${\sigma_i}^{ij}={\sigma_i}^{-1}$. Let U_i be a set of representatives for the X-conjugacy classes of $P_i-\{1\}$ for $i=1,\ 2$ and 3. Then $P_0\cup\{\sigma\sigma_i|\sigma\in P_0,\ \sigma_i\in U_i,\ i=1,\ 2,\ 3\}\cup\{\sigma\sigma_1\sigma_2|\sigma\in P_0,\ \sigma_1\in U_1,\ \sigma_2\in U_2\}\cup\{\sigma\sigma_1\sigma_3|\sigma\in P_0,\ \sigma_1\in U_1,\ \sigma_3\in U_3\}\cup\{\sigma\sigma_2\sigma_3|\sigma\in P_0,\ \sigma_1\in U_i\}$ is a set of representatives for the X-conjugacy classes of P. We put $p^a=|P|$ and $p^{ai}=|P_i|$ $(i=0,\ 1,\ 2,\ 3)$. Since the stabilizer of $\sigma\sigma_i$ in X is $\langle t_i \rangle$ and the stabilizers of $\sigma\sigma_i\sigma_j$ and $\sigma\sigma_1\sigma_2\sigma_3$ in X are $\langle \overline{1} \rangle$, by the induction hypothesis and Theorem 2 we can show

(33)
$$k(B_0) = l(B_0) + 4(p^{a_0} - 1) + 2p^{a_0} \sum_{i=1}^{3} (p^{a_i} - 1)/2$$

$$+ p^{a_0}(p^{a_1} - 1)(p^{a_2} - 1)/4 + p^{a_0}(p^{a_1} - 1)(p^{a_3} - 1)/4$$

$$+ p^{a_0}(p^{a_2} - 1)(p^{a_3} - 1)/4 + p^{a_0}(p^{a_1} - 1)(p^{a_2} - 1)(p^{a_3} - 1)/4.$$

We put $S_i = P_0 \times P_i - P_0$ (i = 1, 2, 3) and $S = P - (P_0 \cup S_1 \cup S_2 \cup S_3)$. If $\pi_i \in S_i$, then by Proposition

$$m^{(\pi_i)} = 1/2p^a + 1/2p^{a_0}p^{a_i}.$$

If $\pi \in S$, then

(35)
$$m^{(\pi)} = 1/p^a$$
.

Since $\sum_{\sigma \in P_0} m^{(\sigma)} = 1 - \frac{1}{2} \sum_{i=1}^3 \sum_{\pi_i \in S_i} m^{(\pi_i)} - \frac{1}{4} \sum_{\pi \in S} m^{(\pi)}$, we have

(36)
$$\sum_{\sigma \in P_0} m^{(\sigma)} = 1 - \left\{ \frac{1}{2} \sum_{i=1}^3 \left(\frac{1}{2} p^a + \frac{1}{2} p^{a_0} p^{a_i} \right) |S_i| + \frac{1}{4} \left(p^a - \sum_{i=1}^3 p^{a_0} p^{a_i} + 2p^{a_0} \right) / p^a \right\}.$$

If μ_i is a non trivial linear character of P_i (i=1, 2, 3), then by the orthogonality relations for the characters of P_i ,

(37)
$$\sum_{\pi \in S_i} \eta_{\mu_i}(\pi) = -2p^{a_0} \text{ and } \sum_{\pi \in S} \eta_{\mu_i}(\pi) = 4p^{a_0} - 2\sum_{j \neq i, 0} p^{a_0} p^{a_j}.$$

If μ is a linear character of P whose stabilizer in X is $\langle \overline{1} \rangle$, then

(39)
$$\sum_{\pi \in S} \eta_{\mu}(\pi) = -(4p^{a_0} + \sum_{i=1}^{3} \sum_{\pi \in S_i} \eta_{\mu}(\pi)).$$

By (34), (35), (36) and (37), if μ_i is a non trivial linear character of P_i (i=1, 2, 3), then

$$(40) (1_G * \eta_{\mu_i}, 1_G) = 1.$$

By (34), (35), (36), (38) and (39), if μ_i is a non trivial linear character of P_i (i=1, 2, 3), then

(41)
$$(1_G * \eta_{\mu_i \mu_j}, 1_G) = 1 (i \neq j),$$

$$(42) (1_G * \eta_{\mu_1 \mu_2 \mu_3}, 1_G) = 0.$$

Let Λ_i be a set of representatives for the X-conjugacy classes of non trivial linear characters of P_i , and let μ_i and ${\mu_i}'$ be distinct characters in Λ_i , i=1, 2, 3. By (40), (41) and (42) we can show the following.

$$(1_G * \eta_{\mu_i}, 1_G * \eta_{\mu_i}) = 3, \qquad (1_G * \eta_{\mu_i}, 1_G * \eta_{\mu_{i'}}) = 2.$$

(44)
$$(1_{G}*\eta_{\mu_{i}}, 1_{G}*\eta_{\mu_{j}}) = 1 (i \neq j).$$

$$(45) (1_G * \eta_{\mu_i}, 1_G * \eta_{\mu_i \mu_i}) = 3 (i \neq j).$$

$$(1_G * \eta_{\mu_i}, 1_G * \eta_{\mu_i'\mu_i}) = 2 \qquad (i \neq j).$$

$$(1_{G}*\eta_{\mu_{i}\mu_{j}}, 1_{G}*\eta_{\mu_{i}\mu_{j}}) = 9 \qquad (i \neq j).$$

$$(1_{G}*\eta_{\mu_{i}\mu_{i}}, 1_{G}*\eta_{\mu_{i}\mu_{i'}}) = 6 \qquad (i \neq j).$$

(49)
$$(1_G * \eta_{\mu_i \mu_j}, 1_G * \eta_{\mu_i' \mu_{j'}}) = 4 (i \neq j).$$

If i, j and k are distinct, then

(50)
$$(1_G * \eta_{\mu_i}, 1_G * \eta_{\mu_i \mu_k}) = 0.$$

If i, j and k are distinct, then

(51)
$$(1_G * \eta_{\mu_i \mu_j}, 1_G * \eta_{\mu_j \mu_k}) = 2, (1_G * \eta_{\mu_i \mu_i'}, 1_G * \eta_{\mu_i \mu_k}) = 0$$

$$(1_G * \eta_{\mu_1 \mu_2 \mu_3}, 1_G * \eta_{\mu_1 \mu_2 \mu_3}) = 7.$$

(53)
$$(1_G * \eta_{\mu_i}, 1_G * \eta_{\mu_1 \mu_2 \mu_3}) = 1.$$

$$(1_G * \eta_{\mu_i}, 1_G * \eta_{\mu_1 \mu_2 \mu_3}) = 0$$

(55)
$$(1_{G}*\eta_{\mu_{i}\mu_{j}}, 1_{G}*\eta_{\mu_{1}\mu_{2}\mu_{3}}) = 4 (i \neq j)$$

(56)
$$(1_G * \eta_{\mu_i \mu_j'}, 1_G * \eta_{\mu_1 \mu_2 \mu_3}) = 2 (i \neq j).$$

(57)
$$(1_G * \eta_{\mu_i'\mu_j'}, 1_G * \eta_{\mu_1\mu_2\mu_3}) = 0 (i \neq j).$$

(58)
$$(1_G * \eta_{\mu_1/\mu_2/\mu_3}, 1_G * \eta_{\mu_1\mu_2\mu_2}) = 0.$$

(59)
$$(1_G * \eta_{\mu_1' \mu_2' \mu_3}, 1_G * \eta_{\mu_1 \mu_2 \mu_3}) = 2.$$

(60)
$$(1_{G}*\eta_{\mu_{1}'\mu_{2}\mu_{3}}, 1_{G}*\eta_{\mu_{1}\mu_{2}\mu_{3}}) = 4.$$

We may assume that p^{a_1} , $p^{a_2} \neq 1$. By (40) and (43), B contains ordinary irreducible characters 1_G , χ_1 , χ_2 , χ_{μ_1} ($\mu_1 \in \Lambda_1$), χ_{μ_2} ($\mu_2 \in \Lambda_2$) such that

$$1_G * \eta_{\mu_i} = 1_G + \varepsilon_i \chi_i - \varepsilon_i \chi_{\mu_i}$$

for all $\mu_i \in \Lambda_i$ and i=1, 2, where $\varepsilon_i = \pm 1$. If $p^{a_3} \neq 1$, then B contains ordinary irreduicble characters χ_3 , χ_{μ_3} ($\mu_3 \in \Lambda_3$) such that

$$1_G * \eta_{\mu_3} = 1_G + \varepsilon_3 \chi_3 - \varepsilon_3 \chi_{\mu_3}$$

for all $\mu_3 \in \Lambda_3$, where $\varepsilon_3 = \pm 1$. By (44), 1_G , χ_1, χ_2 , χ_3 , χ_{μ_1} ($\mu_1 \in \Lambda_1$), χ_{μ_2} ($\mu_2 \in \Lambda_2$) and χ_{μ_3} ($\mu_3 \in \Lambda_3$) are distinct.

Let $\mu_1 \in \Lambda_1$ and $\mu_2 \in \Lambda_2$. By (41), (45), (46), (47), (49) and the assumption $p \ge 5$,

we obtain the following.

$$(1_G*\eta_{\mu_1\mu_2}, \chi_i) = \varepsilon_i$$
 and $(1_G*\eta_{\mu_1\mu_2}, \chi_{\mu_i}) = -\varepsilon_i$.

for i=1, 2. Moreover $(1_G*\eta_{\mu_1\mu_2}, \chi)=0$, 1 or -1 for any $\chi\in Irr(B_0)$. By the way,

(63)
$$1_{G} * \eta_{\mu_{1}\mu_{2}} = (1_{G} * \eta_{\mu_{1}}) * \eta_{\mu_{2}} = 1_{G} + \varepsilon_{2} \chi_{2} - \varepsilon_{2} \chi_{\mu_{2}} + \varepsilon_{1} \chi_{1} * \eta_{\mu_{2}} - \varepsilon_{1} \chi_{\mu_{1}} * \eta_{\mu_{2}}.$$

Hence $(\chi_1 * \eta_{\mu_2}, \chi_1 * \eta_{\mu_2}) = 3$ and $(\chi_{\mu_1} * \eta_{\mu_2}, \chi_{\mu_1} * \eta_{\mu_2}) = 3$, because $(\chi_1 * \eta_{\mu_2}, \chi_1 * \eta_{\mu_2}) \leq 3$ and $(\chi_{\mu_1} * \eta_{\mu_2}, \chi_{\mu_1} * \eta_{\mu_2}) \leq 3$. In particular we have $(\chi_1, \chi_1 * \eta_{\mu_2}) = 1$ and $(\chi_{\mu_1}, \chi_{\mu_1} * \eta_{\mu_2}) = 1$, and hence $(\chi_1, \chi_1 * \eta_{\mu_2}) = 1$ and $(\chi_{\mu_1}, \chi_{\mu_1} * \eta_{\mu_2}) = 1$ for all $\mu_2 \in \Lambda_2$. These yield

(64)
$$\chi_{1}*\eta_{\mu_{2}} = \chi_{1} + \varepsilon'\chi_{3}' + \delta'\chi_{\mu_{2}}', \qquad \chi_{\mu_{1}}*\eta_{\mu_{2}} = \chi_{\mu_{1}} + \varepsilon_{\mu_{1}}'\chi_{\mu_{1}}' + \delta_{\mu_{1}}'\chi_{\mu_{1}\mu_{2}}$$

for all $\mu_2 \in \Lambda_2$, where χ_3' , χ_{μ_1}' , χ_{μ_2}' , $\chi_{\mu_1\mu_2} \in \operatorname{Irr}(B_0)$ and ε' , δ' , ε_{μ_1}' , $\delta_{\mu_1}' = \pm 1$. Here we note that χ_3' , χ_{μ_1} , χ_{μ_1}' , χ_{μ_2}' , $\mu_2 \in \Lambda_2$, are distinct and that $\chi_{\mu_1\mu_2}$, $\mu_2 \in \Lambda_2$, are distinct. On substituting (64) in (63), we have

$$1_{G}*\eta_{\mu_{1}\mu_{2}}\!=\!1_{G}+\varepsilon_{1}\chi_{1}-\varepsilon_{1}\chi_{\mu_{1}}+\varepsilon_{2}\chi_{2}-\varepsilon_{2}\chi_{\mu_{2}}+\varepsilon\chi_{3}{'}+\delta_{2}\chi_{\mu_{2}}{'}+\varepsilon_{\mu_{1}}\chi_{\mu_{1}}{'}+\delta_{\mu_{1}}\chi_{\mu_{1}\mu_{2}}$$

for all $\mu_1 \in \Lambda_1$ and $\mu_2 \in \Lambda_2$, where ϵ , δ_2 , ϵ_{μ_1} , $\delta_{\mu_1} = \pm 1$. If μ_1 , $\mu_1' \in \Lambda_1$ and $\mu_1 \neq \mu_1'$, then $(1_G * \eta_{\mu_1 \mu_2}, \ 1_G * \eta_{\mu_1' \mu_2}) = 6$ for any $\mu_2 \in \Lambda_2$. From this we see $\chi_{\mu_1'} \neq \chi_{\mu_1'}$. On the other hand for μ_2 , $\mu_2' \in \Lambda_2$, $(\chi_1 * \eta_{\mu_2}, \chi_{\mu_1} * \eta_{\mu_2}) = (\chi_1 * \eta_{\mu_2' \mu_2 - 1}, \chi_{\mu_1}) = 0$ by (64). Hence $\chi_{\mu_2'} \neq \chi_{\mu_1 \mu_2'}$. It also holds that

$$(63') 1_{G} * \eta_{\mu_1 \mu_2} = (1_{G} * \eta_{\mu_2}) * \eta_{\mu_1} = 1_{G} + \varepsilon_1 \chi_1 - \varepsilon_1 \chi_{\mu_1} + \varepsilon_2 \chi_2 * \eta_{\mu_1} - \varepsilon_2 \chi_{\mu_2} * \eta_{\mu_1}.$$

By the above argument we have

$$(64') \hspace{3.1em} \chi_{2}*\eta_{\mu_{1}} = \chi_{2} \pm \tilde{\chi}_{3} \pm \tilde{\chi}_{\mu_{1}}, \hspace{0.3em} \chi_{\mu_{2}}*\eta_{\mu_{1}} = \chi_{\mu_{2}} \pm \tilde{\chi}_{\mu_{2}} \pm \tilde{\chi}_{\mu_{1}\mu_{2}}.$$

for all $\mu_1 \in \Lambda_1$, where $\tilde{\chi}_3$, $\tilde{\chi}_{\mu_1}$, $\tilde{\chi}_{\mu_2}$, $\tilde{\chi}_{\mu_1\mu_2} \in Irr(B_0)$. Then $\tilde{\chi}_3$, $\tilde{\chi}_{\mu_2}$, χ_{μ_2} , $\tilde{\chi}_{\mu_1}$, $\mu_1 \in \Lambda_1$ are distinct and $\tilde{\chi}_{\mu_1\mu_2}$, $\mu_1 \in \Lambda_1$ are distinct. If μ_2 , $\mu_2' \in \Lambda_2$ and $\mu_2 \neq \mu_2'$, then $\tilde{\chi}_{\mu_2} \neq \tilde{\chi}_{\mu_2'}$. Moreover if μ_1 , $\mu_1' \in \Lambda_1$, then $\tilde{\chi}_{\mu_1} \neq \tilde{\chi}_{\mu_1/\mu_2}$. On substituting (64') in (63'),

$$1_G*\eta_{\mu_1\mu_2} = 1_G + \varepsilon_1 \chi_1 - \varepsilon_1 \chi_{\mu_1} + \varepsilon_2 \chi_2 - \varepsilon_2 \chi_{\mu_2} + \tilde{\varepsilon} \tilde{\chi}_3 + \delta_1 \tilde{\chi}_{\mu_1} + \tilde{\varepsilon}_{\mu_2} \tilde{\chi}_{\mu_2} + \tilde{\delta}_{\mu_2} \tilde{\chi}_{\mu_1\mu_2}$$

for all $\mu_1 \in \Lambda_1$ and $\mu_2 \in \Lambda_2$, where $\tilde{\varepsilon}$, δ_1 , $\tilde{\varepsilon}_{\mu_2}$, $\tilde{\delta}_{\mu_2} = \pm 1$. Therefore we can see $\chi_3' = \tilde{\chi}_3$, $\varepsilon_{\mu_1} = \delta_1$, $\chi_{\mu_1}' = \tilde{\chi}_{\mu_1}$, $\delta_2 = \tilde{\varepsilon}_{\mu_2}$, $\chi_{\mu_2}' = \tilde{\chi}_{\mu_2}$, $\delta_{\mu_1} = \tilde{\delta}_{\mu_2}$ and $\chi_{\mu_1 \mu_2} = \tilde{\chi}_{\mu_1 \mu_2}$. We put $\delta_{12} = \delta_{\mu_1} = \tilde{\delta}_{\mu_2}$. Hence we have

$$(65) 1_{G} * \eta_{\mu_{1}\mu_{2}} = 1_{G} + \varepsilon_{1} \chi_{1} - \varepsilon_{1} \chi_{\mu_{1}} + \varepsilon_{2} \chi_{2} - \varepsilon_{2} \chi_{\mu_{2}} + \varepsilon \chi_{3}' + \delta_{2} \chi_{\mu_{2}}' + \delta_{1} \chi_{\mu_{1}}' + \delta_{12} \chi_{\mu_{1}\mu_{2}}.$$

Furthermore if μ_1 , $\mu_1' \in \Lambda_1$, then $\chi_{\mu_1'} \neq \chi_{\mu_1 \mu_2}$. Hence by (48) we can see that if $\mu_1 \neq \mu_1'$, then $\chi_{\mu_1'} \neq \chi_{\mu_1'}$, $\chi_{\mu_1 \mu_2}$. On the other hand if μ_2 , $\mu_2' \in \Lambda_2$ and $\mu_2 \neq \mu_2'$, by (48)

 $\chi_{\mu_{2}'} \neq \chi_{\mu_{2}'}$, $\chi_{\mu_{1}\mu_{2}}$. By (49) we can show if $\mu_{1} \neq \mu_{1}'$ and $\mu_{2} \neq \mu_{2}'$, then $\chi_{\mu_{1}\mu_{2}} \neq \chi_{\mu_{1}'\mu_{2}'}$. Hence 1_{7} , χ_{1} , χ_{2} , χ_{3}' , $\chi_{\mu_{1}}(\mu_{1} \in \Lambda_{1})$, $\chi_{\mu_{1}'}(\mu_{1} \in \Lambda_{1})$, $\chi_{\mu_{2}}(\mu_{2} \in \Lambda_{2})$, $\chi_{\mu_{2}'}(\mu_{2} \in \Lambda_{2})$, $\chi_{\mu_{1}\mu_{2}}(\mu_{1} \in \Lambda_{1})$, $\mu_{2} \in \Lambda_{2}$ are distinct.

Suppose that $p^{a_3}=1$ and $p^{a_0}=1$. Then $\{1_P\}\cup \varLambda_1\cup \varLambda_2\cup \{\mu_1\mu_2|\mu_1\in \varLambda_1,\ \mu_2\in \varLambda_2\}$ is a set of representatives for the X-conjugacy classes of linear characters of P. Hence by Lemma 1, (61) and (65), $k(B_0)=4+2|\varLambda_1|+2|\varLambda_2|+|\varLambda_1||\varLambda_2|$. Since $|\varLambda_i|=(p^{a_i}-1)/2$, we have $l(B_0)=4$ by (33). Suppose that $p^{a_3}=1$ and $p^{a_0}\ne 1$. Then $\varLambda_0\cup \{\lambda\mu_1|\lambda\in \varLambda_0,\ \mu_1\in \varLambda_1\}\cup \{\lambda\mu_2|\lambda\in \varLambda_0,\ \mu_2\in \varLambda_2\}\cup \{\lambda\mu_1\mu_2|\lambda\in \varLambda_0,\ \mu_1\in \varLambda_1,\ \mu_2\in \varLambda_2\}$ is a set of representatives for the X-conjugacy classes of linear characters of P, where \varLambda_0 is the set of linear characters of P_0 . By Lemma 1, (61) and (65) we can show $k(B_0)\le 4p^{a_0}+2p^{a_0}(p^{a_1}-1)/2+2p^{a_0}(p^{a_2}-1)/2+p^{a_0}(p^{a_1}-1)/2+2p^{a_0}(p^{a_2}-1)/2+p^{a_0}(p^{a_1}-1)/2+2p^{a_0}(p^{a_1}-1)/2+2p^{a_0}(p^{a_1}-1)/2+p^$

We suppose that $p^{a_3} \neq 1$ in the rest of the proof. By (50) and the assumption $p \geq 5$, $\varepsilon = -\varepsilon_3$ and $\chi_3' = \chi_3$. By (51) and (65) we can show the following.

$$(66) \begin{cases} 1_{G} * \eta_{\mu_{1}\mu_{3}} = 1_{G} + \varepsilon_{1} \chi_{1} - \varepsilon_{1} \chi_{\mu_{1}} - \varepsilon_{2} \chi_{2} + \varepsilon_{3} \chi_{3} - \varepsilon_{3} \chi_{\mu_{3}} + \delta_{1} \chi_{\mu_{1}}' + \delta_{3} \chi_{\mu_{3}}' + \delta_{13} \chi_{\mu_{1}\mu_{3}} \\ 1_{G} * \eta_{\mu_{2}\mu_{3}} = 1_{G} - \varepsilon_{1} \chi_{1} + \varepsilon_{2} \chi_{2} - \varepsilon_{2} \chi_{\mu_{2}} + \varepsilon_{3} \chi_{3} - \varepsilon_{3} \chi_{\mu_{3}} + \delta_{2} \chi_{\mu_{2}}' + \delta_{3} \chi_{\mu_{3}}' + \delta_{23} \chi_{\mu_{2}\mu_{3}} \end{cases}$$

for all $\mu_i \in \Lambda_i$, i=1, 2, 3, where χ_{μ_3} , $\chi_{\mu_1\mu_3}$, $\chi_{\mu_2\mu_3} \in Irr(B_0)$ and δ_3 , δ_{13} , $\delta_{23} = \pm 1$.

Let $\mu_i \in \varLambda_i$, i=1, 2, 3. By (42), (52), (53), (54), (55), (56) and by the assumption $p \geq 5$, $(1_G * \eta_{\mu_1 \mu_2 \mu_3}, \chi_i) = 0$, $(1_G * \eta_{\mu_1 \mu_2 \mu_3}, \chi_{\mu_i}) = -\varepsilon_i$ and $(1_G * \eta_{\mu_1 \mu_2 \mu_3}, \chi_{\mu_i}') = \delta_i$ for i=1, 2, 3. Therefore we have

$$\begin{cases} 1_{G} * \gamma_{\mu_{1} \mu_{2} \mu_{3}} = -\sum_{i=1}^{3} \varepsilon_{i} \chi_{\mu_{i}} + \sum_{i=1}^{3} \delta_{i} \chi_{\mu_{i}^{'}} + \delta \chi_{\mu_{1} \mu_{2} \mu_{3}}, \\ 1_{G} * \gamma_{\mu_{1}} - 1_{\mu_{2} \mu_{3}} = -\sum_{i=1}^{3} \varepsilon_{i} \chi_{\mu_{i}} + \sum_{i=1}^{3} \delta_{i} \chi_{\mu_{i}^{'}} + \delta \chi_{\mu_{1}} - 1_{\mu_{2} \mu_{3}}, \end{cases}$$

where $\chi_{\mu_1\mu_2\mu_3}$, $\chi_{\mu_1^{-1}\mu_2\mu_3} \in Irr(B_0)$ and $\delta = \pm 1$. By (51), (54), (56), (57), (58), (59) and (60), 1_G , χ_1 , χ_2 , χ_3 , χ_{μ_i} ($\mu_i \in \Lambda_i$, i = 1, 2, 3), $\chi_{\mu_i'}$ ($\mu_i \in \Lambda_i$, i = 1, 2, 3), $\chi_{\mu_1\mu_2}$ ($\mu_1 \in \Lambda_1$, $\mu_2 \in \Lambda_2$), $\chi_{\mu_1\mu_3}$ ($\mu_1 \in \Lambda_1$, $\mu_3 \in \Lambda_3$), $\chi_{\mu_2\mu_3}$ ($\mu_2 \in \Lambda_2$, $\mu_3 \in \Lambda_3$), $\chi_{\mu_1\mu_2\mu_3}$ ($\mu_i \in \Lambda_i$, i = 1, 2, 3) are distinct. $\Lambda_0 \cup \{\lambda \mu_i | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i$, $i = 1, 2, 3\} \cup \{\lambda \mu_1 \mu_2 | \lambda \in \Lambda_0$, $\mu_1 \in \Lambda_1$, $\mu_2 \in \Lambda_2\} \cup \{\lambda \mu_1 \mu_3 | \lambda \in \Lambda_0$, $\mu_1 \in \Lambda_1$, $\mu_3 \in \Lambda_3\} \cup \{\lambda \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i\} \cup \{\lambda \mu_1 \mu_2 \mu_3 | \lambda \in \Lambda_0$, $\mu_i \in \Lambda_i$, μ_i

 $l(B_0)=4$ by the same argument as in the case $p^{a_3}=1$ and $p^{a_0}\neq 1$. Thus the theorem is proved.

THEOREM 5. If $p \ge 7$ and |N(P)/C(P)| = 5, then $l(B_0) = 5$.

Proof. We prove by induction on |G|. We may assume that the maximal normal p'-subgroup $O_{p'}(G)$ of G is the identity group. We put $P_1 = C(N(P)) \cap P$ and $P_2 = [N(P), P]$. By [8, chapter 5, Theorem 2. 3], $P = P_1 \times P_2$. Let Λ be a set of the representatives for the N(P)-conjugacy classes of non trivial linear characters of P_2 . For μ , $\mu' \in \Lambda$ with $\mu \neq \mu'$, we have

(68)
$$(1_G * \eta_\mu, 1_G) = 4, \quad (1_G * \eta_\mu, 1_G * \eta_\mu) = 21,$$

$$(1_G * \eta_\mu, 1_G * \eta_{\mu'}) = 20$$

by Step 2 in Theorem 1. We assume that $1_G*\eta_{\mu_0}=41_G+2\varepsilon\chi_1-\varepsilon\chi_{\mu_0}$ for some $\mu_0\in A$, where $\varepsilon=\pm 1$ and χ_1 , $\chi_{\mu_0}\in {\rm Irr}(B_0)$. Then by (68),

$$1_G * \gamma_\mu = 41_G + 2\varepsilon \chi_1 - \varepsilon \chi_\mu$$

for all $\mu \in \Lambda$, where $\chi_{\mu} \in Irr(B_0)$. For any linear character λ of P_1 ,

$$1_G * \eta_{\lambda\mu} = 4(1_G * \lambda) + 2\varepsilon(\chi_1 * \lambda) - \varepsilon(\chi_{\mu} * \lambda).$$

Hency by Lemma 1, $k(B_0) \leq |P_1|(2+|A|)$. Since $k(B_0) = l(B_0) + 5(|P_1|-1) + |P_1||A|$ by the induction hypothesis, we have $|P_1| = 1$ and $l(B_0) = 2$. If G is p-solvable, then $l(B_0) = 5$ by Fong [7, Theorem (3C)] and Okuyama and Wajima [9, Theorem]. Hence G is not solvable, and as is well known G has even order. Let π be an element of $P - \{1\}$. We put $d(\chi_1, \pi, 1_{C_{\pi}}) = d$ and $c = 2d + 4\varepsilon$. We note that χ_1 is p-rational by (69) and hence d is a rational integer. (69) implies $d(\chi_1, \pi, 1_{C_{\pi}}) = c - \varepsilon \eta_{\mu}(\pi)$. On substituting these in $|P| = \sum_{\chi \in B_0} |d(\chi, \pi, 1_{C_{(\pi)}})|^2$, we have $d^2 - 4 + 2\varepsilon \varepsilon + (|P_2| - 1)\varepsilon^2/5 = 0$. Then we see c = 0, and hence

(70)
$$d(\chi_1, \pi, 1_{C(\pi)}) = -2\varepsilon \text{ and } d(\chi_\mu, \pi, 1_{C(\pi)}) = -\varepsilon \eta_\mu(\pi).$$

Let t be an involution of G. Then $\chi_{\mu}(t) = 2\chi_{1}(t) - \varepsilon$ and $\chi_{\mu}(1) = 2\chi_{1}(1) - \varepsilon$. Since π and π^{-1} are not conjugate by the assumption, by Brauer [2, II, Proposition 4 and Corollary 1],

$$\sum_{\chi \in B_0} d(\chi, \pi, 1_{C(\pi)}) \chi(t)^2 / \chi(1) = 0.$$

From this we obtain $\chi_1(t) = \chi_1(1)$ and $\chi_{\mu}(t) = \chi_{\mu}(1)$ for all $\mu \in \Lambda$. Hence $t \in O_{p'}(G)$

by Brauer [2, I Theorem 1]. This contradicts $O_{p'}(G) = \{1\}$. Therefore (69) does not hold and hence the following holds by the assumption $p \ge 7$ and (68).

(71)
$$1_G * \eta_{\mu} = 4 1_G + \varepsilon_2 \chi_2 + \varepsilon_3 \chi_3 + \varepsilon_4 \chi_4 + \varepsilon_5 \chi_5 + \delta \chi_{\mu}$$

for all $\mu \in \Lambda$, where ε_i , $\delta = \pm 1$ and χ_i , $\chi_\mu \in \operatorname{Irr}(B_0)$. Furthermore 1_G , χ_i , $2 \leq i \leq 5$, and χ_μ , $\mu \in \Lambda$ are distinct. Hence if $|P_1| = 1$, then by Lemma 1 and (71) we have $l(B_0) = 5$. If $|P_1| \neq 1$, by the same argument as in Step 3 in Theorem 1, $k(B_0) = |P_1|(5 + |\Lambda|)$ and hence $l(B_0) = 5$.

REMARK 3. Theorems 2, 3, 4 and 5 hold for all prime numbers.

Acknowledgement. The author thanks Professor Tetsuro Okuyama for his kind advice.

References

- [1] R. Brauer: On blocks and sections in finite groups II, Amer. J. Math. 90(1968), 895-925.
- [2] _____: Some applications of the theory of blocks of characters of finite groups I, II. J. Algebra. 1(1964), 152-167, 307-334.
- [3] _____: On the structure of blocks of characters of finite groups, Lecture Notes in Math. 372, Springer, Berlin, 103-130.
- [4] M. Broué and L. Puig: A Frobenius theorem for blocks, Inventions Math. 56(1980), 117-128.
- [5] ______: Characters and local structures in G-algebras, J. Algebra 63 (1980), 306-317.
- [6] E. C. Dade: Blocks with cyclic defect groups, Annals of Math. 84(1966), 20-48.
- [7] P. Fong: On the characters of p-solvable groups, Trans. A. M. S. 98(1961), 263-284.
- [8] D. Gorenstein: Finite Groups, Harper and Row, New York, Evanston, London.
- [9] T. Okuyama and M. Wajima: Character correspondences and p-blocks of p-solvable groups, Osaka J. Math. 17(1980), 801-806.
- [10] J. B. Olsson: On 2-blocks with quaternion and quasidihedral defect groups, J. Algebra 36 (1975), 212-241.
- [11] A. Watanabe: On generalized decomposition numbers and Fong's reductions, Osaka J. Math. (to appear).

Department of Mathematics Faculty of Science Kumamoto University