ON A COMPACT ABELIAN GROUP EXTENSION OF A W*-DYNAMICS

Yukimasa OKA

(Received October 31, 1984)

In this note we discuss an analogue of a compact abelian group extension of a classical dynamics to a W^* -dynamics. We give a necessary and sufficient condition for a compact abelian group extension of an ergodic W^* -dynamics to be ergodic and its application.

1. Introduction

Let M be a von Neumann algebra, arphi be a faihtful normal state on M and $L^2(M,\,arphi)$ be a Hilbert space which is the completion of M by an inner product $(x|y)_{\varphi} = \varphi(y^*x)$. If an automorphism α of M preserves the state φ , that is, $\varphi \circ \alpha = \varphi$, we say that the triple (M, φ, α) is an invariant W^* -dynamics. An invariant W^* dynamics (N, ψ, β) is conjugate to (M, φ, α) if there is an isomorphism \emptyset of Monto N such that $\varphi = \psi \circ \emptyset$ and $\alpha = \emptyset^{-1} \circ \beta \circ \emptyset$ on M. Let U be a unitary operator on $L^2(M, \varphi)$ defined by $Ux = \alpha(x)$ for x in M. The von Neumann algebra M is naturally identified with a von Neumann algebra acting on the Hilbert space $L^2(M, \varphi)$. (M, φ, α) is ergodic if $\{\xi \in L^2(M, \varphi); U\xi = \xi\} = C1_M$, where 1_M is the identity in M. Let σ be a continuous action of a compact abelian group G on Msuch that $\varphi \circ \sigma_g = \varphi$ for g in G. If (M, φ, α) is an invariant W^* -dynamics such that $\sigma_g \circ \alpha = \alpha \circ \sigma_{\kappa(g)}$ for g in G and for some automorphism κ of G, then α induces an automorphism $lpha|_{M^{\sigma}}$ of the fixed point subalgebra M^{σ} of M under the action σ , which preserves the state $\varphi|_{M^{\sigma}}$. If an invariant W*-dynamics (N, ψ, β) is conjugate to $(M^{\sigma}, \varphi|_{M^{\sigma}}, \alpha|_{M^{\sigma}})$, we say that (M, φ, α) is $\alpha(G, \sigma)$ -extension of (N, φ, α) ψ , β) under κ . Let I' be the dual group of a compact abelian group G. An element γ of Γ is called *n-periodic* with respect to an automorphism κ of G if $\gamma \kappa \neq \gamma$, ..., $\gamma \kappa^{n-1} \neq \gamma$ and $\gamma \kappa^n = \gamma \ (n \geqslant 1)$.

In Section 2 we prove the following theorem:

THEOREM 1. Let (M, φ, α) be a (G, σ) -extension of an ergodic invariant W^* -dynamics under κ . Then (M, φ, α) is not ergodic if and only if there exist a positive

70 Y. OKA

integer n and a γ in Γ , n-periodic with respect to κ and not equal to 1, and a ξ_{γ} in $L^2(M, \varphi)$, $\xi_{\gamma} \neq 0$, such that $U^n \xi_{\gamma} = \xi_{\gamma}$ and $U_g \xi_{\gamma} = \langle g, \gamma \rangle \xi_{\gamma}$ for g in G, where U and U_g are unitary operators on $L^2(M, \varphi)$ defined by $Ux = \alpha(x)$ and $U_g x = \sigma_g(x)$ for x in M, respectively.

In Section 3 we construct an example of a compact abelian group extension $(\tilde{M}, \tilde{\varphi}, \tilde{\alpha})$ of a W*-dynamics (M, φ, α) and as an application of Theorem 1 to these compact abelian group extensions, we prove the following theorem:

THEOREM 3. For an ergodic invariant W^* -dynamics (M, φ, α) , $(\tilde{M}, \tilde{\varphi}, \tilde{\alpha})$ is not ergodic if and only if there exist a positive integer n and $\alpha \gamma$ in Γ , n-periodic with respect to κ and not equal to 1, and $\alpha \xi$ in $L^2(M, \varphi)$, $\xi \neq 0$, such that

$$U^{n}\xi = \prod_{i=0}^{n-1} \alpha^{n-i-1}(u_{\gamma\kappa i})\xi,$$

where U is a unitary operator on $L^2(M, \varphi)$ defined by $Ux = \alpha(x)$ for x in M and $\prod_{i=0}^{n-1} a_i = a_0 a_1 a_2 \dots a_{n-1}.$

NOTE. We have recently been informed by Professor Y. Nakagami that the usual ergodicity of an invariant W^* -dynamics in the sense that the fixed point subalgebra is trivial implies our ergodicity in the L^2 -sense and hence both ergodicities are equivalent (Also cf. [7]). Consequently we have a spectral condition for the ergodicity in the usual sense of the compact abelian group extension of ergodic W^* -dynamics.

2. Ergodicity of a compact abelian group extension of a W*-dynamics

In this section we prove the following theorem:

THEOREM 1. Let (M, φ, α) be a (G, σ) -extension of an ergodic invariant W^* -dynamics under an automorphism κ of G. Then (M, φ, α) is not ergodic if and only if there exist a positive integer n and a γ in Γ , n-periodic with respect to κ and not equal to 1, and a ξ_{γ} in $L^2(M, \varphi)$, $\xi_{\gamma} \neq 0$, such that $U^n \xi_{\gamma} = \xi_{\gamma}$ and $U_g \xi_{\gamma} = \langle g, \gamma \rangle \xi_{\gamma}$ for g in G, where U and U_g are unitary operators on $L^2(M, \varphi)$ defined by $Ux = \alpha(x)$ and $U_g x = \sigma_g(x)$ for x in M, respectively.

To do this, we need the following lemma:

LEMMA 1. Let (M, φ, α) be an invariant W^* -dynamics and σ a continuous action of a compact abelian group G on M such that $\varphi \circ \sigma_g = \varphi$ and $\sigma_g \circ \alpha = \alpha \circ \sigma_{\kappa(g)}$ for all g in G and some automorphism κ of G. Let \mathscr{V}_{γ} $(\gamma \in \Gamma)$ be the set of all ξ in $L^2(M, \varphi)$ such that $U_g \xi = \langle g, \gamma \rangle \xi$ for g in G. Then

(1)
$$L^2(M, \varphi) = \sum_{\gamma \in \Gamma} \bigoplus \mathscr{V}_{\gamma} \text{ (orthogonal direct sum)}$$

and

(2) if ξ is in \mathscr{V}_{γ} , then $U\xi$ is in $\mathscr{V}_{\gamma\kappa}$, where U_g and U are unitary operators on $L^2(M,\varphi)$ defined by $U_g x = \sigma_g(x)$ and $U x = \alpha(x)$ for x in M, respectively.

PROOF. (1) For a ξ in \mathscr{V}_{γ} and a ξ' in $\mathscr{V}_{\gamma'}$, we have

$$(\xi|\xi')_{\varphi} = (U_g \xi|U_g \xi')_{\varphi}$$

$$= \langle g, \gamma \rangle \overline{\langle g, \gamma' \rangle} (\xi|\xi')_{\varphi},$$

for all g in G. If $\gamma\neq\gamma'$, $\langle g,\,\gamma\rangle\overline{\langle g,\,\gamma'\rangle}\neq 1$ for some g in G, and so ξ is orthogonal to ξ' . Suppose that a ξ in $L^2(M,\,\varphi)$ is orthogonal to any vector in $\bigcup_{\gamma\in\Gamma}\mathscr{S}_{\gamma}$. Put $\xi_{\gamma}=\int_{G}\overline{\langle g,\,\gamma\rangle}\ U_g\xi dg$ for γ in Γ . Then ξ_{γ} belongs to \mathscr{S}_{γ} , and we have

$$\begin{split} (\xi_{\gamma}|\hat{\xi}_{\gamma})_{\varphi} &= \int_{\mathcal{G}} \int_{\mathcal{G}} \overline{\langle gh^{-1}, \gamma \rangle} (U_{gh^{-1}}\xi|\xi) \ dgdh \\ &= \int_{\mathcal{G}} \overline{\langle g, \gamma \rangle} (U_{g}\xi|\xi) \ dg \\ &= (\xi_{\gamma}|\xi)_{\varphi} = 0. \end{split}$$

Hence $\xi_{\gamma}=0$ for γ in Γ . If we put $f(g)=(U_g\xi|\xi)_{\varphi}$ for g in G, the function f on G is integrable and positive definite. Hence we have

$$\begin{aligned} (U_g \xi | \xi)_{\varphi} &= \int_{\Gamma} \langle g, \gamma \rangle \hat{f}(\gamma) d\gamma \\ &= \int_{\Gamma} \langle g, \gamma \rangle \int_{G} \langle \overline{h, \gamma} \rangle (U_h \xi | \xi)_{\varphi} \ dh d\gamma \end{aligned}$$

$$= \int_{\Gamma} \langle g, \gamma \rangle (\xi_{\gamma} | \xi)_{\varphi} d\gamma$$
$$= 0,$$

for all g in G. Thus $(\xi | \xi)_{\varphi} = 0$, and so $\xi = 0$. This implies the assertion (1). (2) If ξ is in \mathscr{V}_{γ} , we have

$$\begin{split} U_g(U\xi) &= U(U_{\kappa(g)}\xi) \\ &= \langle \kappa(g), \ \gamma \rangle U\xi \\ &= \langle g, \ \gamma \kappa \rangle U\xi. \end{split}$$

This implies the assertion (2).

q. e. d.

PROOF OF THEOREM 1. Let ξ_{γ} be a vector which satisfies the conditions of Theorem 1. Put $\xi = \sum_{i=0}^{n-1} U^i \xi_{\gamma}$. Then ξ belongs to $\sum_{i=0}^{n-1} \mathscr{Y}_{\gamma \kappa^i}$ and $U\xi = \xi$. Since ξ is not a constant (a scalar multiple of 1_M), (M, φ, α) is not ergodic. Conversely, let ξ be a vector in $L^2(M, \varphi)$ which is not a constant and $U\xi = \xi$, and let $\xi = \sum_{\gamma \in \Gamma} \xi_{\gamma}$ with ξ_{γ} in \mathscr{Y}_{γ} be the direct sum decomposition of ξ . Then $U\xi = \sum_{\gamma \in \Gamma} U\xi_{\gamma}$ and $U\xi_{\gamma}$ is in $\mathscr{Y}_{\gamma \kappa}$. From $U\xi = \xi$, we have $U\xi_{\gamma} = \xi_{\gamma \kappa}$ and $\|\xi_{\gamma}\|_{\varphi} = \|\xi_{\gamma \kappa}\|_{\varphi}$ for γ in Γ . From the orthogonality of ξ_{γ} 's we have $\xi_{\gamma} = 0$ if γ is not periodic with respect to κ . Now we note that for γ in $L^2(M, \varphi)$, γ is U-invariant and $\{U_g; g \in G\}$ -invariant if and only if it is U-invariant and belongs to $L^2(M^{\sigma}, \varphi)$. If $\xi_{\gamma} = 0$ for all $\gamma \neq 1$, then $\xi = \xi_1$, and so ξ is $\{U_g; g \in G\}$ -invariant and U-invariant. Hence ξ belongs to $L^2(M^{\sigma}, \varphi)$ and U-invariant, and thus ξ is a constant from the assumption of ergodicity. This contradicts the assumption of ξ . Therefore there exists a γ in Γ , $\gamma \neq 1$ such that $\xi_{\gamma} \neq 0$. From the above, this γ is n-periodic with respect to κ for some positive integer n, and then we have $U^n\xi_{\gamma} = \xi_{\gamma\kappa} = \xi_{\gamma}$.

3. Example

In this section we construct an example of a compact abelian group extension of W^* -dynamics and apply Theorem 1 to discuss the ergodicity of these compact abelian group extension given as above example.

Let (M, φ, α) be an invariant W*-dynamics, \mathscr{H}_{φ} be the Hilbert space $L^2(M, \varphi)$ and U be a unitary operator on \mathscr{H}_{φ} defined by $Ux = \alpha(x)$ for x in M. M is

naturally identified with a von Neumann algebra acting on \mathcal{H}_{φ} . Let G be a compact abelian group with dual group Γ , κ be an automorphism of G, θ be an action of Γ on M and u be a mapping of Γ into M^u satisfying the following condition:

$$\begin{cases} u_{\gamma\gamma'} = u_{\gamma}\theta_{\gamma\kappa}(u_{\gamma'}), \\ \alpha \circ \theta_{\gamma} = Adu_{\gamma} \circ \theta_{\gamma\kappa} \circ \alpha, \end{cases} (\gamma, \gamma' \in \Gamma)$$

where M^u is the unitaries in M. For a ξ in $l^2(\mathcal{H}_{\varphi}, \Gamma)$, we define a unitary operator \tilde{U} on $l^2(\mathcal{H}_{\varphi}, \Gamma)$ by

$$(\tilde{U}\xi)(\gamma) = \theta_{\gamma-1}(u_{\gamma\kappa-1})U\xi(\gamma\kappa^{-1}), \ (\gamma \in \Gamma).$$

Then it is straightforward to check the following lemmas:

LEMMA 2. If we put $\tilde{\alpha} = Ad\tilde{U}$, then $\tilde{\alpha}$ is an automorphism of $M \times_{\theta} \Gamma$, where $M \times_{\theta} \Gamma$ is the crossed product von Neumann algebra of M by Γ under θ .

PROOF.
$$\tilde{\alpha}(\pi_{\theta}(x)) = \pi_{\theta}(\alpha(x)), \ \tilde{\alpha}(\lambda(\gamma)) = \pi_{\theta}(u_{\gamma})\lambda(\gamma\kappa).$$

LEMMA 3. Let σ be the dual action on G of θ . Then it holds that $\sigma_g \circ \tilde{\alpha} = \tilde{\alpha} \circ \sigma_{\kappa(g)}$ for g in G.

LEMMA 4. Let $\widetilde{M} = M \times_{\theta} \Gamma$, ε be the conditional expectation of \widetilde{M} onto M defined by $\varepsilon(x) = \pi_{\vartheta}^{-1} \left(\int_{G} \sigma_{g}(x) dg \right)$ and $\widetilde{\varphi} = \varphi \circ \varepsilon$. Then $\widetilde{\varphi}$ is a faithful normal state on \widetilde{M} which is σ -invariant and $\widetilde{\alpha}$ -invariant.

Thus we have

THEOREM 2. $(\tilde{M}, \tilde{\varphi}, \tilde{\alpha})$ is a (G, σ) -extension of (M, φ, α) under κ .

Now as an application of Theorem 1, we have the following theorem:

THEOREM 3. Let (M, φ, α) be an ergodic invariant W^* -dynamics and $(\tilde{M}, \tilde{\varphi}, \tilde{\alpha})$ be the (G, σ) -extension of (M, φ, α) under κ as above. Then $(\tilde{M}, \tilde{\varphi}, \tilde{\alpha})$ is not ergodic if and only if there exist a positive integer n and a γ in Γ , n-periodic with respect

to κ and not equal to 1, and a ξ in $L^2(M, \varphi)$, $\xi \neq 0$, such that

$$U^{n}\xi = \prod_{i=0}^{n-1} \alpha^{n-i-1}(u_{\gamma\kappa i})\xi,$$

where $\prod_{i=0}^{n-1} a_i = a_0 a_1 a_2 \dots a_{n-1}$.

PROOF. It follows from Theorem 1 and the following lemma.

LEMMA 5. Let \tilde{U} and \tilde{U}_g be unitary operators on $L^2(\tilde{M}, \tilde{\varphi})$ defined by $\tilde{U}\tilde{x} = \tilde{\alpha}(\tilde{x})$ and $\tilde{U}_g\tilde{x} = \sigma_g(\tilde{x})$ for \tilde{x} in \tilde{M} , respectively. If γ is an element in Γ which is n-periodic with respect to κ for some positive integer n and not equal to 1, then the following two conditions are equivalent:

(i) There exists a ξ in $L^2(M, \varphi)$, $\xi \neq 0$, such that

$$U^{n}\xi = \prod_{i=0}^{n-1} \alpha^{n-i-1} (u_{NK}i)\xi.$$

(ii) There exists a ξ_{γ} in $L^{2}(\tilde{M}, \tilde{\varphi}), \ \xi_{\gamma} \neq 0$, such that

$$\tilde{U}^n \xi_{\gamma} = \xi_{\gamma}, \ \tilde{U}_g \xi_{\gamma} = \langle g, \gamma \rangle \xi_{\gamma}, \ (g \in G).$$

PROOF. Let $V_{\pi\theta}$ be an isometry of $L^2(M,\,\varphi)$ into $L^2(\tilde{M},\,\tilde{\varphi})$ defined by $V_{\pi\theta}x=\pi_{\theta}(x)$ for x in M and Λ_{γ} be an unitary operator on $L^2(\tilde{M},\,\tilde{\varphi})$ defined by $\Lambda_{\gamma}\tilde{x}=\lambda(\gamma)\tilde{x}$ for \tilde{x} in \tilde{M} . Then from $\xi_{\gamma}=\Lambda_{\gamma}^{-1}V_{\pi\theta}\xi$ or $\xi=V_{\pi\theta}^{-1}\Lambda_{\gamma}\xi_{\gamma}$ follows the equivalence of (i) and (ii). q. e. d.

The following results are immediate consequences of the above theorem.

COROLLARY 1. If κ is the identity automorphism, then $(\tilde{M}, \tilde{\varphi}, \tilde{\alpha})$ is ergodic if and only if for γ in Γ and ξ in $L^2(M, \varphi)$, $U\xi = u_{\gamma}\xi$ implies $\gamma = 1$ or $\xi = 0$.

COROLLARY 2. If the action θ is implemented by a unitary representation W of Γ on $L^2(M, \varphi)$ such that $u_{\gamma} = AdU(W_{\gamma})W_{\gamma\kappa}$ belong to M for γ in Γ , then $(\tilde{M}, \tilde{\varphi}, \tilde{\alpha})$ is ergodic if and only if for all γ in Γ , $\gamma \neq 1$, γ is aperiodic with respect to κ .

References

- [1] Connes, A., Une classification des facteurs de type III, Ann. Sci. École Norm. Sup., 6(1973), 133-252.
- [2] Connes, A. and Takesaki, M., The flow of weights on factors of type III, Tôhoku Math. J., 29(1977), 473-575.
- [3] Dixmier, J., Les algèbres d'opérateurs dans l'espace hilbertien, 2nd ed., Gauthier-Villars, Paris, 1969.
- [4] Osikawa, M., Notes on minimality and ergodicity of compact abelian group extension of dynamics, Publ. RIMS, Kyoto Univ., 13(1977), 156-165.
- [5] Takesaki, M., Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math., 131(1973), 249-310.
- [6] Takesaki, M., Theory of operator algebras I, Springer-Verlag, New York, 1979.
- [7] Kovács, I. and Szücs, J., Ergodic type theorems in von Neumann algebras, Acta Sci. Math. Szeged, 27(1966), 233-246.

Department of Mathematics Faculty of Science Kumamoto University