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1. Introduction

For a sequential decision problem Bahadur [1] shows that the set of rules
based on a sufficient and transitive sequence forms an essentially complete class.
In this paper we consider a sequential decision problem which is invariant under
a certain group of transformations. The purpose of this paper is to show that
an analogous result holds even if the rules are confined to invariant ones.

In Section 2 we define the invariant sequential decision problem. The
concept of transitivity introduced by Bahadur [1] is stated in Section 3. In
Section 4 we show that the set of invariant rules based on a sufficient and
transitive sequence is essentially complete in the class of all invariant sequential
decision rules. In Section 5 we consider the essential completeness of the set of
invariant rules with nonrandomized terminal decision rules, and the application

of the result to some examples is given.

2. Imnvariant sequential decision problem

In this section we define a sequential decision problem which is invariant
under a certain group of transformations. For the details see Chapter 7 in
Ferguson [2].

Let X=(X,, X,,...) be a sequence of random variables. We denote the
sample space of X by X and the os-field on ¥ by . For each »>1 let 9, be the
subfield of A generated by X, ..., X,. The distribution of X depends on the
unknown parameter @<® where ® is a parameter space.

Let D be a decision space and € a ¢-field on D, Let L(f, d) be a real-valued
function defined on ® X D, which represents the loss when # is the true parameter
and d is the decision. For each #>1 let ¢,(f; x) be a real-valued function defined
on ® XX and we assume that for fixed A0 ¢,(#;.) is A,~measurable. The number

c,(0; x) represents the cost when we terminate the sampling at the n-#% obser-
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vation and X=ux.
Suppose that there exists a group G of transformations on X such that for

each geG
g, =A,, n=1, 2,...

and the distribution of gX, given 6, is equal to that of X, given g6, where g is a
transformation on @ corresponding to g. It is also supposed that for each g:G

L(g9, ga)=L(, d), 00, deD

where & is a transformation on D corresponding to g, and for each » and each
g:G

c,(80; gx)=c,(0; %), 00, xX.

We say that the problem is invariant under G if these conditions are satisfied.

A sequential decision rule consists of a stopping rule and a terminal decision
rule. A stopping rule is a sequence of functions {¢,(x); #»>1} such that for each
n ¢, is W,-measurable and 0<¢,<1. Given X=ux, ¢,(x) represents the con-
ditional probability that we terminate sampling at the #n-{Z observation. A
terminal decision rule is a sequence of functions {6,(C|x); »>1} such that for
each n 0,(C|.) is 2,-measurable for every C:€ and 6,(.|x) is a probability
measure on € for every xeX. Then the risk function of a sequential decision

rule 2=({¢,}, (0,}) is given by

@1 R, z>=§Ee{¢n<X>[SL<a, 8,(ds| X + ¢,(6; 301}
where
2.2) () =10 — ¢ (x))A— (). .. (A= (X)), (%), =1, 2,...

and ¢,(x) represents the conditional probability of not stopping before the n-th
observation and then stopping after the #-£2 observation, given X=ux.

For an invariant sequential decision problem, it is natural to confine our
attentions to invariant sequential decision rules. A stopping rule {¢,} is said to

be invariant under G if for each =
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2.3) $a(gx) =, (%), geG, xeX
and a terminal decision rule (d,} is said to be invariant under G if for each n
2.4 0,(ZC|gx)=08,(C|x), geG, CeG, xeX.

Then we say that a sequential decision rule ({#,), {0,)) is invariant under G if
both {¢,} and {d,} are invariant under G.

Let {8,; n>1} be a sequence of subfields of 9 and {f2(x); n=>1) is a sequence
of functions defined on X. Then we say that {(fa(x)} is {¥B,}-measurable if for
each n f,(x) is B,-measurable. The terminal decision rule {6,) is said to be
{¥,}-measurable if for each Ce€ {5,(C|.)) is {®B,} -measurable.

For each n>1 let UA;,={A,; gA=A for all g:G}. It is easy to see that
s, is a subfield of 2, and that a stopping rule {¢,) is invariant under G if and

only if {¢,} is {9;,)-measurale.

3. Transitivity

Let {(¥,; >1} and (¥,,; #n=>1} be two sequences of subfields of A such
that 2, D%V, D%B,, for each n. We say that (¥,,} is a sufficient sequence for {3,}
if for each n %, is sufficient for ¥,. Bahadur [1] introduced the concept of
transitivity in sequential problem. The sequence {®,,} is said to be transitive

for {¥,} if for every n, every Bye.,,-measurable function f and every 6<0,
Ee(f(X)[%D:EJ(f(X) | Q""on) a.e.

The following lemma, which is obtained by Hall, et al. (see Theorem 4.3 in

[3]) is useful to show that a sequence is transitive.

LEMMA 1. Suppose that (€,; n>1) is a sequence of independent subfields of U
and for each n B, =GC,\/...\/C, (the smallest subfield which contains C,....C). If

Sfor each n Vo1, C Vo, \/C,i 1, then (By,) is a transitive seguence for (9,).

The important property of a sufficient and transitive sequence in sequential
problem is the following lemma, the proof of which is obtained by Bahadur (see
Theorem 11.4 in [1]).
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LEMMA 2. If {Dy,} is a sufficient and transitive sequence for {,}, for each
(B,) -measurable stopping rule {¢,} there exists a (By,) -measurable stopping rule {¢3)

such that for each n and every <0
E9(¢n<X>I%On)=E9(¢i(X)|%0n) a.e.

where ¢, and 3 are constructed by (2.2).

4. Essential completeness

In the sequel we suppose that {2g,} is a sufficient and transitive sequence
for {2,}. Bahadur [1] showed that the set of rules ({?,}, {6,)) in which both
{¢,} and {d,) are {¥s,}-measurable is essentially complete among all sequential
decision rules. In this section we show that an analogous result holds in the

invariant sequential decision problem under some assumptions.

ASSUMPTION 1. There exists a {2,)-measurable terminal decision rule

which is invariant under G.
For each #n let gz, = s, M Az,

ASSUMPTION 2. For each » there exists a set A,¢%s;, of probability measure
1 for every #:0 and a real-valued function Q,(A|x) defined on %, XX with
Q.(Alx)=0 for A<, and x¢A,, such that
(1) for any x<A,, @,(.|x) is a probability measure on ,;
(ii) for any A&, Q,(A|.) is a version of the conditional probability of
A, given UAg,;
(ii1) for any xeX, A<, and geG,

Q.(gAlgx)=Q,(A|x).

LEMMA 3. If Assumpiions 1 and 2 hold, then the set of invariant rules with
(g} -measurable terminal decision rules is essentially complete in the class of all

invariant sequential decision rules.

PROOF. Let 2=({¢,}, {6,)) be any invariant rules. For each # let

£,(Cl2)= (¢, ()8,(C|»Q,(dy| x), C:G, xeX,
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where ¢, is (2.2). Then Assumption 2 implies that for any <0
§.(Clx)=Ey{¢,(X)3,(C|2) | Us,)  a. e.

and by (2.3) and (2.4)

4.1 £,(gClgx)=¢,(C|x), g¢G, CeC, xeX.

For each n, C<€ and x<X, let

0n(Clx)=¢,(C|x)/&,(D|x) if £,(D|x)>0,

=06%(C|x) otherwise,

where {0%) is the invariant terminal decision rule in Assumption 1. Cleary {d%}
is a {%s,}-measurable terminal decision rule and invariant under G by (4.1), so
that 2*=({¢n}, {0%)) is an invariant sequential decision rule with {%,)-measur-
able terminal decision rule.

It follows from Theorem 10.1 in Bahadur [1] that the risk function of 2 is
equal to that of 2, which completes the proof.

The following lemmas are proved by Hall, et al. (see Theorem 3.2, Corollary
4.1 and Theorem 6.1 in [3]).

LEMMA 4. If Assumption 2 holds, then (g;,) is a sufficient and transitive

sequence for {U,).

LEMMA 5. If Assumption 2 holds, then for each n g, and U, are conditionally
independeont, given s, that is, for any Us,-measurable function f, and U ;,-measur-

able fusiction f,,
Ey(f1(XDf (XD Wszn)=Eo(f1(X)| QISIn)-EO(fZ(X)IQ[SIn) a. e..
ASSUMPTION 3. For any 6¢0, {c,(0;.)} is {s,} -measurable.

Now we have the following result which corresponds to Theorem 10.2 in
Bahadur [1].

THEOREM 1. If Assumptions 1 through 3 hold, then the set of invariant rules
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with (Ugr,} -measurable stopping rule and {Us,)-measurable terminal decision rule

is essentially complete in the class of all invariant rules.

PROOF. Let 2=({¢,}, {0,)) be any invariant sequential decision rule. By
Lemma 3 we can suppose that {d,} is {2s,}-measurable. Since {¢,} is {A;,} -measur-
able, it follows from Lemmas 2 and 4 that there exists a {g;,)-measurable

stopping rule {¢%} such that for each » and every 00
(4.2) Ey{¢x(XD)|Wsrn} = Ep{¢n (XD |Ussn} 2. e

where ¢ and ¢, are defined by (2.2). Letting 7*=({¢}), {8,)), 2" is invariant
under G and its stopping rule is {g;,}-measurable.

Now we show that the risk function of 1* is equal to that of 2. Since {4,} is
{(s,) -measurable and by Assumption 3 {c,(6;.)) is {s,}-measurable for every

0<0, it follows from Lemma 5 and (4.2) that
R(O, D)= S (¢uCOLSLO, $)0,(ds| X0 +¢,(0:207)
= S1E8 (42030 Us1a) E4(§LCB, $)3,(ds| XD+ 2008320 |%sra)
= 318 (WICOLSLO, $0,(ds] X0 +¢,(8; X07)
=R(f, 2,
Which completes the proof.
REMARK 1. In sequential testing problems, Assumptions 1 and 2 can be
replaced by the assumption that {2s;,} is a sufficient and transitive sequence for
{9;,) and the proof of Theorem 1 becomes more easy. But in sequential esti-

mation problems, we need Assumptions 1 and 2 (cf. Theorem 5.4.5 in Nabeya
(4], p. 192).

5. Nonrandomized terminal decision rule

In this section we consider the essential completeness of the set of rules
with nonrandomized terminal decision rules (cf. Theorem 4 in Ferguson [2], p.
329).

|
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ASSUMPTION 4. D is a convex subset of p-dimensional Euclidean space,
L(6, d) is a convex function of d for each 6<® and LG, d)— = as ||d]|]|—oo
where ||d||*=d'd.

ASSUMPTION 5. The trasformation § on D corresponding to geG is a linear
transformation such that gd=Bd+c where B is a p X p nonsingular matrix and ¢

is a p-dimensional vector.
We replace Assumption 1 by the following assumption.

ASSUMPTION 6. There exists a nonrandomizad {9,)-measurable terminal

decision rule which is invariant under G.

THEOREM 2. If Assumptions 2 through 6 hold, then the set of invariant rules
with {Wsr,}-measurable stopping rule and nonrandomized (Ug,)-measurable terminal
decision rule is essentially complete in the class of all invariant sequential decision

rules.

ROOF. Let 2=({¢,}, {d,}) be any invariant rule. By Theorem 1 we can
suppose that {¢,} is {¥s;,}-measurable and {4,} is {Uy,}-measurable. Define a

nonrandomized terminal decision rule {§}} by

(5.1 6% (x)=(s6,(ds|x) if §]s|]0,(ds|x)< oo,

=6 (x) otherwise,

where (6%} is the nonrandomized {2g,)-measurable terminal decision rule which
is invariant under G by Assumption 6. Clearly {6%} is {Us,} -measurable. Since

{0,} is invariant under G, Assumption 5 implies that for any g:G

5.2 §s0,(ds| gx)= § gs6,(gds|gx)
= g(s0,(ds|x),

so that
§11sl16,(ds|gx)<eo if and only if §||s||8,(ds|x)< oo.

Hence it follows from (5.1) and (5.2) that for every x<¥ and every geG
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0x(gx)=gon(x).

Therefore 2*=({¢n}, {6%}) is invariant under G.
Now we show that the risk function of 2* is not greater than that of 2. We
suppose R(f, )< co. Then it follows from (2.1) that for each =

&.3 Eo{¢n(XD(L(8, $)3,(ds| XD} < eo.

Assumption 4 implies that if {L(f, $)d,(ds|x)< oo, then §||s||d,(ds|x)< o (see
Remark in Ferguson [2], p- 78), so that by Jensen’s inequality

L8, 6x(x)) <L, $)0,(ds|x).
Therefore from (5.3) we have that for each
Eg{¢n(XDL(8, 63(XD)} <Eal¢n(XDSL(B, $)8,(ds| X))
Hence it follows from (2.1) that
R(8, <R, D,
which completes the proof.

EXAMPLE 1. Let X, X,,... be a sample from the normal distribution with
mean p and variance o, where 6=(u, ¢°) is unknown. We want to estimate u
sequentially under the loss function L(6, d)=(d— ;) and constant cost ¢ per
observation.

Clearly this problem is invariant under the group G of translations,

gy o on )=+ H+8us: )5 g6

For each » let

and 9, be a subfield generated by X, and S,. Then it follows from Lemma 1
that (g,) is a sufficient and transitive sequence for {%,}. In this case gz,
becomes the subfiesld generated by S,. It is easy to see that assumptions in

Theorem 2 are satisfied (for Assumption 2, use Theorem 7.1 in Hall, et al. [4])




INVARIANT SEQUENTIAL PROBLEM 85

and the nonrandomized estimator of » based on X, and S, is given by
(5.4) 0n =X, +1,(S,)

with some function 7%,.

Let 2=({¢,}, {6,}) be any invariant sequential decision rule with {Uszn)
-measurable stopping rule and {%g,)-measurable terminal decision rule. By (5.4)
we have that

120 2>=%Eo{qbn(X)[(an(X)—/4>2+m1}

o

>R(6, 2,

where 2*=({g,}, {X.)), because X, is independent of (Sy,...,S,) (see Lemma
10.9.3 in Zacks [6]). Hence for this problem the set of rules, in which the
stopping rule is determined by S, at the n-th observation and the terminal
decision rule is the sample mean, is essentially complete in the class of all
invariant sequential decision rules.

EXAMPLE 2. We consider a life test with replacement on M machines. For
failure times we assume an exponential distribution with the probability density

function
Fx)=06""exp (—x/6), x>0, 6>0.

Let X, be the time at which the n-th failure would occur if the life test
were allowed to operate indefinitely. We want to estimate 6§ sequentially under
the loss function L(6, d)=(d—6)*/6* and the cost function proportional to the
test time, i. e. ¢x,/0 if we stop the life test at the n-th failure and x, 1s the
failure time (¢ is some positive constant).

It is easy to see that the joint density function of X..., X, 1s given by
Sy, ) =M/ "exp(— Mx,/6), 0<x,<...<x,,
so that this problem is invariant under the group G of scale transformations,

gy, %, ... )=C(ax,, ax,...), gG, a>0.

SN R
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and X, is a sufficient statistic for X,,..., X,. For each » let g, be the subfield
generated by X,. Since for each n X;, X,—X,,..., X,— X,,_; are mutually inde-
pendent, it follows from Lemma 1 that {U,} is a sufficient and transitive sequence
for {2,}. In this case every {s;,}-measurable stopping rules do not depend on
failure times. It is easy to see that assumptions in Theorem 2 are satisfied (for
Assumption 2, use Theorem 7.1 in Hall, et al. [4]) and the nonrandomized

estimator of § based on X, is given by
(5.5) 0,=b,X,

where b, is constant.

Let 2=({¢,}), {6,}) be any invariant sequential decision tule with {g;,}-
measurable stopping rule and {%s,}-measurable terminal decision rule. Then it
follows from (5.5) that

R0, z>=i;1 By (¢n(XOL(0,(X) — 0)Y/6%+ cX,./67)
< n(n+1) M\? 1 cn
=2 [‘_“Mz (b"“ m) tort M‘}

because ¢, is constant and 2MX,/6 has a chi-square distribution with 2x degrees

] Xn}>, we have that

. *_
of freedom. Hence letting 2" = <{¢n}, {n_—H

R(6, D=R(6, 2%
= ni;lgbn [77% - %}
Define
7 =Min (#>1 such that ¢c>Mn+1)"'(n+2)71).

Then it follows easily that the non-sequential rule which terminates the life

X,+ has the minimum risk

test at the 2™tk failure time and estimates 6 by n‘i‘—{[f—l

among all invariant sequential decision rules.

REMARK 2. We [5] showed that this non-sequential rule is minimax among

all sequential decision rules.
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