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1. Introduction

Using a supercomputer, we calculated eigenfunctions corresponding to the
smallest 50 eigenvalues of the 3-dimensional Laplacian in several types of
domains. The perspective views of the level surfaces of the eigenfunctions are
shown in this paper. Especially nodal surfaces of the eigenfunctions are among
them.

Eigenvalue problems play important roles in many fields of mathematics,
physics, etc. (e. g., [1]). From mathematical point of view, relations between
the geometric characteristics of a region and the asymptotic behavior of the
eigenvalues of the Laplacian in the region attract mathematicians for many
years (e. g., [6]1), and there still remain unsolved problems. With the development
of large and high-speed computers, we can now study graphs of 2- and 3-di-
mensional eigenfunctions directly with the aid of 3-dimensional graphics (see
also [9]).

Calculations of the eigenfunctions were done at the large computer center
of Tokyo University using the S810 model 20 vector processor, which has the
maximum speed of 680 MFLOPS (Mega Floating Operations Per Second) and the
maximum 18 MB (Mega Bytes) user’s main memory area.

To examine the results we need a 3-dimensional graphic display, which can
move surfaces on the screen smoothly. To this aim, a 3-dimensional random-
scan type graphic display at the large computer center of Kyoto University was
used, and its pictures were recorded by a video tape recorder. The best way to
show our results is to play the video tape on a TV screen, but we should be
satisfied with some perspective pictures in this paper. Pictures in this paper
were printed out by the laser printers at large computer centers of Kyoto and
Kyushu University.

Thanks are due to the large computer center of Tokyo University, under

whose financial support most of this work was done.
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2. Method of the calculation of the eigenfunctions

The eigenvalue problem for the following 3-dimensional Laplacian is con-
sidered in a 3-space region D with the boundary condition =0 on the boundary
of D.

2 2 2
%x_uz + %yiz + —g;—; + =0

By the 5 point finite difference approximation, this eigenvalue problem is
discretized. We assume that the region D is defined by a function ¢ in such a
way that a cube is contained in D if and only if ¢ is negative at an edge of the
cube. Then the corresponding matrix becomes symmetric and positive definite.

For example, if D is a cube and is divided into 30X 30X 30 small cubes, then
the order of the matrix equation becomes 24,389. Hence we cannot apply the
usual tridiagonalization technique, and we should use an iterative method for a
large sparse matrix. We used two steps to calculate eigenvectors in our case.

The first step is to divide the region D very roughly, for example, in 12 X12
X 12 for a cubic D, so that the resultant matrix has size of less than 1900. Then
we can apply the usual tridiagonalization, the bisection method, and the inverse
iteration method (e. g., [2], [8]). The obtained eigenvalues and the corresponding
eigenvectors are used to calculate initial values for the iteration process of the
next step.

The second step is to apply the Jennings’s method [4] to the original matrix
of the order of about 20,000. The initial vectors for the iterations are calculated
by the interpolation of the vectors obtained by the first step. An iteration for the
smallest 50 eigenvalues and the corresponding eigenvectors requires the solutions
of 50 sparse matrix equations of the order of about 20,000. To do this we use
the MICCG method ([5,3]) with the modification due to Y. Ushiro [7] such that
the algorism is vectorizable.

Calculations were done for the following three types of regions D.

(Type 1) The region D is the cube —1<x, y, 2<1, and is equally divided
into 28 X28x<28. Then the number of the interior points of D is 19,683. By 90
iterations the maximum error of the eigenvectors is 3.69x107% The used time
for the iteration is 1,259 seconds.

(Type 2) The region —1<zx, y, z <1 is equally divided into 40 X 36 X 36 small
parallelepiped, and D is the set of all small parallelepiped such that at some edge
point (x, v, z) the value 2x*+3°+2z°—1 is negative. Then the number of the
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interior points is 19,167. By 16 iterations the maximum error of the eigenvectors
is 2.94x107°. The used time for the iteration is 320 seconds.

(Type 3) The region —1<x, y, 2z<1 is equally divided into 34X 34X 34
small cubes, and D is the set of all small cubes such that at some edge point (x,
¥, z) the value (#?4+3°+22—1)(x’+3*+2°—0.1) is negative. Then the number
of the interior points is 19,838. By 24 iterations the maximum error of the
eigenvectors is 9.12X107° The used time for the iteration is 450 seconds.

3. Three dimensional graphic techniques to analyse data

The size of the output data for the eigenfunctions is about 5 to 10 MB
in each case, and some graphic tool to analyse them is necessary. The level
surface of an eigenfunction #(x, y, z) is defined by u=constant f. To display
such a surface, we used two classes of curves. The first class is ulx, v, z2)=f
for a fixed x, which is on a plane parallel to the y—z plane. The second class is
u(x, y, 2)=f for a fixed z, which is on a plane parallel to the x—y plane. To
calculate these curves we applied the usual searching method of contour curves
with a slight modification. Especially if f is zero, i. e. the case of nodal surfaces,
some problems arise.

Since f=0 on the boundary and outside it, we have to cut them. In the
following pictures the algorism of this process is not good enough. The second
problem is to search the singular part of the surface, which is not given a priori.
The third problem is the hidden line algorism near the singular part. We should
invent an algorism to solve these problems.

We can use the value of u(x, y, 2) at any point (x, y, z) calculated by
interpolation to the hidden line process. The only thing to check is whether the
sign of #—f changes on the s2gment from (x, ¥, z) to the eye. This algorism is
very fast. In fact the used time to draw the following pictures is about 2 to 10
seconds by FACOM M382, a standard 20 MIPS large computer.

In the following figures, three perspectives of the level surfaces corresponding
to f= —0.005, 0, 0.005 are shown in this order for every eigenvalue, which is
written below each picture as 1=....

Figures 1.1—1.24 is for type 1. Figures 2.1—2.24 is for typz 2. Figures
3.1—3.48 is for type 3.
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Figure 1.1.

i
7

7
0

7

%
7

7
%%
7!
[
%

Y

Figure 1.2.

2>
77/

Z
[7

7

22
{7

2
%
(7

%
[

7
i
K

v

)
i

Figure 1.3.

Figure 1.4.
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Figurel.5.
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Figurel.17.

Figure1.18.

Figure1.19.

Figure1.20.
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Figure 3.25. A = 644
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