Kumamoto J. Sci. (Math.)
Vol. 17, 9~25 March (1986)

COMPLEX SURFACES PROPERLY DOMINATED BY C2?

Mikio FURUSHIMA
(Received Oct. 31, 1985)

0. Introduction.

We say a normal complex surface X is analytically compactifiable if there
exists a normal compact analytic space S and an analytic subset C of S such that
X is biholomorphic to S—C. By the resolution of singularities of S on C if neces-
sary, we may assume that S is non-singular on the analytic subset C. Especially,
if X is non-singular, then S is a compact complex manifold. The purpose of this

paper is to prove the following

THEOREM. Let f: C°*—X be a proper holomorphic mapping of the complex affine
plane C* onto an anralytically compactifiable (resp. affine algebraic) normal complex
surface X. Then, either X is biholomorphic (resp. biregular) to C* or C*/G, where G
s a small subgroup of GL(2,C).

Our theorem can be considered as an analytic version of the theorem due to
Miyanishi [13] (see also Gurjar-Shastri [5]).

In the proof, we use the results in [2] and [3], the theory of cluster sets due
to Nishino-Suzuki [19], and some topological results due to Gurjar [4], Gurjar-
Shastri [5].

1. Topological properties.

Let f: C*—>X be a proper holomorphic mapping of C? onto an analytically
compacfiﬁable normal complex space. Since C® is a Stein manifold and f is a
proper holomorphic mapping, X is also a (normal) Stein space by Narasimhan
[17]. Then,

PROPOSITION 1 (Gurjar [4]) X is topologically contractible.

Let (S,C) be a (normal) analytic compactification. We may assume that any

singular point of C is an ordinary double point, (ii) no non-singular rational
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irreducible component of C with the self-intersection number —1 has at most two
intersection points with other components of C. Such a compactification is called
the minimal normal compactification.

Let us consider the following exact sequence of cohomology group over Z of
the pair (S,0O):

—HY(S, C;Z)—H(S;Z)—~H'(C; Z)—>H" (S, C; Z)—

Since H'(S,C;Z)=H, ,(S—C;Z)=H, ;(X;Z), we have, by Proposition 1, H'(S;
Z)=HC;Z) for i<2. Since 0—H(S;Z)—H*(C;Z)=20, we have the following

LEMMA 1. H'(S;Z)=H(C;Z) for i<3, if S is non-singular.

Let T be a tubular neighbourhood of C in S (see [15], [20]) and 8T be the
boundary of 7. Then, Gurjar has also the following

PROPOSITION 2 ([41). If X is a non-singular surface, then the fimdamental
group m,(0T) is either trivial or the binary icosahedral group SL(2,5) of order 120.

REMARK: In Proposition 2, the smoothness of X is essential. In fact, let us
consider the following proper morphism f: C*—C® given by f (%, v) = (2, v°, uv).
We put X=/(C?. Then X={z*=xy}(, C* and m,(3T)=Z,.

2. A characterization of C?

We shall first note some facts on rational ruled surfaces following to Suzuki
[211.

Let M be a non-singular compact complex analytic surface, and D be a non-
singular irreducible rational curve on M with the self-intérsection number (D)*=
0. By Kodaira-Spencer [9] and Kodaira [7], we obtain a holomorphic mapping w:
M—R of M onto a non-singular compact curve R which has D as a iregular fibre.
Thus M is a ruled surface. Let us assume that there exists another rational curve
D'#D on M which intersects D. Then the base curve R is isomorphic to a
projective line P' and M is a rational ruled surface. Thus we have the following

LEMMA 2. Assume that there exists a non-singular rational curve C with the self-
intersection number (C)* >0 in a non-singular compact complex surface M. Then M is

a rational ruled surface.
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By Nagata [16], M can be obtained from a geometrically ruled surface F,
(2=0) over P’ by a finite succession of quadratic transformations Qpys - - Qp, (r>0),

in such a way that
M=Q, «u:sus Q,,(F,) and 7'c=n'0Q;11. sime Qs

where m,: F,—P" is the projection.

Therefore, each fibre 77%(2) (z€ PY) is a curve with no loop composed of non-
singular rational curves crossing normally. Since rank HF,;Z)=2, we have
rank H*(M;Z)=r+2. On the other hand, if one denotes the number of irreducible

components of 7#7'(2) by 1+ a(2) for each z € P!, we have 21“(3)=7’-
P

Thus we have

LEMMA 3. rank H*(M;Z)=7r-+2 and St alz)=r.
< ¥

ze P

Now let M be a non-singular compact complex surface and C be a connected
analytic subset of M consisting of non-singular rational curves C,(1<:<%)
crossing normally. With each collection C of the curve C;(1<i<k), we associate
a dual graph I'(C). Each vertex of the graph represents a non-singular rational
curve C;. Adjacent to each vertex we write the self-intersection number (C;)? of
the curve C;. These are called weights. Two vertices are joined by a segment if
the two rational curve they represent intersect.

Then we have a following characterization of C2

PROPOSITION 3. Let (M,C) be as above. We put V=M—C. Suppose thai

(i) H{(V,Z)=0 for i>0.
(i) the dual graph I'(C) of the curve C is of the form,

) 7 7 7y
' ’ ’ o max {(n)}20 (m#—1)

(i) V contains no compact complex analytic curve. Then M is a rational surface
and V is isomorphic to C°. Move precisely, there exists a birational mapping of M to
P? which maps V onto P*— {a line} biregularly.

PROOF. By the argument similar to Lemma 1, H'(M; Z)=0 and H*(M; Z)=
Z*. Since max{n;} 20 and H'(M;Z)=0, by Lemma 2, M is a rational (ruled)
surface. Thus H'(M; 2*)~H*(M; Z) and H(M: 2% is generated by the line
bundle [C;] defined by C; over Z aL:<k).
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(The case of 2=1): Since M is rational and H*(M;Z)=2Z is generated by the
first Chern class ¢;([C]) of the line bundle [C], M=<P? and C is a line on P>

(The case of £>2): Since max {n;}>0, performing elementary transformations
on C, it is easy to see that we may assume that the graph I'(C) is of the form

0 m; msy Mg
©

Or - =" — = —— & —=~-0

Where m,<—2 and m;# —1 for j>3.
Assume that ¢>3. If max {ms,...,mq}>0, then by Lemma 6 in [21], the graph
I'(C) must be of the form

Since M is a rational surface, M can be obtained from F, by a finite succession
of quadratic transformations. By Lemma 1 and 2, »+2=rank H*(C;Z)=3, hence
r=1. This contradicts the assumption (iii). If max {ms,.., my}<0, then we may

assume that the graph I'(C) is of the form

0 —m, —my
o—0— —— - - = —— —— — = —-—-—=0

wherem;=>2 (j=2). Let Cy, C; (j=2) be the irreducible components cf C associated
with the vertices with weights 0, —m;(j=2), respectively. Since M is a rational
ruled surface, we have H*(M;o*)=H*(M;Z)=H(C;Z)=Z? Then we have

g
K= > 2,C;, where 4 € Z.
i=1
By the adjunction formula for each component of C, we have the equality

(g, .. omg]+ s, ... ,mg] (1+1)+1=0,

that is,
[m4’----’mq:|—'1
my+ A+ 1= € Z,
2 2 [m;g, ....... 5 mq]
where [my, mi41,...,mg] (171 <g) represent the integers defined inductively in

the following way: [mgl=mgq [mge_1, mgd=mgy_1[m—1, [mg_s mq_1, mgl=my_s
[mg_1mg]—[mgls ..., [mums, ... ,md=milms, ms,..,mg] —[m,..,m,]. Since [m;,..

mql >[my, . .mg] if m; =2, we have




COMPLEX SURFACES PROPERLY DOMINATED BY C2 13

My + 2+ 1=

hence g=3 and 4= — (m,;+1). By Lemma 1 and 2, » +2=rank H*(M;Z)=rank H*
(C;Z)=g=3, thus r=1. Therefore V=M —C contains an exceptional curve of
first kind, since m;>2. This is a contradiction. Consequently, we have g=2. In
this case of ¢g=2, the graph I"(C) is of the form

g T (my22).

Performing again elementary transformations on C, we have a surface (M',C")

such that the graph I'(C’) is of the form s and V=M'—C’. Then we have seen

that M’ is isomorphic to P? and C’ is a line in P®. This completes the proof.
Q.E.D.

3. Determination of the curve C.
Let f:C*—>X and (S,C) be as in section 1. Then we have the following

LEMMA 4 (see Lemma 3 in [2]). For each Ci, there exists a holomorphic
mapping ¢;: C—S—C of the complex line C into S— C such that

CiC¢i(:S)CC,

where ¢;(00:S)= N\ ¢,(dzp) ,dp={z€ C; |zl >R) and ¢,(dg) is the closure of ¢,(4z)
R>0
in S
By Théoréme 5 of [19], we have the following

LEMMA 5. The curve C must be one of the iype from (@) to (¢) in Table 1
below, in which, for types (8,) (r=2), (v), (+D, (8D, (&), each irreducible component
of C is a non-singular rational curve and assigned Figure (1—5) represent the
weighted dual graph I'(C) of C.
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Table I
Name of type Explication of C

(@) a(n) an irreducible non-singular elliptic curve with the
self-intersection number (C?)=#=0.

(B) B(n) an irreducible rational curve with only one ordinary
double point and (C?)=n=0.

(Br) B(ri,. .., ny) (r=22) Figure 1, all n;=—2 or max {n;}=0.

(r) r €T nr) (r=21) Figure 2, all ng=—2 or max {m+1,....,%-1, nr+
1}=0

0 v, m) (7=1) Figure 3, max {m-+1, n,-.,nr}20.

©) 0(nolqi/l1s qo/lss q3/ls) Figure 4, (i) m=—2, (ii) (I1,l2,13)=(3,3,3), (2,4,

4), or (2,3,6—m), with m=0,1,2,3, (iii) for each
i=1,2,3, (qi,1;) is a pair of coprime integers such
that 0<{g;</; and that

1

li/qi=n;, 1 —

Ni,ry
(continued fraction expansion)

where #;,;=2 are integers appearing in Figure 4.

(e) e(ny, ng,- -, Nr) Figure 5, max {n,...,n,}=0.
(3
7, 15 Tttt T T o
71 n,
i) -2
Fignre 2
/2 S s

Figure 1
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Figure 3
o — N,y
1
|
|
1
|
{
|
1
o T,
O — — — — — ——O‘-L‘j _________ 5
—%1,7 %, 7o — 73, 3,74
Figure 4
o0 - - —— - — .-
7, 7, Pr_1 o

Fizare 5
LEMMA 6. The possible type of the curve C is G, ) or (o).

PROOF. In the care of tupes (@), (B), (By), (), the fundamental group n;(07)
can not be a finite group (see (4.1) and (4.2) of 4 in [2h.

PROPOSITION 4. Assume thal X is non-singular. Then the curve C must be of
the type ().

PROOF. In the case of type (y'), we see that there exists a normal subgroup |
N of 7;(8T)/N is isomorphic to the dihedral group D, of order 2«, where a=/[,,
#35...,7,]. Therefore 7;(87) is not trivial, and thus, it is isomorphic to SL(2,5)
by Proposition 2. But the quotient group of SL(2;5) by a proper normal subgroup
is isomorphic to the alternating group %% of order 60 or SL(2,5), none of which
is isomorphic to the dihedral group. We have thus a contradiction.

Assume that C is of the type (6). If S is neither rational nor a ruled surface,
by Corollaire 2 in [19], the possible types of the curve C are the following

(i) a<—1’%, —é%) (i) a(—1’%, %, —41—)
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(iii) a<—1l =2, %) Gv) 6(—2’ 2 3 %)
) a(—z[%, = i—) (vi) a(—z[-g—, % —;—)

We can verify that, in each case, the fundamental group =;(07) is an infinite
group (see also [p.68,1]). This contradicts Proposition 2. Therefore S is rational
or a ruled surface. Since H'(S;Z)=~H'(C;Z)=0 by Lemma 1, S is a rational
surface. Thus Pic (S)=H*(S;Z) (=2H*(C;Z)). Let K be the canonical divisor
on S. Then we have

3 T4
Ks=a,Co+ > (AZ i,i; * Ci,ji):

i=1 =1

where @, a;;, € Z and Gy, C;,;, (1=<i{<3, 1< j;<r;) are the irreducible components

of C associated with the vertices

ng T4
° and °

in Figure 4 respectively. By the adjunction formula, we have
3
—2— = 21 a1+ apny

{ =24 4,51 Gy gy Qi1 t Nyt gy

—'2_‘_71'1',77;: ai,ri—l_ ai,ri * N,y

wher 173, 157, 57;.

We put L,=[#n1,....,%,,] and ¢;=[n,,...., iyry ]
We have then
qi _ 1
7,1 —
1
i, —
. 1
ni,ri

and ;=>7;+1,1;,>¢q; >0, since 4,5, 22
We can verify easily that
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li(ai,1+ D _Qi(do+1)=1 1< <3)

(*>{ (@o+Dno+ Zi; (@1 +1D=1.

\

Thus we have finally

G (@t 1) m+i+ﬁi+i>+—1—+i+—1=1.
1 T A L S

1 Ly
Since 7,(8T) is a finite group, we must have

1,4 0
LT, Tt

(see [p. 35,1]). Therefore @+1=0 and (nﬁ—%—{— 32 +—Ll]i> =0Q.
1 2 3

Further,
(1 1 1 4 G | g3
—(@p+1)= < 2 + A + L 1>/<no+ 2 + 2 + 1, )EZ.

Since 31 >Tl , we have 72,<0. Since #,=>—2, we have #,= —1 or —2.
] T

(Case 1) n,=—1. We see that

1 1 1 ¢ 3 qs >
T Q.. S - ST ¢ . 1
<z1+lz+zs 1>/<zl+zz+ls

is an integer if and only if gg=¢,=¢=1. Thus —(@+1)=1, that is, 4= —2. By
the equation (%) a;,,= —1 (1<i<3), since [;%0. Since [#;,,...,%;, rd=a:=1, we

must have »;=1. Therefore
Ks= —Zco— Cl,l‘_ C2,1— CS,l:
and the graph I'(C) is of form

— %3,

— o

—#y,; —1 73,1




18 M. FURUSHIMA

Since b,=rank H' (C; Z)=0, g=dim H* (S; #)=0. Thus by Noether’s formula,

we have
10+12p,=K% + b,

where p,=dim H*(S; &) and b,=rank H?(S; Z) (=rank H*(C;Z)). Since b,=4
and p,=0, we have K5=6. On the other hand, K3=(2Cy+ Cy,,+C,,,+C,,1)*=8—
(#y,1+ 72,1+ m3,1). Thus ny,1+n,1+7,;=3. This is a contradiction, since #;,,>2 (1
<i<3).

(Case 2) #ny= —2. Since

3 . 3 .
Setlosibo_g
i=1 li =1 li
we have
3 3 3
i i 1
- —2=1—2(1— - >g1—2 7 <0.
=1 T =1 7 =1 7

Therefore the intersection matrix (C;,;,-Cy,;,) is negative definite. This is a
contradiction, since S—C is a Stein manifold. Therefore the proof of our

proposition is completed. Therefore the curve C must be of the type (¢).

Q.E.D.

4. Proof fo Theorem.

(4.1) The case where X is non-singular. By Proposition 1, we have H;(X;Z)
=0. for ¢>>0. Since X is a Stein manifold, X contains no compact analytic
curve. By Proposition 4, the curve C is of the type (¢) in Table 1. Thus, (S,C)
and X satisfy the assumptions (i), (ii) and (iii) in Proposition 3. Therefore X is
biholomorphic (biregular) to C>

(4.2) The case where X has singularities. Let p= {pv, ..., 0} (B=1) be the
set of singular points of X. Let U; be a sufficiently small Stem nelghbourhood of
p: in X and denote by 0U; the boundary of U;. We put U= U U; and 9U= U@U
Since f: C?*—X is proper finite, we can see that the fundamental group m(aUZ) is
a finite group, and thus 7, (8U) is also a finite group. Therefore each p; is a

quotient singularity by Brieskorn. By Lemma 6, the curve C is of the type ("),
(@, (.
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PROPOSITION 5. If H,(8U:;Z) =0, then C is of the type (0).

PROOF, Since m,(80;) is a finite group and H,(0U;; Z)=0. each singularity p;
is the Eg-singularity,and thus a rational double point. Then the canonical divisor
Ks on S can be defined. Moreover, H*S; Z) is generated by the irreducible
components of C.

First, assume that C is of the type (¢). As we have seen in the proof of
Proposition 3, performing elementary transformations on C, we may assume that
the groph I'(C) of C is of the form

T tm>2)

Let Ci(resp. C,) be the irreducible component of C associated with the vertex
S (resp. ). Let S be the minimal resolution of S. Since p;’s are rational double

points, K3y= Kg can be written as follow
KS= '_'<m+2>cl—2C2

Since p; is the FEg-singularity and b2(§)=2, we hawe 5,(S)=8k+2. By the Noether
formula, (K3)?=10—(8%+2)=4(m~+2)—4m=8. This is a contradiction, since
k=1. Therefore C is not of the type (¢).

Next, assume that C is of the type (7'), that is,

=3 O 7 7, nr
Crrreee ¢, max {n,+1, n,..,n,})=>0.

(i) The case of max{n,..,n,}<0. Then n,+1=>0. Let C®, C® be the
curves associated to the vertex ¥ and C; (:=>2) be that of the vertex ¢. Then

K5y can be written as follow

§=aC’+BCP + > aC,,

7=1

where a, 8, a; € Z.
We put my=n,, m;=—n; (i=>2). By the adjunction formula, we have
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a=2a=2f
—mi—2=a+B+mat+a,
(€)) My — 2=, — mya, + a

M, —2=a,_1—m,a,
From (%), we have the relation
i+ [myy o smp]+ [y, ooy my]) (@ -1)= —1.
Since m;+120, m,;=>2 (j=2) and a;+1€ Z, we must have

mi+1 Imyy oo o]+ [0y ..oy ] =1

Therefore we must have m;= —1 and »=2. Then I'(C) is the form
2
(m=2)
-2 -1 —m

Further, blowing down the exceptional curve of first kind on C, we may finally
assume that C=C,UCGC,, where (CD*=0, (C,)*=—m+2 and (C,-C,)=2. Since the
topological type of X is preserved under the elementary transformation, we have
b,(S)=2 and b2(§)=8k+2. We have then —Kg=C,+C,. Let D be an irreducible
exceptional curve on S with D#C,. Then, by the adjunction formula, we have

(a) D is a non-singular rational curve with (D)*=—2 and D-(C,+C,)=0, or

(b) D is an exceptional curve of first kind with D-(C,+C,)=1.

Let v: S—P" be a proper holomorphic mapping which has C, as a regular
fiber (see 2). By the above (a), we find that the exceptional curve B associated
with the resolution S—S is contained in the singular fibres Fi,...,Fy. Let 1+4¢;
(resp. g;) be the number of irreducible components of F; (resp. those of F; which
are not contained in B). Then, we have

ad s
j 243 e,=b,(S)=8k+2
i=1
ad .
Z 2+ 2> (A+e—g)=5(C)+b(B)=8k+2
=1

Thus we have g;=1 (z=1, 2,...,d).
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Since each singular fiber F; contains an exceptional curve of first kind, we can
see that there exists only one exceptional curve of first kind and the other
irreducible components of F, are all those of B. Taking account that each
irreducible component of B is a non-singular rational curve with self-intersection
number —2, the singular fiber F; can be completely determined. This implies
that each singularity p: is the D,-singularity. This is a contradiction.

(ii) The case of max{n,,...,n,} > 0. Performing the elementary transfo-
rmations on the curves associated to the vertices "¢ (121), we may assume that
I'(C) is of the form

—2
0 0 —my =My
=2
By Lemma 5 in [21], we must have max {(—ms —my, ... —mg} <0, that is, my;>2

(=3). Let C{¥, C be the curves associated to the vertex ¢, C,, C, (resp. C;
(1=3)) be the curves associated to the vertex § (resp. 7). Then,

q
Ki=a C’+p CP+ ) a; C,, where
=1

(2 B’ ai E Z'
By the adjunction formula, we have

O=a,=2a=23
—2=a+f+a,
—2=a,+ a4

G

ms—2=a,—m; a;+a,

Mg—2=a, 1—~m, a,

From (), we have

([mg, ..., m] —mg, ..., mD)(ay+1)=1

Since m; > 2, we must have m,=m,=- - - =my=2, and a,=0.
Then I'(C) is of the form
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2 0 0 -2 —2
O——O0— - - — — - —— o
M ———
-2 g—2 vertices (¢=3)

Performing elementary transformations on C, we may finally assume that I'(C)
is of the from

—2o0 -1 ¢—2

o—O0

v

Then (K3)?=2+¢>=5. On the other hand, since 5,(S)=4 and ¢,(S)=8k+4, by
Noether’s formula, we have (K3)*=6—8k<0. This is a contradiction. Therefore
the cueve C is of the type (8). The proof is completed.

Q.E.D.

COROLLARY 1. If H(8U; Z) =0, then I'(C) is of the form

T—-S
o— 4 -
-2 -1 -3

PROOF. By Proposition 5, C is of the type (6). By the same argument as
in the proof of Proposition 4 (Case 2), I'(C) must be of the form

I“n2,1
O

iy —1 0 =,

By Noether’s formula, 10— (8%+4) =(K3)*=8—(ny,,+n,,,+n;,). Since n,(8T) is
a finite group, we have
T

71,1 3,1 3,1

Thus, (77'1,1, 72,1, n3,1>=(2; 3,5) or (2,2,n) (n=2).
As we have seen in the proof of Proposition 5, the case (2,2,%) can not occur.
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Therefore I'(C) is of the form

and then 2=1. In this case, the m,(07)=<SL(2,5) (the binary icosahedral group).
Q.E.D.

PRoOPOSITION 6 ([5]). If T (X—p)=(1), then p=¢.

REMARK: This proposition is proved in [5] under the assumption m,(0T) =
SL(2,5). In fact, since m,(X—p)={1} implies H,(3U; Z) =0 by the Mayer-Vietoris
sequence, as we have seen in Proposition 5 and Corollary 1, we conclude that T,
@T)H==SL(2,5).

- We will continue the proof of Theorem. Since p#F ¢, m(X—p)#1 by Proposition
6. Since f:C*—X is proper finite and Cz—f‘l(p) is simply connected, 7,(X—p) is
a finite group. Let us denote by X —p the universal covering space of X— b

Then we have (see [5] or [3]) that there exists a normal complex (affine)

surface X which contains X—p and a propor holomorphic mapping u: X—X such
that the following diagram

¢ s

¢t - X

N L
X

is commutative, where ¢: C*—X is a proper holomorphic mapping. Moreover,

G=mn(X—p) can be extended to X as a group of analytic automorphisms of X

which has no pseudo-reflection. Since ¢: C*—X is proper and nl(X— ) =

nl(X p)=1, X is non- singular, and thus X is biholomorphic (biregular) to C? and
X=CYG.

PROPOSITION 7 ([3]). Let G be a finite groups of analytic automorphisms of
C? and n: C*—X=C*G the projection. Let S X the branch locus of the Jinite
covering m. Assume that (i) X is complex analytically compactifiable (ii) the closure
Sof Zin an analytic compactification X of X is also an analytic subset of X. Then
G is conjugate with a finite subgroup of GL(2,C).
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COROLLARY 2. Let G be a finite group of polynomial automorphisms of C°.
Then G is conjugate with a finite subgroup of GL(2,C).

In our case, since X is analytically compactifiable and the ‘branch locus is
the point set p, we can apply Proposition 7. Therefore G is conjugate with a
finite subgroup of GL(2,C). This completes the proof of Theorem.
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