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REDUCTION OF SINGLE FUCHSIAN DIFFERENTIAL
EQUATIONS TO HYPERGEOMETRIC SYSTEMS

Mitsuhiko KOHNO and Tetsuya SUZUKI

1. Introduction

Linear differential equations, which have only regular singular points in the
whole complex plane, are called Fuchsian equations. Let $=A; (j=1,2, - -, p)

and =o0* be regular singularities. Then Fuchsian equation can be written in

the form
(1.1) N (N Z‘,A ( ) N— l (N— l)
where ¢ = ]I (2—A,) and the coefficients A4,(#) (I=1,2, ---, N) are polynomials of

degree at most (p—1)I. Differentiating both sides of (1.1) in N(p—1) times and

recalling the Leibniz rule, one can immediately obtain a differential equation of

the form
(1.2) Pr(t)y™=Pn(8)y™ +- -+ P (2)y'+ P (1),
where n=Np, P.(1)=¢" and P(%) (i=n—1,n—2,---,0) are polynomials of degree

at most 7. (1.2) is just of the extended form of Gaup’ hypergeometric equation.
Ht—1)y" Hilet+B+1)t—7ly' + 2By =0.

So (1.2), regarded as a general form of Fuchsian differential equations,is mere-
ly called a hypergeomeiric equation after K. Okubo [6].In the above paper K.
Okubo showed without proof that (1.2) is equivalent to a system of differential
equations called the hypergeometric system

*) When a differential equation has only finite regular singularities, we can
transfer one of them to infinity by a linear transformation of the independent
variable t'=1/(t— ).
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(1.3) (1-B) %X = 4x,
where B=diag(A, Az, -+ -, As) and A is an n by n constant matrix. M. Hukuhara
[4] gave a short proof of the equivalence in a distinct case, where A A, (i%k),
together with the consideration of relations between classes of solutions of (1.2)
and (1.3). Later, K.Okubo published a monograph [7], in which he gave a com-
plete and detailed proof by an algebraic method. However, both [4] and [7) give
no final result on a form of the constant matrix A. In 1981 — 1982, the first
author had a chance to give a lecture on “Connection Problems” at Professor R.
Gérard’s seminor of Strasbourg University, and then tried to prove the equivalence
for the purpose of determining the explicit form of 4 and of seeing what types of
hypergeometric equations correspond to the vanishing of elements or the degene-
racy of eigenvalues of A. The first part (§1— §3) is based on the lecture notes
made at that time, in which how to determine A in terms of coefficients of the
polynomials P; () (i=n—1,n—2, ---, 0) is shown explicitly in a constructive man-
ner. After that, in order to use a computer in the actual calculation, the first
author asked the second author to make a program for such an algorithm. In the
last section, the program will be shown together with some examples illustrating
its application.

Before the last section, for finding out good examples of hypergeometric equa-
tions and for the future plan of use, we supplement to this paper one section §4,
where we show a method of reduction of systems of partial differential equations

to systems of total differential equations.

2. Distinct case

n

We first consider the case in which Pa(2) =II (£—Ax) = ¢n, where A, ¥ Ax(i¥k),

k=1
in (1.2), i.e., we shall prove that the hypergeometric equation

(2.1) By ™ =Poy (B)y™ "V + - - -+ Po(t)y,

P; (%) being polynomials of degree at most i, can be reduced to the hypergeometric
system (1.3) with

(2.2) B=diag(Ay, Az - -+, An)

and



Reduction to Hypergeometric systems

- 0
21 Q22 1

29

In this case, using the notation

J

s=I (=2 (i=1,2,-,),

we put

r yl:y)

Y= ¢y’ T+ az,u( t)_’)’,

;= ¢j—1yu_”+aj,j—z(t)y(j_2)+ o +3-j,o( t)y,

L Yn= ¢n~1ym_l)+ ann—z(t)y(n_2)+ o +an,o(t)ya
the coefficients a,.(%) being polynomials of degree at most k, and determine the
polynomials a,.(#) and constants a;, so that the column vector X=(y,, Ygy e ) Yn)*

satisfies the hypergeometric system with (2.2) and (2.3).
Consider the j-th element y;:

(2.5) (t— )y, = ¢y
+(i— Aj) ($hi-1t a.i,j—z( t))y(i—l)
+(t—A) (@), .(D)+ assma()y?
(2= A) (@Dt asun(d)y .

Substituting

¢iy(j)=yj+1_aj+1.j—1(t)y(j—”—. e —asee(B)y

into the right hand side of (2.5), we have

(2.6) (2= A)y) =Yi+1
+[(t_Aj) (¢Ij_1+ajvj—z(t))_aj+1,j—1(t)]yu_”
(= A,) @5i-2(2)+ a,,-3( 1) — @yermal £)]yv-?
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+
J:r[( t—A(@h(2) T as(t) —amu(dly
—as10(B)y

and then put

(2.7) (2= A) (Brm1 T assme() — @serr () = @sspsma,

which determines the constant o;; and the polynomial a;,_,(#) from a;,.,_.(2), i.e.,

aii:[_afﬂyf—l(t)/ﬂéf—l] 1=a; :_aj+1,j—l(/1j)/.’j;it(Aj_Ak)v
aj,j—z(t):_¢Ij—1+(0jj¢j—1(t)+aj+1.j—1(t))/(t_/\j).

Next, substituting

-1 —

i1y Vi~ A Dy — - —as(t)y

into the right hand side of (2.6), we have

(E— A)Ys=Yin tasy;
+[(z— /\f)(a'j,j—z( B+ &j,j—s( ) — Aj+1i-2" ijaj,j—z( t)]y”"’
+

+[( == Aj)(a},l( B+ aj,o( P)— aj+l,1( - ajja—j,l( t)]y'
—[assno(B)+ asa(d)]y

and then put
(2.8) (t_/\j)<a},j~z(t)+aj,j—a(t))"'ain,j—z(t)_ajjaj,j—z(t):aj,j—1¢j—z,

which determines the constant a;,_, and the polynomial a,, 5(#) from a;.., (%),

‘aj,j—z(t) and aj;, i.e.,

j—2
@j-1= —(@s41,5-2(A)) ijaj,f—z(/\j))/gl(/\j_ Ax),
aj,j—s( t)=-— a'j,j—z( i)+ (a’j.j—l Pi-2 T ajjaj,j—z( b+ aj+1,j—z( t))/( I— /\j).

Continuing the above procedure, we have
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k=2
(2.9) (t_/\j)(alj,j—k(t)_{"aj,j—k—l(t)):a.h‘-l,j—k( t)+§aj,j—laj—l.,i—k( t) ‘s ik
for k=2,3, -, j—1, successively, which determines the constant a;, ., and
the polynomial a,; ,_,(#) for k=2,3, - ,J—1, successively, and lastly we put
J=2
(2.10) _[aj+1,0( t)+§aj,j—laj~l,o( B]=an.

In particular, for the n-th element y, we use the hypergeometric equation (2.1)

in the first stage of above calculations:

(t=An) yn=ny™ +(— Aa) ($n1F @nn_o( &) y™ I+ - - -
:[(t_/\n)(qs;x-1+ann—2( t))‘*'Pn—l(t)]ym_”
(2= An)(@nn-2(B) T @nn-s(2) + Paa(2)]y™?
+

F(2 = An)(@n(2) + ano(2))+ Pi(B)]y"
+ Po( t)y.

Hence, we have the required formulas for j=n by replacing the anii. (%) by
—Pni(?) (k=1,2,---,n) in (2.7), (2.9) and (2.10).

We here summarize above results in the following:

[ (), (2= AN @asms(B)F Brm) =asensa (D) F sy
_ (j=2,3,---,n—1),
(i1); (2= AN ansmra(B)talsms(t)
(2.11) SETRVING RS 3 E AP S
k=2, 8, nj—1; §=8,4,+++ ,m—1)
i)y —a10(8) = 5 asmsasal D) =an
(j=1,2,---,n—1),

r

(n (2= An) (@nnea(D)F $51)= = Pacs(D)+ Gnntbns,
(ii)n (2= A (@nn-r(D)+ annx(2))

(2.12) = Po ) F S tnn 18n s Groneren B
h=2,3, - n—1),

| (iiD)n P03 ann-sansol )= am.
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We interpret these formulas as follows: The right hand side of (i), or (ii); in-
cludes a factor (#—2;), and hence the constant @;; OT a;;—x+1 can be determined by
putting =A; in the right hand side. After that, the right hand side divided by
(—A;) gives the polynomial a,, ,(1) or as-n1(1).

Now we shall explain the order of calculation of the constants a;; and the
polynomials a,,(#). First, using (i) and (i), (j=n—1,n—2,---,2), we can deter-

mine
a;; and aj,j—z(t) (J':n, n—1,---,2)

uniquely one after another and then, from (iii)1» we have . Next, using (ii)n

and (i1); (j=n—1,n—2, - -+,3), where we put k=2, we can determine
Qjj-1 and aj'j—S( t) (j:nv n_ly T, 3)
uniquely one after another and then, from (iii)s, we have a,. We continue the
above procedure by putting k=3,4,---,n—1 in (ii)x and (ii);, successively, ob-
taining
@s5-re1 and a5y (2) (j:n, n—1, -+, k+1),
together with ay. And at last, we have o from (iii),. We illustrate the above

order of determination in the figure, where the values are determined according

to the arrow.

(F1)

[ an il i

Q21 Q22 1
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- (F2)

1
azo
N 0
as, as,
N N
Ak+1,0
UN
ajo ajn Aji-k-1 M * 8-z
N
Aj+1-k
N N ™
i ano By treeeeeeeseerrees e B3 B s |
N N N
P, P, Pk Pn, P

The values surrounded by a double rectangular are determined in terms of those
surrouned by a simple rectangular.

Thus we have determined n(n+1)/2 constants of the hypergeometric system un-
iquely from the same number of constants in P,(#)(j=0,1,---,n—1). As a mat-
ter of course, the transformation from (2.1) to (1.3) with(2.2) and (2.3) is com-
posed of polynomials in %, and hence it brings about no change of global behavior
of solutions. In fact, to see this, we have only to verify that the characteristic
exponents at all regular singularities cannot be changed modulo integers.

The hypergeometric equation (2.1) has the characteristic exponents at each

regular singularity $=A;(j=1,2,---,n) given by roots of the equation

[p]nZ[ P";S:l(t)} -y (plns

where [p];=plp—1)- - - (p—j+1), i.e.,

. _ Pas(A)

2'13 5 —170’17.." _2 .=1Y ’.'., .
( ) P=m 0 +n n (j 2 n)

This implies that near =4, there exist (n—1) holomorphic solutions and one non-

holomorphic solution with the characteristic exponent j;.
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Near ¢=o0 there exists n non-holomorphic solutions of the form
y"(t)=t‘;‘ks§ohk(s) Y s Y FELES H R

where the characteristic exponents ji are given by roots of the equation

én -
i.e.,
(2-14') [ ,U]n Pn—l[ ,U]n—l+P‘n—2|: /.l]n— +-- +P00,
where P,(t)=Pt’+--- (7=0,1,---,n—1).

Here we make a remark on the Fuchs relation. From (2.13) we have

> Pry(A)
= nn—1+3 %()

_ _L§£
2
=n(n—1)+ Py

From (2.14) we also have

Hence we obtain
(2.15) i[’j‘*‘i,&k:n(n—z—ll,

which is just the Fuchs relation.

On the other hand, as for the hypergeometric system, it is well-known that
near each singularity t=A; (j=1,2,---,n) there exist (n—1) holomorphic solu-
tions and one non-holomorphic solution whose characteristic exponent is equal to
the corresponding diagonal element of A, i.e., a;;, and near =0 there exist n
non-holomorphic solutions with the characteristic exponents wu (Ek=1,2,---, n),

which are eigenvalues of A, i.e., roots of

(2.16) det | A+pI| =0.
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The a;; have been determined by (i),, (i), (j=n—1,n—2, ---, 2) and (iii),.
Now, multiplying (i), by kﬁ (t—Ax), we have
=

1

[ _’éz(t—/\k)az,o(t):auﬁz(t_lk),
_)ﬁ.(t_Ak)aj,j—Z(t)+_‘f’_[.(t_l\k)¢fj_1 = ﬁ (t_/\k)ajn,j—l(t)"f'ajjkﬁ (2= Ax) dios
=J *= k=J+1 =Jj+1

(]:27 37 te ,n—l)a
L Pn—1(t)‘*’(t—/\n)ﬁﬂn—l_'—(t_/\n)an.n—z(t):annsﬁn—l-

Summing them up, we have

Pn—l(t)+(t_/\n)¢,n—l+ R _’_}]:ij(t_/\k)d;—]—f' . +’];l=[2(t—/bc)(]y1
Z@mfpat -t ajjkﬁ (T=Aw)t--- +ﬂu)]§2(t_/\k),

=J+1

whence it immediately follows that

(2.17) 0= P;é;(}(f)') tn—j=p—(i—1) (j=1,2, -, n).

In order to calculate explicit values of eigenvalues of (2.16), we pick up the
coefficients of the highest degree from the identities (i),, (ii), and (iii); (j=1,
2,---,n): We have

P%_1+(n—1)+a%n_z=a,m,
k-2
Phxt(n—k agz.,n—k_{— agl,n—k—l: ;“, ann—lagl—kn—k+ann—k—l
(=2, 3y~~~ 5 i— L)

n—2
0 0
Py= gann—zan—go'*_ Qn1,y

and for j=n—1,n—2,---,2,

aj-2t (j—D)=a% -1 tas,
k-2
a%i-rert (J —kaj;—x=ak Li—k T ;‘5 @sim185- -k Qs he
(k:27 37 ce 7j_1),

j=2
A0 — 0 —
aj+1,0 IZ‘; Qjj-185-10 — Qj1,

together with
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where a,,(t)=aj,
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e Wl e
82,0 — Q11,5

iti‘f‘"'-

From above relations one can see that there holds

Q11 +IL¢ 1 O 1 O
az aztpu 1l ag,o 1
;1 a; vt oaptu 1' ag‘,a ag,l"'ag‘,j—z 1
1

am Qpg  crrrreeeeeereeees ann+u J agl,o a%‘ """""""" a%n_z ' 1 J

M 1 O
pas,  aset(l1+p) 1
/lag',o ag‘,o‘"(l +/l)a2,1 "‘ag‘,j—z+(j_ 1 +/l) 1

) 1

St uane  Pitanet(l+gan, «oweeeeee Poatanat(n—1+u) |
1 1 [ u 1

: 0 0
azo 1 0 wutl1 1
ag‘,o 33.1-"'33,1:2 1 O prj=1 1,

. . . 1
ane  am ampn- 1 P, P} . Poytutn—1
which implies that
roo1
put1l 1 O
det | A+ul| =det O
1
P P Py tutn—1
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=(=D"—wa=Po[—tdni—- - - —PR=0,
1.5

(218) k™ [k (k:l’ P/ Tl)

For the hypergeometric system the Fuchs relation is just the trace relation,

which can be verified from (2.15) as follows:
i ia”:iA__n(n—l)z_iA
\ = i j=1)01 2 k:lﬂk
| :"Zﬂx-

el
Il

1
Consequently, we see from (2.17) and (2.18) that solutions of the reduced

hypergeometric system behave exactly like those of the hypergeometric equation.

3. General case

Now we shall consider a general case in which, as seen in the example of

the Fuchsian equation (1.1), P,(%) has multiple roots. Suppose that
(3.1) Po(B)=(t— )" (=)™ - - (2—A)™,
where it may be assumed without loss of generality that

mtn.t- - +tn=n (1=q¢=n),

1§nq3nq_1§' t §n1§n.

In this case, in order that t=}, (1=y=gq) is a regular singular point of (1.2),

the functions
(2= Aw) ' Par(8)/Pu(t) (i=1,2,---,n)

must be holomorphic at t=4,, that is, the P, ,(#) must include the factor
(t—=A,)™ " for 1=<j=<p,. From this fact, we have

Pod)=[IL (=21 Pad®) (0<;Sny),
(3.2) Pn-i(t):[lﬁ:(t_l\u)nu—i]ﬁn—i(t) (mx< ignk—l;k:q; g—1,---; 2),
an—i(t)zpn—i(t) (n1<z§n),
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where for m<i=ns, (k=1,2, -, g+ 1;n0=n, ne.:1=0) the P,_(1) are polynomials

of degree at most
(n—i)—(n1+nz+- T +nk~1—i(k—l))=n—Nk_1+i(k—2).
In the above and hereafter use is made of the notation

Ni=m+n,+- - +ne (k=1,2,---,¢),
N=0, N,=n.

Now we shall show that by means of the transformation (2.4) the hypergeo-
metric equation (1.2) with (3.1) and (3.2) can be reduced to the hypergeometric
system (1.3) with

(5 T2 Tq
. H——
(3.3) B=diagld, <=, Aty Xas =5 Atz * " " 5 Ags * * * 5 Aa)
and
]
A |, 0
A,

(3.4) A= = ,

Qij
where each A; (k=1,2,---,¢q) is nx by nx matrix and is so-called companion

matrix of the form

0 1 O

0 | nk—é 1

/9):1 ,8):2 ......... /gknk+ fnk_]_ ]
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The hypergeometric equation includes

g+1 Mg—1

2 2 in—Neiti(k—2)+1}

k=1 i=mg+1

:Zi:{(n—i—l ~Nee1) (o= 1) Hk—2) (g1 +nst 1) (ng—1—nx/2}

=n(n+2)/2—(3n)/2

constants, which determines uniquely the same number of constants of A.

To see this, we here introduce the following notation:

AT
fikzﬂ+1¢k’ where ¢k= ]’il(t—/\y),

(3.6) { o = L
(f&)'=fi'gr, where gk=VZ=!§nu—z)£1(t—Ay),

(k=1,2,--+,q).

Then (3.2) can be written in the form

{Pn—i(t):f;:c—lpn—i(t) (ne<i=nx-1; k:Q+1, g, ", 2),
(3.7)

Pn—-i(t):pn—i(t) (77.1< zén),

and in (2.4) the ¢, can be written as follows:

{ ¢j:_ﬁ:( i— /\k)j_Nk :f}c(/l):( t— /\)c)j_Nk :f}c¢k—1(t—/1k)j+l_lvk,
(3.8)

B =St — )V t_l\k)ggc—l_{—(j_Nk—l)(pk—l}
(Nh—l<j§Nk; k:]-y 21 T, Q)-
Using the above notation, we first calculate a,; and aj;—.(#) from (i)‘,» (j=n,n—1,
-,2). From (i), we have
an,n—z(t) :(t_/\q)_l{amﬂﬁn—l_Pn—l(t)}_ qS'n—l
:(t—/\q)—l{annfoq(t—/\q)_l—féf)n—l(t)}
—fclz(t_/\q)_l{(t_/\q)gg—l—’—(nq_1)¢q—1}

:ftz( t—Aq)_l{(ann_ nq+ 1)¢q—1_ 1571—1( t)_—( t—Aq)gg—J
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whence we here put $=A, in the brackets of the right hand side, obtaining

ann:né—1+Pn—1(/\q)/¢q—1(/\q>,

(3.9)
ann-ao(2) Zf:zén,n—z( i,

where 4,, (%) is a polynomial of the form

(3.10) 8nn-o(8) =2 Aa) "M@m= g+ 1) g1 = Paca(8) = (8= A)go-1}-
Next, let Noo1<j=N,—1. In (i), of (2.7) we put

(3.14) s-2(B) = falE = Aq)"4,,-4(1)

and then, using (3.8), obtain

f}z( i— /lq)j- Nqéj,j-l( t)
:falz( i— /\q)j_ Nq{éjﬂ,j—l( t) _8?1—1 }

+f:z( t_/\q)jwl_Nq ¢Q—l{ajj_(j_Nq~1_ 1)}

whence it follows that

;=] " Ng1—1,
(3.12)

8552 (D)= By015m1(8) — 85 1= Bnma( D) —(n—j) g2s

(Nq—1<j§Nq_1)~
For j=N,_1, since a,i1,;-1(2) = fa-18541,5-:(2) from (3.11) and

{ Bio1=fo1(E = Agm1) ' = famide 1 (= Reor) T = fao 1 dams,s

¢Ij—1:f};(—l(t_/\q—x)_lf(t_/\q—x)g?z—z+(nq—1_1)¢q—2}
from (3.8), we have from (i),

aj.j—z( t) :le—l( t_/\q—l)_l{éjﬂ,j—l( t)+(ajj_(nq-l— 1))¢q—2f —fz_lgg_z s

Y
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which implies that

(3. 13) Qj;=—MNg-1— 1 _éjﬂ,j—l(/lq—l)/(//q-z(/\q—l),
aj,j—z( 3 Zfé—léj,j—z( 3) (ijq—l)y

where

(3-14'> éj,j—z( t):( t_/\q—l)_lgé.Hl.j—l( t)+(ajj—(nq—l_ 1))¢q—z}_8’g—z
(j:Nq—l)-

From the above one can, guess that for N, ,<j=N, (k=¢—1, g—2,- -

(3.15) a5 2(B)=fa(t— Ae) ™ "%8,,-0(2).
This is indeed the case. In fact, for Np 1 <j=N;, (i);, i.e.,
aj,j_z(t)z(t—,{k)_lfa”l,,-_l(t)-l"a,-jgb,-_l}—qﬁ}_l

can be reduced to

éj,j—z( t)zéj+l,j—l( t)“gﬁ_ﬁ'( t—/\k)_l</lk—1(ajj—(j_Nk—1_ 1))

Hence, by putting
(316) ajjzj—N)c—l_li
we can determine the polynomial

(3-17) 3j,j—z(t)zéj+1,j~1(t)“g2_1

ZéNkak—Z(t)_(Nk_j)g:—1 (Neor <J=Ny).
Moreover, for j=Nj_, since ai1,;-1(2)=fr_18,11,5-1, and

@i-1 :f}c—x(ﬁk—z,

¢’j—1=fllc—1( t—/\k_l)_lf(f—/\k)gg_z+(nk— 1)‘/17:—2} s

we have from (1);

41
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aj,f—z(t) :f}c—l( f_/\k—1)-l*éj+1,j—1(t)+(ajj_nk—1+ 1)¢k—2}—f}c—1g2—2y

whence we can determine

(3.18) @5 =Mro1— 1= 8511 (A1) 2 (Ann),
obtaining

(3.19) 85.5-2(8)=frr8s5-2(8) (J=Ng-1),

where

(3.20) B2 B) =(2— A1) Hsr1,0-1(8) ey — e+ Vs i — g0

We have thus determined the polynomials a;,_,(%) (j=n,n—1,---,2), which are
of the form (3.15), and also the constants o,; (j=n,n —1,--,2), together with
an=—as(t)=0, uniquely from P, ;(#). That is, in the figures (F}) (F:) in §2 we
have determined the principal diagonal parts.

Now we proceed to the determination of the first subdiagonal parts, the sec-
ond subdiagonal parts and so on in (F,) (F:). And then we can see that the poly-

nomials a,; (%) are expressed as
(3.21) a-dt)= )itl(t_/\k)j_lvkéj,j—i(t)
(Nk—l<j§Nk; k:l’ 2, Y Q)y

where we understand that the factor (—A,) to the power non-positive integers is

equal to 1, i.e.,

(2—Ap) - Metitizi=1 (TLk_Nk+j+1§i)y

(t—a)»"'=1 (n,+1=i).

For {=2, (3.12) are just the formulas (3.15), and moreover for j=n+1, (3.7)
correspond to (3.12), i.e.,

an+1,n+1—i( B)=Pnii(t)= é-lpn—in( 7).

So, to see (3.21), we have only to carry out the proof by mathematical induction

according to the subdiagonal order ;. We here consider the rows a;,_ (%) for

e A B A B i S e U e At A e e R

kbdishiiiaons

0 e S T e b,

A AT R

O R Sl AN i

R NI T AN RS

SPE gt L o

N AT

St

T Ty Ly R e
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Nx-1<j=Ni. In this case (ii); can be written as

(3.22) (2= Ax)(@ssmsm1(B) T als 1)
-2
=aj+1,j—i( Bt 1;1:, @j,-1a - l.f—i( B+ @i i1 P
(Np1<j=Ny).

Assuming that (3.21) are valid for j=N,+1, we can verify by induction in 7 (i

=2,3,--) that the nx by n matrix {a,;,-; i=0,1, -+, n—1lis a companion mat-

rix. In fact, for ;=2 we have

(3.23) (t—Ax)as—alt) —aser_2(t)
= flzc( t—/\k)j_Nk“U(ajj_]' +N)c)¢k—1+gllc}éj,j—z( t) _Qllké’j,j—z( t)]

a1 R T = A) T s
Since from the assumption aj1,-2(2)=f%8,41-2(2) for j=Ni, we have to put
(3.24) @55-17 ~ &srri-2( An)/ Ph-1(An) (j=Nx)
and then we see that a,, s() can be determined in the form
[8.25) a5-3(8) = frls-a(1) (j=Nx).

Substituting this into (3.23) for j=N;—1, we obtain a,;.1=0 and (3.21) for j=
Nx—1. In fact, for Ny—1=2j=N, ,+2 (3.23) can be reduced to

(t_/\k){éj,j—s( t)_éj+l,j—2( t)}
+( t_/\k)[{(ajj—j +Nk)<//)c—1 +g}c}éj,j—z( t) _¢ké'j,j—2( t)] +a,~,j—1¢;_1
(j:Nk_lyNk_21-."N’C—1+2)7

whence we consequently obtain
(3.26) a;-1=0 (jJ=Ne—1,Nx—2,---,Nx11+2).
For j=Ni1+1, aj-o(t)=fr18,,-2(2) and ¢;2=fr_1¢s—>, which do not include the

factor (—Ax). So in this case @;,_; can be determined by putting $=A; in (3.
22). And we also see that a,, ;(#) includes the factor fi_,.

rpn
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The above calculation will be carried out for all blocks (Nx1<j=Ny; k=gq,
g—1,---,1), and hence the first subdiagonal in (F,) (F:) are determined by P,_,

(t).

Now assume that (3.21) are valid up to ({—2)-th subdiagonal parts in (F}).
We then prove that (3.21) holds for (;—1)-th subdiagonal part in (F,), together
with the determination of the constants a;;_ 1.

From the assumption we have for Ny, <j=<N,

@lm1(B)=froa(B— Ap) = e
(3.27) g (2= Aw) (= i+ 1= N st g (E— A &5s-i] s
@i d D= F (=), (1)
= fhagka(E— A 511y, (1),

and
(3.28) Gimi=fr1(F— A5 Me1= L gk (B Ag) T VELL

Let 2=7=n,. Then, for given aj+1,j—t(t):f)ic-1(t_/\k)nk_iéjﬂ.j—i(t) (ijk), we
can easily see from (3.22) and (3.27—8) that

Wjsmie1™ — &y l,j—i(Ak)/ ¢I€—1(Ak) ,

(3.29) :
aj,j—i—l( 2) = fxlj - (1) (j:N)c) .

Then, substituting (3.29) into (3.22) and continuing this procedure, we can deter-
mine a;;-;,-:(%) as the form (3.21). In fact, for Ny\— 1=j=N,;_,+i, we have

(2= A8 it (D) (@ (2= An) T s (f— i+ 1= No1)@ss-d ) T raa(E— An) @55 (DN

=( i— Ak) {éj+1,j—i( t) + ; Qj,j—- l¢llctlléj— l,j—i( t)} =+ Qj - i+1¢7€«1 )

whence it immediatly follows that
(3.30) @j-1+1=0 (J=Ni—1,Nx—2, - ,Np_1t1)

and aj,_;-:1(%#) can be determined uniquely.
We have therefore verified that
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Ar=la; 0, J=Ngoit1,Nei+2, - -, Nyt

ANp— 1 +1,Ng—1 +1 1

0

0 S

ANy, N1 +1 ONp, N +2 CI Qg Ny

is just a companion matrix

As will be easily seen from (3.27) and (3.28), if Nx\.;<j=Nx,ti—1 or if
I >nk, then the right member of (3.22) no longer includes the factor (¢—Ax). In
these cases we can determine the constants aj,_;,, by putting #=A, in (3.22),
and then obtain a;, ,,(#) in terms of dividing the right hand side of (3.22) by (2
—Ax). Here it is remarked that as long as {<n,, the factor fi_, (naturally fi,
=fi if {<n,) is handed over in the next block.

As a matter of course, the above calculation can be carried out for all blocks
(Nx-1<j=Ny; k=q,q—1,---,1). Therefore the ({—1)-th subdiagonal parts in (F})
(F;) are determined by P, ;(#). We have thus completed the proof of mathemat-
ical induction.

Lastly we shall make a short remark on the characteristic exponents. The
hypergeometric equation with (3.1) and (3.2) has a fundamental set of solutions
near each regular singular point =41, (v=1,2,::-,q), which consists of (n—n,)
holomorphic solutions and 7n, non-holomorphic solutions. The characteristic

exponents are given by roots of the equation

[,O]n—n,,-:o, i.e., p=0,1, -, n—n,—1,

(3.31) wip
(lo=ntndn=2| T2 | -t

whose roots are denoted by

"";ﬁ:y (U=1727"'yq)-

The coefficients in (3.31) are written as follows:

(3.32) {%(t*/\y)iﬁn—z(t)}

t=Aiv

R

S——

TP

\iduiats
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_JHA) Pai(y)
Fa) (glA))

= Pn—;(Aulz : (nk_1<i§nk§nu)-
I (=A™ I (A=A’
pos “

From (3.31) we easily obtain

2 o nin=1) _ (n—n—1)n—n) . PriA)
BA= 2 T

whence

3 nyAl_/___Tl(le_l)__l L d Pn—l(/\u)

v=1j=1 2 v=1 v=1 QMI(/\V)
_n2n—1)_1& , 0
= 2 21’Z='.lnu <+ n—1

Combining this with the sum of the characteristic exponents f at infinity, we

obtain the Fuchs relation

(3.33) i

On the other hand, the hypergeometric system, in which B is of the from (3.
3), has (n—n,) holomorphic solutions with the characterstic exponent 0 and n,
non-holomorphic solutions, whose characteristic exponents are given by eigen -
values of the matrix A,, near each =}, (v=1,2, -+, ¢q).

For example, Aqis a companion matrix of the form (3.5), whose diagonal el-
ements are given by (3.9) and (3.12), and elements of the last row are given by

(3.29) for j=mn:

P Pn—i(/\q} _ j)n.,;(/\q‘
nn—i+1 ¢é—1(/\q) (¢:1 /\q))

Hence the eigenvalues of A, are roots pf (j=1,2, -, ne of the equation

ng
[,0 ] ng— ;gx n,n—i+1 [,0] ng—i

— & pn—i(l\q)
= & alag))* Lol

Comparing this with (3.31), we have

p}?:ﬁ?_n‘{‘nq (]:1, 2y ey nq)~
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Like this, we can also calculate the eigenvalues of A, and see that by the trans-
formation (2.4) the characteristic exponents at all regular singularities are not
changed modulo integers.

In order to verify the Fuchs relation (trace relation), we have only to calcu-
late the exact values of aj; for j=N, (k=1,2, -, q¢) which are only defined by
(3.18). From (3.17) we have )

3Nk+1,1vk—1(t):anh+,,nk+1—z(t>_<71k+1—1)g£ .
Substituting this into

(t_ /\k)?‘i,-,j_z( t): 3,-+1,J-_1( tH’(ﬂ’jj— nk+ 1)(//1:—1_( = /\k)gg—l (]: N}c),

we have the following relations

(3.34) (t_/\k)ﬁk:ﬂkﬂ_}'(&x_nk"’_1)¢k—1_(n)c+1_1)8'12-“_/\k)gg—l
(=1 R, - - <uig—13

(3.35) (2= Aa)Ba=— Pros(B)+(&a— nat 1) ger— (2= Ad)g -1
where we have used the simple notation
éNk,.Nk—z(t):ﬂk, aNka: &)c-

Multiplying (3.34) by _]i (t—A,) and summing them over %k, we obtain

(3.36) Ges == Pos(DF Blew—mat1) T (1 0) gy
~Snen—1) I (1= a)gb= 3 (- Adgts .

Putting #=A, in (3.36), we then have

=]

P (M) =@ mt 1)gi(A) = 5 (aer= Dt W)= Smaghl(A)
= (&u_ nu+ 1— nulenk+1)(//:z( /\u) s

from which it follows that
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Py a3,

S 3 ) (=1,2, -, g

au

Let o/ (j=1,2, -, n,) be eigenvalues of A,. Then we have

:Pn—l(/\u) nu(ny 1) <
Gain) o Tl 2
and hence
R LIRS W TR

_pi o Ma—1)

Pn_1+ 2
:_i/l)c-

k=1

Thus we have proved the trace relation for the hypergeometric system.

EXAMPLE 1. A typical equation of the distinct case is the Jordan-Pochhammer

equation

¢ny(m = é (_ 1)1—1{(0+ ll—1)¢;Ll)( t)+ (pltll—l) ;ll_-ll)( Z)}y(n— l)’

where
t(D=I(1=2) (A=As %),

s/ ol 1)= 2/ (1 1),

which has the Riemann scheme

A C i 3 4 An oo
P
n—2 n— 2 .. n—2 —(p+n—1)
pta—1+as - ~ = pra—1+g; ~ - ~pr—1+8, —(otat- - +an)

Sk
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When n=2, this is just Gaup equation (A,=0, A=1,p=—(a+1), as=a+1—7,
a=7y—p).

EXAMPLE 2. A typical equation of the multiple case is the generalized hyper-

geometric equation of the Fuchsian type

-1

tn_l(t—l)y(m:nZ(Cz_’_ blt)tl—lytl) (Cozo),

=0

whose Riemann scheme becomes

0 1 co 1
0 0 4
1 1 M2 '
Py p: 2 ps ot
' i
Pn-2 n—2 Mn—1 i
| Pn-1 Pn HMn J )
where 0y, 02, * * *, pn1 are roots of the equation

n—1
[P—ljn—x"f'gcz[ﬂ_l]z—lzoa
pn=Cno1+ b tn—1,
and 4, t4, * * *, un are roots of the equation
n—1
[_ﬂ]nz 1;‘5 bz[_#]z .
Obviously, for n=2, the above is Gaup equation.
In this case, we put ¢,(3)=1t’ (j=1,2, --,n—1) and then we immediately see
that a,x(#)=4&,:t* From our method of reduction, we can determine the last row
(@m, an2, = * > ann) as follows:

Ann= bn— 1+ Cn—1,

k=2
Ann-ke1T Z_Z‘)ann—lén—z.n—k: bnxT Cn-x (k:27 presn—1; n),

together with (
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ann-2=Cn1—(n—1),
&nn-k-1=Cn-x—(N—K)ann-r (k=2,8,---,n—1).
In consequence, we obtain B=diag (0, ---,0,1) and
o ! W

A= 1 ,
n—3 1
B B ce Prr Bar 1
an,1 Qn,2 . & * Ann—1 anj

where Br=—&nk (k:l, s iy 77«"2) and Bn-1=—8&nntn—2.

REMARK. Let B be of a general form (3.3). Then it is easy to see that Bis

invariant under the transformation T 'BT, where

(i) T is a non-singular diagonal matrix,

and
(iz) T is a block-diagonal matrix of the form

T, 0

T.
T= . ,  TxE€GL(n4C).

From this fact, applying the transformation X=TY, we can always assign any val-

ues to (n—1) non-zero elements of A and moreover we have

J1 Alz ot Alq
ﬂ_ An J: o Azq
dt : o : Y,

Aql qu .. .‘ Jq
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where the diagonal blocks J, are Jordan canonical matrices. So, if necessary,

we can rewrite the hypergeometric system derived so far in the above form.
4. Appell’s system of hypergeometric equations

In case of several complex variables, there are some expressions of partial
(total) differential equations, which is certainly Fuchsian, however, to oue know-
ledge, we can not yet find a general and explicit expression of Fuchiaan differ-
ential equations of several complex variables like that in case of one complex va-
riable.  As special functions of several complex variables, we only know Appell
and Horn’s hypergeometric functions of two complex variables F, G, H, etc., and
their extended functions defined by Lauricella, etc. In [3], the authors give 34
partial differential equations of two complex variables x and y, all of which are

of the form:

¢r+ét+As+Bip+Cig+Diz=0,

¢t+$T+AzS+sz+ Czq+DzZ=0,

where 28 Ba 7‘2822 S= o'z tzazz
P=% ¢ 3y’ ox*’ oxay’ ay*’

?, ¢?, &, ¢?, A, A, are polynomials of degree at most 2 in x,, B., B;, Ci, C,
are polynomials of degree at most 1 in x,y and D,, D, are constants.

It is plausible that under the completely integrable condition, the above par-
tial differential equation reduces to the hypergeometric equation (1.2) on the sec-
tion y=const. or x=const.  To see this, one needs a very heavy computation.
So we here take up some examples.

By solving the above equation with respect to r and #, we can rewrite it in

the form

¢r=A8s+Bip+Ciq+D:z,
(4.1)
¢t:A28+sz+Czq +D.z.

First we consider the reduction of (4.1) into a system of total differential

equations.  There occur two cases,
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In case (i), under the completely integrable condition, the solution space becomes
a three dimensional vector space. A typical equation is Appell’s F,, which is

reduced to the system of total differential equations

dly—1)
y—1 x—y

dx +de

dz=(A% ——+c%ﬂ+p
X y X

where A, B, C, D and E are 3 by 3 constant matrices. (See [5].) From this we

can easily obtain the hypergeometric equation on the y-section

(4.2) 2x—1)(x—y)2"
+Hy—B+1(x—1)(x—2y) +(e+p—y+2)x(x—y)+(B+A +1)x(x—1)}2"

+(B+1)IR2a+2+L)x—(a—F +1)y—7iZ +aB(B+1)2=0,

which has the following Riemann scheme:

0 1 y co
0 0 0

(4.3) P ¢ x
1 1 1 B

g—r+1 y—a—B 1—p—F p+1

Hence, (4.2) is just the Jordan-Pochhammer equation.
In this section, we shall treat of the case (ii). We moreover have to divi-

de (ii) into four cases:

(ii); A:>0, A,=0, (ii), A,=0, A,=0,

(ii)s A=0, A,=0, (ii)4 Ai=A;=0,

where both ¢ and ¢ are assumed not to be zero.

We explain one method of reduction only in case (ii); and apply it to F:, Fj,
H, and F..

Differentiating the first equation of (4.1) with respect to y and the second one

with respect to x, respectively, we have
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J%—Alg—j (9‘4‘+Bl)3+c1 -2 +%B‘p (aC‘+D) (%J;’)z,
| 4884, 55 =2+ Cs+ Br— g2+ (et D+ (Gg+ (B2
Then we solve the above equations by gi and g—i, and express them in terms of
S, », q and z. In fact, putting
(4.4) A= gg—AAs,
we have
(4.5) AZ=(EG Bt COAHC A gD At (Pt s 2 (L a1
IS+ G+ DA HCot Ao (B A 4 g D (DBl
+{(aa§2 + D)9+ 4,+(Ci+ 4, o C +(Af2 +¢¢%<%))cllq
{aDI aD,

2,1 A.B, 1
¢+ xA1+(C1+Al¢§(—gZ))D2 ( ¢ +¢¢ (?))Dl}z

=a,;s+ bip+Ci¢+d:z,

(4.6) 23 =1L+ BIA+ gt + Ct (A2 4 402l At (Bt Ass () Al
1524 (G2 + D)+ (A2 + 90 2 (L) B+ (Bot Auti (5)Bilp
G2+ DA TR+ A+ 402 ()CH (Bit At (5))Cilg
oD, oD, A.Cy 1

1 At B g+ (A 4 g () Dit (Bt As () Dil2

Ivp
¢

=a,s+ b,p+ c.qgt+d.z.

Now, in order to obtain a system of total differential equations, we put
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Zi= 2,
Z:= ¢p+ $z2,
Zi=¢q+ hz,
Zi=Astéptigtnz.

The functions ¢, ¢, & ¢ and 7 are determined as follows:

dz:=¢dp+pdo+ ¢:dz+ zdp,

=(gr+¢p)dx+(ps+ ¢q)dy+pdg+ zde:

=L (Adx+ pdy)z

B+ p—ROZ +D— A~ (B+ 6 - R 8Dz +(C— D) glda
+{—%zﬁ(qﬁ—%)q+(§z¢1—-§-v)zlldy+pd¢+zd¢1-
dZa=—i—(</ldx+Azdy)Z4
=Szt n—Lop+ (- Ln)zld
H(Crt p— R0 (D= B B Cot 4~ B20) 21+ (B~ Rl
+qd¢+ zdgh.
In the above, we put
( Cl_ilé‘:(), i.e., g‘z%A,

and moreover,




Then, putting

(4.10)

we first obtain

(4.11)

And, since

we obtain

(4.12)

Similarly, we obtain

(4.13)

Reduction to Hypergeometric systems

dzi=pdx+ gdy=(Z— vt Ydx+ (= ¢r21) dy

] ¢

=(—Xdz— Ydy)z+ (de)zfr (@

Bit p—Ale=Bi+ Xp— AV,

D= BBt 621 6) =D~ BX-4x",

—%‘d¢+ d$i=— Xdp+ d(Xp)= $dX,

dz:={(D1— B:.X— ¢X2)dx+ ¢dX}ZI

+{(B1+X¢—A1Y)d7f— Ydy+i¢é}zz

+—i'(A1dx+ ¢dy)24.

dz:;=1{(D;— C,Y— ¢Y2)dy+ (ﬁdY}Zl

FiC+ Y¢—AZX)%X—Xdyﬁ—%Sé 28

+%(¢dx+Azdy)z4.

55
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Now, substituting (4.1), (4.5) and (4.6) into

(4.14) dzi=Ads+dAs+Edp+pdé+tdg+qdi+ndz+zdy

T T

( dx+ dy)+{-‘rdx+ ctdy

+(dA+edy+Edu)s+(dé +ndulp+(de+ndy)g+dnz

=estepteqtez 4

=Rzt Gle—tRnttla— i)z :
+{€4—%7_%(ez‘§%)—%( :A)}zh

we have to calculate the coefficients of the above last formula. Taking account ‘;

of the fact that £

£y (G AB |

a1+§+ ¢A1_al+(A1+ ¢(A2))A i

:(%‘;1 +Bg+ (224 c)at A4, V) As ¢¢—<%) g

taaC+ A+ G By 4y g4, |

é A ¢°A %

_ 94 2,1, . 24 2.1, Ay

( a,y +B1+Al¢@( ¢ ))¢+( +C2+Az¢_( (/, )A1+¢¢'(X+ ¢ Y), ?E

&, _ 04 8.4 o4, a,1 A, g

a,t &+ ¢Az—‘( +BI+A1¢@(¢))A (G T Cot A 7 ) ¢+ dp( Y+ JX), 4

we obtain ?4

(4.15) elsz+(a1+§+§A1)dx+(az+E-l—%Az)dy L

1

BA: 2,1 24, 8,1

=dA+( o T A ¢)+Cz+ Yo)A+( En +A1¢@(¢)+Bl+x¢)#, 3,‘.

where we have put E

(4.16) A=Adx+¢dy, p=gdx+ Ady. ¢

Similarly, we can obtain
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%Bl—i— i (Bt %Bz)dy

9B, +Bz¢a—i(i)+pzn+(aaBl+BIY+BI¢a ( ¢)+XY¢)/J,+ dYA),

(4.17)  e;=dé+(bi+

=3

%cl)dﬁ (¢, +—§;cz+ i
X+ cz¢—(i¢>+XY¢)A+(

(4.18)  g;=de+(ci+

oC,
oy

(8Cz
ox

+ 2L+ Dt dixa),

(4.19) e4:d7;+(dl+%D1)dx+ (drk—(iDz)dy

aD; 2 (1, (aDI

(a -I—DzX-i-ngb— 7 +D1Y+D¢a( )),Lz-%-d(XYA).

¢

From these, the coefficients of (4.14) can be calculated as follows:

e_dA | 94 o1 A (A 1 i
A~ TGy TAdg ()T Gt Yo +(5 0+ A ¢a ()t Bt Xehx
1 1,0C; ,9A. 2,1
E(es—X&)—‘Zf —X—a-;‘f'(c )%(E)}
1 e AN
E(Ala +D1 BxX X¢),u+¢dX,
Liei—Ye)=1(4.2Y 4D, C, Y- VoA
¢ 1 ¢ Za 2 2
iaBl B4 _ @i A
es—XYei— X(e;—Ye,)— Y(es—Xe)
_9D; 8B, _3C, A B 2,1
oD, 0B _ 3G OA: _ o1
+1i = Xa Yay +XYay +(D, BIX)¢ay( ¢)%u
+dXYA)— Xd(YA)— YdXA)+XYdA
=12y 2Y Y%+(D2—C2Y)¢%(‘%b‘)}/\
aDl oX aB1 _ 2,1
T3y YAlay —X EN +(Dy BlX)%( ¢)}u-




58 Mitsuhiko KOHNO and Tetsuya SUZUKI

We summarize the above results in the following: Let us put

_G _B:
=4, Y=y,

A=Adx+ ¢dy, wp=¢dx+A.dy.

When we write the reduced system of total differential equations in the form

(420) de: wnz1T w2t w2t wius (]:17 2, 37 4‘),
we have
[
(JJIIZ_de_ Ydy,
P .
12 ¢
(4.21)
CUIS_%Xy
(U14_O
wzlz(Dl-BlX—¢x)dx+¢dX,
wn= (D4 X)dz—-S1+82
(4.22)
w23 07
w =4
TN
wn=(D,— C,Y—¢Y*)dy+ ¢dY
W32 O’
(4.23)
C, X | d¢
wW33= (¢+Y)d ¢:U+ ¢
—y
W3s— N’
18Dy 1,8 o, BT 5 By ., 8K
' _1,,9Y g 2By y2 Ay, A
wa="plArg —C.Y— <//Y}/H-{ay(¢) Yay(¢)¥/1+¢dY,
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On_z 0 plag, 14,00

o A
ax (/} ¢ ay DI_BIX_'¢X2}ﬂ+_dX7

¢

_dA 1,3 A
wu=TE 4 2D+ et YAt 182 (B + Bt o

If we denote the matrix of differential 1-form (w;; i,7=1,2,3,4) by Q

then the completely integrable condition becomes
(4.25) d=2 N\ Q,

where /\ denotes an exterior product. Under this condition, the system of total

differential equations (4.20) forms a 4-dimensional solution space.

Now, from (4.20-4) we can immediately obtain a differential equation on the

y-section, which is given by the following:

(4.26) g—?zc’;ﬂzl_’—C};j222+(;\)j323+£)jlz4 (jzl, 2,3,4),
where
[ (:)u=-—X,
(4.27) | on=-y.
L &)1322014207
( ou=(Di—B.X— X))+ ¢
o=t x-La)+1 22
(4.28) ¢ ¢ @ o
0323=0,
A §
w24_A7
C:).’il:%y
ws2=0
4.29
( ) ws=—XT 1 80
33 ¢ ax1
¢
(.4)34 A,’
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e e N iR g A A B

e w1y @Ds 3 Co ,8Y 9 Dy 9 By . 9K
- Ay, Y .8 By .8 Ay ABY
(4.30) ¢ & i X |
~ a1 9Ly 0 A: X o _pyx_gxurloX 3
| bum i L+ R 2+ O T+ RIS () T Bt ).
Now, applying the above result to some Appell and Horn’s hypergeometric eq- ?
uations, we shall seek their reduced system of total differential equation. SI
(1) Fz(aaﬂ’ﬂ’a 77 7’7 x,y). ;‘
x(1—x)r=xys+{la+p+1)x—ylp+Byq+epz, i
y(l—y)t=xys+Bapt+ilatf +1)y—7tgtel'z i
We have
¢p=x(1—x), ¢=y(1—-y), A=xy(l—z—y), 5
B
: #
x=£, y=£ 2
y %
Substituting these into (4.21-4), we immediately obtain ;1
B
. #
&
w11 _ﬂd_;_ﬂ’%’ g
_dx dl-—x) §'
W= T T A
_dy_di—)
L w13 y 1_y ) 9
( dx
a)ﬂ:/?(7—/9—1)7,
: d , dl—x ek
| an=g=r+ 1) e+ g-p-nEED oL,

dl—x—ﬁ+®r
1—x=1y y

W2 = )
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=R (v— R — .@—’X
glr-g-1L,
d dl—y) _dx
=@ =7+ 1) et B =YV~
o =% _dl—x—y)
34 x 1 —x— y ’
[ wu:O,
=se—r+ 042+ pr-p-1Z,
w43=/5’(/9—7+1)d(11_—yy) +8r-8-1%,
~(g-y+1) L+ (g 7+1>dy (atp+8 —y—y+1) S22

1 y—
Hence, according to our reduction, F, is a typical equation like F., which has a

simple reduced form:

dx , »dy ( —1) dly—1) dxt+y—1)

dz=(A%* B CT It D tE oy )Z,
where
[ -8 1 0
a=| Fr=A=1) A=yl 0 0 ;
0 0 —p 1
| 0 0 Bly—=p—1) p—y+1
—-g 0 1 0
0 -8 1
B= a o ,
g y-g-1) 0 B —r+1 0
k 0 Bly—8-1) 0 B—7+1
0 -1 0 0
oo 0 y+B —a—pF O 0
1o 0 0 o’
0 BB =3'+1) 0 0
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0 0 -1 0
0 0 0 0

D= , ;
0 0 7+B8—a—f 0
0 0 BB—7+1) 0
0 0 0 0

| o 0 0 -1

i I 0 0 -1

0 0 0 y+7 —a—p—p—1

Using (4.27-30), we have a system of differential equations on the y-section.

e e e
%:<_%)23+(1 ~1x_fy)xz"
%:/9'(7'1—_,6;—1)zz+,8(y—x,9-1)23+(,8—;-1-1 +a+ﬂ+,19'_—xy_—yy(+_1) 12

and a differential equation for z;=2z is just the following hypergeometric equation

£ — 51 — @~y
+HR(y+1)—(e+p—F +7+5)xtl —x—y)—(a+B+L —7y—7'+3)x(1 —x)] 22"
TUAr+1) = ((B+2)(a—B+2)+ Y{a+B—F +3)xl(1—x—y)
=B+ 1)(a+f—7+1)+ (r+)(e+p+8—7—7+3)} x
+latB—B+3)a+B+H —7—7+3)+(B+1)et+p—7+1)+B(F—7+1)Ix’]2"
+(B+1)[Ra+28 -2y —y+4)(a—F+1)+82a— 7 +2)+28 (8~ 7 +1)lx
—e+p—y+1)—ye—pF+1)1—x—y)l2

+B(B+1)a(a—y+1)2=0,

which has the Riemann scheme
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x=0 x—1=0 1—x—y=0 L=
0 0 0 Ve
P4 1 1 1 B+1 %
1—y 2 2 a

2—y  y+B—fB—a Yt7V—a—B—-F atl—Y

( 11) FB(ay Q’, ﬂ, ﬁ’y 7; xyy)-

x1—x)r=—ys+ila+p+1)x—yip+eaBz,

yl—y)t=—xs+la'+8+1)y—7ylgta'B'z.

In this case, ¢=x(1—x), ¢=y(1—y), &A=zxy(xy—x—y), X=0 and Y=0.
We then obtain

wn=0,
_dx _dl—x)
Wiz— x 1_x )
_dy _dl—y)
L wu'—y 1__y s
( wa= afdx,
1 e
| on= - —(e+p-nE=2,
_dx_dxy—x—y)
L W24 xy y(xy_x_y)9
( wu:a'ﬂ'dy,
RN SRS € k)]
w=(1 7)_')’ (a +8 7) T—y
_dy _dxy—z—y)
L W34 xy x(xy__x_y),
wa=0,
7 7 dl_ ’ J
w.z=(—a'ﬁ'y>%+(aﬂy)%xi)+aﬂdy,
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d1—y)
1—y

(e+B+2)x—y—1 dy

)

= aﬂdx—m,ex)% A(en)

_(e+f8+2)y—y—1dx

_|_

W4 y x T y
iAottt 42t Ldoy—sy)
x y L xy—x—y

F; has no longer a simple form like F,. A system of differential equations on

the y-section is given as follows:

( iz_lz <2
dx  x(1—x)’
dz. _ (atp—1)x+1—y 2
dx _ Baut x(1—x) 2y —x—9)"
dz__ (1—y)
dx xlxy—x—y) R
dzi_ By (et a1l —a)+lp—a'— B 1)y
dx = x(l—x) Zz+(1/923+ x(xy—x—y) 24y

and the hypergeometric equation for z;=z is given by

(1 —x)(xy—x—y)2Y

+Hy+R—(a+B+5)xlxy —x—y)— (1 —2)(a+8+3)xll —y)+(y—a' =8 +1)yllx2"

+He+8+3)x—y—1Ha+8+3)1 —y)x+(y—a' —F +1)y}
—(a+2)(B+2)x(xy—2—y)—(a+1)(B+1)1 —y)x(1 —x)—a'B'y]2"

Fla+1)(@+1 ) [eh g+ p—r 1l —5) HeotB+3 e +{r+ 1 —o — @512

+afla+1)(B+1)(1—y)z=0

with the Riemann scheme

x=0 x=1 xy—x—y=0 x=0o0
0 0 0 a
P 1 1 1 at+1 x
a—y+1 2 2 B
L —y+1 Yy—a—p Yy—ae—a' —p—F+1 B+1



S

A A K S o o (S U Wk R

Reduction to Hypergeometric systems

(iii) Hule, B, 7, 8, €; x,y).

xx—1)r=xys—{(a+pB+1)x—elp+Byq—aBz,

yy+1)t=xs—i(y+6+1)y+1—alg—7ydz.

p=x(x—1), ¢g=y(y+1), A=xylxy—y—1), X=%, Y=0.

Putting =a+p+7y+56—¢e, we can write the hypergeometric equation for z,=z

the form

wllz—ﬂ%r
_dy dy+1)
L w13 y y+1 ’
cuzx—ﬂ(ﬂ—e+1)ix£,
_adx . andx—1)
we=@+1—e)=+(e—a—B =",
o _ dloy—y—1)
24 y(xy_y_]_)’
w31=(—73)dy,
1
| an=lo=p+(g—a—y—s+1)ELE) _gox
__ y+1 dx 1 dy
CCy=y=1x Tay—y-1y’
fl.)ﬂ:oi
o dx—1)
we=(=70)y=— =1 —(70)dy,
d +6—¢e)d
w43:ﬁ(ﬂ—s+1)7x+7ﬂ(xyfl S)Ty,
w“:a—(7+3)y d(xy_—y_—l)Hl_{_((e—ﬂ)—_axl(yﬂ) ’d_x+{1+((e#)—_ax)g
L y xy—y—1 xy—y—1 X xy—y=1
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2 (x—1)(xy—y—1)z"¥
Hxy—y—Dia+p+e+5)x—2(e +1)1+(6+2)yx(x—1)]x2"
+Hxy—y—Di(a+2)(B+2)+ela+8+3)x—e(e+1)}

+yxl(0+2)(a+8+3)x—(e +1)+(B+1)(8+c—B)(x—1)l]2"
Tlxy—y—1ela+1)(B+1)+(+2)(e+1)(B+1)yx+ (B+1)(0+e—B((a+p+1)x—¢)]2

+eB(B+1)(6+e—B)yz=0,

which has the Riemann scheme

x=0 =1 xy—y—1=0 x=00
0 0 0 a
P 1 1 1 B x
1=e 2 2 A+1
| R« e—a—p 1—-6 6+e—p

(iv) Fule, B, 7. 75 x,9).

{ 21 —x)r—y*t—2xyst+iy—(e+pB+1)xlp—(a+p+1)yg—eBz=0,

yl—y)t—x*r—2xys+iy—(a+pB+1)ylg—(a+B+1)xp—aBz=0.
We first rewrite the above in the form (4.1):

{ 21 —x—y)r=2xys+ilet+p+1)x—y(1—y)lpt(etB— 7 +1)yg+apz,

y(l—x—y)t=2xyst+(e+B—y+1xp+ilat+ps+1)y—7(1—2x)lg+apz.

In this case ¢=a(1—x—y) and ¢=y(1 —x—y), polynomials in x and y, which is
different from those described above. For simplicity, we put
f=l—z—y, O=at+p—y+l, =at+p—y+1
and then we have
¢=xf, Ax=2xy, Bi=0x—7yf, Ci=0y, Di=af,

¢o=yf, Ar=Rxy, B.,=0x, C.,=0'y—7f, D,=af
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with
4 A _8 g6
A=xy(fimdxy), X=5, r=52.
Substituting these into (4.21-4), we have
b
1 __9dr_06dy
)] “a 2 x 2y’
g
{ » _dx
64 | 12=—F—
§ _ady
;. W= 775
; fy
d = 01 ’ ’
" n=las—2)+ % (7—1-2)L gy,
4 _,.8 dx_ 6 dy df
= e 1 —— et |
g wWa2 (2 7+ ) 2 y f
_2ydx+fdy
'» L W24 y' __( 2_4xy) )
4 [ _ﬂ 190, 4_06\F
:.1, ={(eB Jt5(r—1 2) tdy,
4 dy 6 dx  df
W33z— (2 7+1)y 2 . f’
fdx+2xdy
x(fP—dxy)
[ wu=(a/3—%){ydx+xdy—2xy% L
66"\ 2
wu=(af =23 ) F dztdyl+oly ~1~Plidet L ayl,
64 G’
o= (ep =" )ax+ 22 dy+ 0 -1- )1t gy,
4
w44=m{2(e'+1)y+2(9—7'+1)f+( 7+1)f jry ldax

1 9 b 4xy d(f*—4xy)
+——(fz_4xy) 2(6+1)x+2(0'— 7+1)f+( 7+1)y 7 fdy+ Py "

In order to seek a differential equation on the y-section, we moreover put
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smas=f e=glymi=g) e=ghm1-g)
and then obtain the system
( Zz‘z(—%)zd—-(;—x)zz,
%#54—5’%)&—(“25—,,%+%)22+f2—24xy o
il A ENS
L%zé‘(y 2%)2&2{8(%)‘“}Zz+(5+5'%)23
+f———2_24xy {(9'—1)y+(0—7’)f+g§l—2“:fzz*zf-

The differential equation for z,=2z is given by

x(ox+e f)(fP—4xy)z®
+(exte A2+ 1)(fP—dxy)+ 2y —20—5)x(l —xty)+(e'—0)x(f*—4xy)]xz"
+Hx(oxt+ e IRy — (26 +5)y—0 —3—8)f—2(y+1)(§+3)y—(de +Ry—26'—3)x}
+ foz+e irty—1=F)f—(su+ e
+{(9’+2)(5x+e’f)+2(e’—5)x}i(7—%)(fz—4xy)+(7—0’—%)xf+(27—20’—3)xyi12"
et e N +0)(20 —27+8)—2¢(0+2)x—(r—1—Z) 27+ )}
— (0 +2)(0x+ f) +2(e = DH(N8 =y +2)+Z) 47 + 1)y +2¢x]
+He'=a)y—1—) 1= 7805+ € N)f12
ozt e )y —1—F+ 0)0+1(6' +2) 5+ ¢ f)+2(e ~)xl18(6' — 7 +1)— e ]
~(e'=0)o(r—1-F)flz=0.

This is a Fuchsian equation. In order to obtain the hypergeometric equation, we

have only to differentiate it once more. The Riemann scheme is
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[ ox+e'f=0 x=0 x=y* =y~ x=00
0 0 0 0 a
P 1 1 i 1 B x
2 1=y 2 2 a—7+1
4 2=y ytr—e—p—g  yHr-e—p—%  p-7+1

where y*=y+1%2y/y . There appeared an apparent singularity dx+e¢'f=0.
When one attempts to analyze completely integrable partial differential
(Fuchsian) equations in the large, it is useful and often plays an important role
to investigate their differential equations on sections. For that purpose, we have
explained one method of reduction of partial differential equations to total dif-

ferential equations.
5. An algebraic manipulation for the reduction

In this section we shall explain a program of an algebraic manipulation for
the algorithm described in §2 — §3. We used: Computer-VAX11/785, OS-UN
IX4.3BSD, Language—REDUCES. 2.

4 We input the order N of the hypergeometric equation, its finite regular sin-

gularities L(J)=A; and the coefficients P(J)=P,(¢). For example, consider the

third order generalized hypergeometric equation
(5.1) t(t=1)y" = t(cat bot)y" +(citbit)y' + boy
=1t(C2+B2%)y"+(C1+B1t)y'+B0y.

Then we input N=3, L(1)=L(2)=0, L(3)=1, P(3)=1t%t—1), P(2)=%#(C2+B2%),
P(1)=(C1+B1t), P(0)=B0 as follows:

COMMENT: N IS ORDER OF DIFFERENTIAL EQUATION.
L(N) IS REGULAR SINGULAR POINT.
P(N) IS COEFFICIENT OF DIFFERENTIAL EQUATION;
LET N=3;
OPERATOR P,L;
OFF EXP;
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L(1):=08L(2):=08L(3):=1$%

(3)
P(2):=(C2+B2*T)*T$
P(1):=(CL+BL1*T)$
P(0):=B0$
END;

differentiation of the polynomials a,x(%) with respect to ¢.
the sake of saving of memories, all terms which become useless are eliminated

The following is our main program, where PHI(K) denotes a function calcu-
lating (2 —L(1))(2—L(2))- - - (t—L(K)), the operator A denotes elements of the re-
Puired matrix A, i.e., A(J,K)=q,,, the operator AT denotes the polynomials of

the transformation (2.4), i.e., AT(J,K)=a,.(#) and the operator DAT denotes the
In this program, for

one after another.

COMMENT: PHI(K) IS A USED FUNCTION IN A MAIN PROGRAM,;

PROCEDURE PHI(K);

BEGIN
SCALAR PRO;
PRO:=1;

IF K=0 THEN RETURN PRO$
PRO:=(FOR J:=1:K PRODUCT T-L(J));
RETURN PRO$

END;

COMMENT:THIS IS A REDUCTION PROGRAM FOR KOHNO’S TYPE.
1986-05-23 FRIDAY.

MADE BY TETSUYA.SUZUKI.
AT YAMANASHI UNIVERSITY.;

COMMENT: A(N, N) IS A REQUIRED MATRIX.
AT(N, N) IS A POLYNOMIAL MATRIX WITH A(N, N).




FOR ALL J,K SUCH THAT NUMBERP LET DAT(J,K)=DF(AT(J,K),T)
FOR ALL J SUCH THAT NUMBERP LET DAT(J,J-1)=DF(PHI(J-1),T)
FOR ALL J SUCH THAT NUMBERP LET DAT(J,0)=0;

Reduction to Hypergeometric systems

DAT(N, N) IS A DIFFERENTIATED AT(N, N).;

OPERATOR A,AT,DAT;

DEPEND AT,T;
DEPEND DAT,T;

FOR J:=0:N-1 DO AT(N+1,J):=—P(J)$
FOR J:=0:N-1 DO CLEAR P(J);

FOR K:=1:N DO
BEGIN
FOR J:=N STEP —1 UNTIL 1 DO

BEGIN
SI1G:=0;
SIG:=SIG+(FOR 1:=0:K—2 SUM A(J,J—1) *AT(J—1I,J—K))
IF J-K+1<1 THEN RETURN;
A(J,J—-K+1):=0;
A(J,J—K+1):=A(J,J—K+1)—SIG;
A(J,J—K-i—l):=A(J,J—K+1)—AT(J+1,J—K);
A(J,J=K+1):=A(J,J—-K+1)+(T—-L(®J)) *DAT(J,J—K);
A(J,J—K+1):=A(J,J—-K+1)/PHI(J-K);
A(J,J—K+1):=SUB(T=L(J),A(J,J—K+1)):
IF J-K—1<0 THEN RETURN;
AT(J,J—K—1):=0;
AT(J,J—K—1):=AT(J,J—K—1)+SIG;
AT(J,J—K—1):=AT(J,J-K—1)+AT(J+1,J—K);

AT(J,J—=K—=1):=AT(J,J-K—1)+A(J,J—K+1) % PHI(J—K);
AT(J,J—K—-1):=AT(J,J-K—1)/(T—L{J));
AT(J,J-K—1):=AT(J,J—K—1)—DAT(J,J—K);

END;

FOR I:=0:K—2 DO CLEAR AT(N-IN-K);
FOR I:=1:K DO

BEGIN

£}

’

’

71




72 Mitsuhiko KOHNO and Tetsuya SUZUKI

WRITEA(C’,K,”,”",1,”") :="",A(K,]I);
CLEAR A(K,I);
END;
END;
END;

In the above case (5.1), we obtain the output

A(1,1):=0, a.,=0,

A(2,1):=C2—C1-2, an=c:—c1—2,

A(2,2):=—(C2—3), apn=—c*3,

A(3,1):=(C2+B2) %(C2—C1—2)+B0, au=be— (bt c:)(ci—c:t2),
A(3,2):=—((C2+B2) %(C2—2)—C1—B1), axz=bi T ci—(b.+c:)(c.—2),
A(3,3):=C2+B2, au=btc,,

with the polynomials a;x(2):
AT(3,1):=(C2—2) *T, aun(t)=(c—2)t,
AT(3,0):=—C2—-C1—-2), an=ci—c.*+2,
AT(2,0):=0, a,=0.

In this case, CPU TIME is 4,573MS.

Owing to limited space, we only show two other examples.

(i) A fourth order generalized hypergeometric equation.

P(t—1)y"=1*C3+B3%)y" +t(C2+B2t%)y"+(Cl+Bl#)y +B0y,

The output is as follows:
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A(8,3):=—(C3-5)
A(4,1):=—((2 *C3—C2+C1—6) %(C3+B3)—B0)
A(4,2):=(2 *C3—C2—6) *(C3+B3)+C1+B1
A(4,3):=—((C3+B3) *#(C3—3)—C2—B2)
A(4,4):=C3+B3
AT(4,2):=(C3—3) *T*
AT(4,1):=—(2 %C3—C2—6) *T
AT(3,1):=0
AT(4,0):=2 *C3—C2+C1—6
AT(3,0):=0
AT(2,0):=0
CPU TIME 7, 752 MS

(ii) A third order Jordan-Pochhammer equation

#(1)y" =Py(t)y"+ Pi(2)y'+ Po(2)y,

73

where

#(t)=(t—L1)(t—L2)(t—L3),
HAB)=BUt—L2)(t—L3)+B2(¢—L1)(¢—L3)+B3(i—L1)(i—L2),
Poo i H=(—1)"1(¢ Y g B+ "D (1=1,2,38).

A(1,1):=Q+B1+2

A(2,1):=(((B2+B3—2) *L1—(B2—1) %1.3—(B3—1) *%L2) %*B1)/(L1-L3)

A(2,2):=Q+B2+1

A(3,1):=((((B3—1) *B1—B3°+3%B3—-2) *L2+((B3—1) #B2+B3*

—3 %xB3+2) *L1—(B1+B2) %(B3—1) %L3)*B1)AL1—-L13)
A(3,2):=(—((B1+B2) *L3—L1 %B2—-L2 *B1) (B3—1))AL1-L3)
A(3,3):=Q+B3

AT(3,1):=T *%(—2 *Q—B1—-B2—-2)+Q *L1+Q *xL2+L1 *B2+L1+L2
*B1+L2
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AT(3,0):=(Q* %L1 —-Q**L3+Q*L1*%B1+Q%L1%B2+3%Q*L1—Q*L3%
Bl1-Q#L3%B2—-3%Q%L3—L1%B1%B3+3%L1%Bl1+2%L1%xB2
+2%L1+L24B1%B3—-12%B1—-2%L3%B1—2%L3%B2—2%L3)
/(L1—13)

AT(2,0):=—Q—B1-2

CPU TIME 6,273 MS

Lastly, the authors would like to thank Professor K. Okubo and Professor M.
Kurihara for their valuable suggestions and warm encouragement during the pre-

paration of this paper.
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