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1. INTRODUCTION

The prediction problem which is invariant under a certain group of trans-
formations was treated by many authors (e.g. Hora and Buehler [2] and Takada
[4]). Under the condition that the parameter space is isomorphic to the group,
it was shown that the best invariant predictor,which has the minimum risk among
the class of invariant predictors, can be represented by using the Haar measure
on the group. The purpose of this paper is to treat the case in which the
condition is not fulfilled.

In a statistical decision problem, such a case was studied by Zidek [5],
among other things. For simplicity we consider the location and scale family

with shape parameter ‘as the probability model, though the general treatment is

possible.
Let X =(Xi,...,Xn) be observable random variables and Y a future random
variable we want to predict on the basis of X. We suppose that the joint

probability density function of X and Y with respect to Lebesgue measure is

given by
¢1:1) p(x,y 16,0) =0~ Vf{(x:—u)/0,... (2n—p)/0,(y—u)/0 |0},

where the location-scale parameter §=(x,0) and shape parameter © are unknown
but have specified ranges —oco<u<co, ¢>0, pe¥ and f(x,y |¢) is a known funec-
tion for each pev. Hence if o is known, the family of probability distributions
becomes the location and scale family.

Consider the following transformation on the sample space;
(1.2) (xl,...,x-n,y)—>(ax1—|—b,...,axn+b,ay—}—b)

with  a>0. Then the family of probability distributions (1.1) is invariant

under such a transformation group. But the parameter space is not isomorphic
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to the group unless p is known.

After observing X, we want to predict the value of Y. As the loss of er-
roneously predicting Y =y by the value d, we adopt squared error (y —d)% We
say that a predictor & is invariant under (1.2) if for any (a,b) with a>0

S(axt +b,...,azn +b) =ad(a,...,xs) +b.

It is easy to ee that for any invariant predictor &, ¢ *E(Y —68(X))’ depends
only on p. Hence we denote it by R(p,8). Since p is unknown, generally there
does not exists the best invariant predictor. Therefore we seek the Bayes
solution among the class of invariant predictors.

Let G(p) be a probability distribution on ¥. Then we seek the invariant

predictor which minimizes
(1.3) JR(0,8)G(dp)

among the class of invariant predictors. We say that such a predictor is the
Bayes invariant predictor with respect to G.

In Section 2 we give a representation of the Bayes invariant predictor by
using the Haar measure on the group. It is also shown that the Bayes invariant
predictor is admissible among the class of invariant predictors. In Section 3

we consider the application to the first order autoregressive process.

2. BAYES INVARIANT PREDICTOR

To obtain the representation of the Bayes invariant predictor, we need the

following lemma, the proof of which is obtained from Theorem 2 of Takadal[4].

Lemma |. Suppdse that the joint probability density function of X and Y is

writien as
(2.1) ox,y 1) =0 Vel(m —p) /o,e..,(2n — 1) Jo,(y —1) /ol

for some known function g, where 0=(u,0) with ¢ >0 is unknown. Then the
predictor which minimizes o "E(Y—08(X))’ among the class of invariant predictors

is given by
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§*(x) =/ J [yoq(x,y10) v(d0)dy/ | | [ o q(x,y |6)v(d6)dy
where v(df) =0 'dudo.

Now we give a representation of the Bayes invariant predictor with respect

to G by using the Haar measure u.
Theorem |. The Bayes invariant predicior with respect to G is given by

0x) =S S J [ yo*p(,9 16,0) v(d6) Gldp)dy / [ [ ] J o *p(x,y 16, 0) (d6) G(dp)dy
where p is (1.1) and w(d6) =0 'dudo.
Proof. Let
(2.2) folz,y) =/ f(x,y o) Gldp).
Then it follows from (1.3) that

(2.3) J R(p,0)G(dp) =0 "E(Y—5(X))*

where the expectation is taken to (2.1) with g=f;. Hence we have the result

from Lemma 1.

From the Bayesian point of view, it turns out that the Bayes invariant pre-
dictor with respect to G is the conditional mean of Y given X when the prior
distribution on (8,p) is oc7*(d8)G(dp) (cf. Theorem 3.1 of Zidek [5]). If o is
known, the best invariant predictor 8, is easily obtained from Lemma 1. The
next result shows that the Bayes invariant predictor can be expressed as the

expectation of §, with respect to the posterior distribution of p given X.
Theorem 2. The Bayes invariant predictor Sc is writien as

(2.4) 0e(x) =/ 0o(2)G(dp |x)

where

(2.5)  0ox) =/ S [ yp(x,916,0)07*u(dO)dy / ] | [ plz,y |6,0)0~* {d6)dy

and
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(2.6) Gldp |x)=G(dp) /S [ p(=x,y10,0)07 v(dO)dy/ /][ [ p(2,y 10,0)07*v(d6)G(do)dy.
Proof. From Theorem 1 ¢ can be written as
Oo(x) =1/ yp(y |x,0)dy} G(do |x)
where
p(y |x,0) =S/ p(x,y10,0)07*v(d6)/ /[ [ p(x,y 16,0)0""v(d6)dy

and G(de |x) is (2.6). Lemma 1 shows that 64x)=/yp(y |z,0)dy is the best in-

variant predictor for the case of known @, which completes ‘the proof.

If G(de |x) is concentrated about some modal value, by (2.4) we can write

approximately

bo(x) =05(x)

0

where o is the mode of G(de |x).
Next we shown the admissibility of the Bayes invariant predictor among the

class of invariant predictors.

Theorem 3. Suppose that for each pe¥, {z; [ flz,y |o)dy >0} does not de-
pend on p. Then O, is admissible among the class of invariant predictors.

Proof. Without loss of generality, we can assume 6=(0,1). If there exists

an invariant predictor & such that for each pet
E(Y—0(X))*<E(Y—04X))?
then
J R(p,8)G(do)< J R(p,85)G(dp),
which implies that & is also the Bayes invariant predictor. It follows from

(2.3) that the Bayes invariant predictor is the best invariant predictor for the
distribution (2.2). Hence from Theorem 2 of Takada [3] we have that
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JIE(O(X) —84(X))* G(dp) =E| [(Y—8¢(X)) —(Y—8(X))](8(X) —04X))]
=0

where the expectation of the left hand side is taken to (2.2). Then there exists
a pe¥ such that

E(6(X) —6.(X))? =0.
By the assumption of the theorem, we have that for each peY
8(X)=04X) a.e.

’

which implies the admissibility of &.

3. FIRST ORDER AUTOREGRESSIVE PROCESS

Let Xis be random variables generated by the first order autoregressive

process;
Xi—pu=p(Xioy —p)+e, i=....,—1,0,1,...,

where €,s are independent and identically distributed normal random variables
with mean 0 and variance (1 —p?%0? ( |p |<1). Here we assume that (,0,0) is
unknown. We observe X=(X,,...,X,) and wish to use it to predict Y=X,,..

It is easy to see that the joint probability density function of X and Y is
given by

p(x,y |t9,,0) :(277,)—(11+!)/2(1 —p z)-n/zo.~(n+1)exp{ —[(% _Iu)z

+A =) 5z —p—p(z, —)7 /207
where 0 =(u,0).
The straightforward calculation shows that the predictor 50 given by

(2.5) becomes

(3.1) Ou) =% + (1 +0)2 +(1—0) 5 (2101 —p2)]
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and for a distribution G(p0) of o, (2.6) is equal to

(1—p?*)~" V(1 +p) /(n—(n—2)0)] " *Q(p;2) "™ V"> G(dp)
J 41—~V [(14-0) /(n—(n—2)p)]*Q(0;2) "™ *G(dp)

(3.2) G(dp |x)=

where

1

Qosx) =21 +(1—p) 2 (x, —p2)*
~(140) " (n—(n—2)0) " [(1+0)5, 42 (x,,, —p2 ).

After the tedious calculation we have that

Qp;2) =5%(2)[Q—(1—p)p*NP?T /(1—p?)

where
N=n—(n—2)p, 9_c=élxi/n, s¥(x) =él(xi——2)z,
a,=(r,—8)/s(a), a,=(z,—7)/5(x), P=(a,+a)/N,
(3.3) r=3.(x,,, —8)(z, — ) /s¥x),
and

Q=1+p"—p¥al+a;) —20r

(cf. Section 3 of Haq [1]).
For moderate n, a, and a, may be considered small and can be ignored.

The expression (3.2) can be written as approximately

G(dp |x) = (1—p9[(A+p) /A =P 1 +p* —2p7)"™"*G(dp)
S5 (1=0)[(1+0) /(1—=p)] (1 +p* —2p7) ™ V*G(dp)

where r is (3.3). Hence it follows from Theorem 2 that the Bayes invariant

predictor is given by
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Oe(x) =/ 1,10,(z)G(dp x)

where 0, is (3.1). Another aproximation of &; is obtained by 85 where o s
the mode of G(de |x). It follows from Theorem 3 that &, is admissible among

the class of invariant predictors.
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