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H.Busemann (1), (2), (3] had dealt with the metric spaces called G-spaces or
E-spaces by him. In his work (3], he defined G-spaces with non-positive curvature.
His definition was a netric condition. But in differentiable Riemannian manifolds of

class C” (7>>4), this is equivalent to the condition of non-positive curvature in the
usual sense. Among his works, it is to be in particular noticed that he systematically

studied the relation between a ray and its coray and the theory of aéymptotes. He (2],
(3] obtained many interesting results in G-spaces or in E-spaces. On the other hand,
F.P. Pederson (4] defined G-spaces with non-positive éurvature under the more weak
condition than the H.Busemann’s and showed that H.Busemann’s results hold again in
this case. The purpose of this note is to show that F.P.Pederson’s definition can be

replaced by the more convenient form, which will be stated in §1.

1. Buasic concepts and some theorems. To define an E-space (or a G-space),
H. Busemann considered the following axioms: A. & is a usual metric space with distance
ab for any two points @, b € @. B. @' is finitely compact. C. G} is convex metric.
D. Every point x has a neighborhood S (x,a,) = {y | ay<lay, yx<oay) (ay>0) such
that for any positive number ¢ and any two points @, b € S (X, @, ), there exists real
numbers 0 <0, (a, b)< e (k=1,2) for which the points @,, b, satisfying the conditions
a, at+ab=ab, aa,=0,; ab+bb,=ab,, bb,=35, are uniquely determined. _

When the above four axioms A, B, C, D are satisfied, @ is said an E-psace.
Moreover, if the metric is symmetric, @& is said a G-space.

Following the usual method, we can define a continuous curve in an E-space (or in
a G-space) and its length. For any two points p, ¢ there exists a segment from P to ¢
(or from g to p) and its length is equal to the distance pg (or gp). This fact easily
follows from the axioms A, B, C. Under the axiom D, the prolongation of ssgments is
locally possible and unique. We come from these facts to the concept of extremals.

G. Birkhoff (5] also gave another definition of G-spaces, which is apparently differ-
ent from, but is equivalent to the H. Busemann’s.

At first we shall formulate the following definition:

(1.1). Definition. A continuous funtion f(t) will be called semi-convex in the
interval [a, B, if f£(8)<max (f (L), f(£)) for any t, & with a <, <i<t, <P. If
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the equality never hold, then we shall call I (&) strictly seii-convex.

In addition to this, if we assume that whenever f (#) = max (f (t.),f (#.)) for a
value ¢ with #, < ¢t < 4,, then f () = const. in [t,,%], then this definition coincides
with F.P.Pederson’s one. ;

The following properties of semi-convex functions are obvious from the definition.

1.2) If a continuons fuaction f (1) is semi-convex in [[a, B, and has the minimum
at the left or right end point of [, B, then f (&) is monotone. If f (&) is a minimum at
an inner point tof [a, B, then f (1) is monotone decreasing in [a, 1] and monotone
increasing in [t,, Bl. If f (&) is strictly semi-convex, then f (1) has the minimum value
at only one point t,. According as t, =a, a<t,<B, or t,=P3, f (1) is strictly increasing,
strictly decreasing in [@, t,) and strictly incrveasing in [t,, B, or strictly decreasing.

H. Busemann showed that there exists a pafametric representation x (%), —oo <t
<+ o0, for an extremal & such that '

& x(@)x(t) = |4, — 1, | for sufficiently near #,, #,, where ¢ denotes the arc-length
of &. By making use of this, we shall define G-spaces with non-positive curvature.

(1.3) Definition. In a G-space @, let x (1), a,<t<a,(a,<a); ¥ (), FhZs<h:
(B, <B,), be parametric representations of two extremal subarcs. Under the correspondence
s=ct+d (cF0) between t and s such that P; =ca; +d (i=1, 2), if the segment T(x(2),
y (ct+d)) is unique for every t in [ay,a,], and f ($)=x()y (ct+d) is (strictly) semi-
convex, then we say that & has (negative) non-positive curvature.

Let @ be the least upper bound of those @ for which the segment Z(@,b) with
end points ¢, 5in S (x, ) is unique. H. Busemann’s definition of G-spaces with non-positive
curvature is as follows: The G-space is said to have non-positive curvature if e\;ery point
% of ® has a nieghborhood S (%, 8,;) (0<B8,<a,) such that three points @, b, ¢ in
S (x,8,) satisfy the relation 2m(a, b) m(a,c)<bc, where m(a,c), m(b,c) are the
middle points of @, b; a, ¢ respectively. If, under the same conditions, 2m(a,b) m (a,c)
=Fc, then ® is said to have curvature 0. '

In the definiton (1.3), if f () is convex, then & has non-positivé curature in
H.Busemann’s sene and vice versa [3). The G-space @& with non-positive curvature in the
present sense locally satisfies the condition (1.3), but the converse is not necessarily true.
This easily follows from the fact that even if f (¢) is locally semi-convex, it is not neces-

sarily semi-convex. From this, we can see that the condition of non-positive curvature in
the present sense is weaker than H. Busemann’s one.

The reason why we adopt the definition (1.3) is due to the following facts (i) and
(ii).

(i) F.P. Pederson defined G-spaces with (negative) non-positive. curvature as follows:
if every point % of a G-space has a neigehborhood S-(%,7x), 0 <rx=ay, such thal for any
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two (non-collinear) segments T, and T, in S (x »Tx)s the distances x (1) T, and y(T,
are (stricily) semi-convex, where % (1), a, i g ¥, t < B:y are vespectively
barametric representations of T, , T, .

But the foot of x(t) on T, is not necessarily continuous even if t varies continuously.
Therefore it seems difficult to derive (1.3) as theoreni from F.P. Pedzrsonos's definition. It
s important that, when & is siraight, F.P.Pederson’s definition implies (1. 3), as we can
see from the results of H. Busemann £32.

(i), The condition (1.1) of semi-convex functions is weaker than the F. P. Pederson’s.

The definition of non-positive curvature in the present sense coincides with the usual
one in differentiable Riemannian manifolds in spite of such weak condition. Next we shall
prove this. V

(1.4). A Riemannian manifold Vi of class C" (1=4) has non-positive curvatre in
the usual sense if it has non-psitive curvature in the present sense.

H.Busemann (3) proved that V,, has non-positive curvature in his sense if and only
(if it has non-positive curvature in the usual sense. Hence, if V,, has non-positive curva-
ture in the usual sense, then @& has, of course, noxi—positive curvature in the present sense.
Accordingly we shall prove that if V., has the positive curvature K (5, 7) where pEV,,
and 7 is the surface formed by all geodesics tangent to a 2-plane element through p, then
V,, hasn’t non-positive curvature in the present sense.

For this purpose we shall prove .

(1.5) If 'V, has the positive curvature K D,7) at p(€EV,) for a geodesic surface
T through p as above, then there is a neighborhood S (P, B, ) (Bp=>0) such that for any two
points a, b€ S (p, Bp) N7, if pa, b are non-collinear, the inequality

(1.6) ab<lem (p,a)m(p,b)
holds. '

From the well known theorem in differential geometry (see e. &. (6)), P has a
neighborhood S (p, Bs) such that for any two points @, b €S (p,55) (17, if p, a, b are
non-collinear, we have the following inequality

1.7) 7" <la'+ @ —2af cosZpZ

where «, 3,7 denote the geodesic distances pa, pb, ab respectively and ;p?denotes the
angle between the geodesic arcs 7' (p, a), T(p,b) at p.

When ﬁp is sufficiently small, we can assume that the Riemannain curvatures
K(m(p, 0), Y[ T(m(p, b), p), T(m(p, b), m(p, a))1), K(m(p, b), Y[ T(m(p, b), m(p, a)),
T(n(p, ), 0)1), KE(m(p, @), T[T(m(p, @), p)T, (m(p, @), Y1), K(m{p, a), Y[ T(m(p, a),
a), T(m(p, @), b)]) are positive, where T[T(m(p, b),0), T(m(p,b), m(p, a))] is the
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geodesic surface spanned by the two geodesic arcs 7 (m (p,b), p) and T (m (p, b),
m (p,a)) at m(p, b), etc.. A
Putting @=24, B=2x, bm(p, a)=v, m(p, a)m(p, b)=7', we have by (1,7)

= /\
BG4 pr—or'n cosm(p, a)m(p, b)p,
/\

V<G + it —2r'p cosm(p, a)m(p, b)b.

TR

Hence, we have by adding the above two inequalities

1.8 2+v (" + o).
Similarly the inequality 7+ 5°<2(#*+v*) holds. I. e.
7+ BaG ).

Therefore we have 7<927’, since f=2g, which proves (1.5).

Proof of (1.4). Let V,, has the positive curvatnre K (p, T) for a geodesic surface
T through p. Consider a triangle pab where @, b € S(p, B5/8) (17T and the point € satisfying
the conditions m(p,a) e=om(p,b) e=om(p,a) m(p,b). Such a point € is uniquely
determined because of

pm(p, a)<By/16, pm(p,b)<Bp/16, m(p,a)m(p,b)<py/8 and
peéﬂ’”(? ’ b) +m(p ’ b>€<ﬁp/4.

Let d be a point such that 2be=2ed=>bd. Then

de=be<pe+pb<B,/2, 1. e.
pA<pe+ed<P,.

Thus such a point & is also uniquely determined. On the other hand, we may assume
that S(p,B) is convex (7). Therefore T (p,a), T(a,b), T(b,e), T(p,d) are
contained in S (P, By ). We then have 21 (p, b) e>pd, since K(b, 7[T(b,p), T(b,d)])
is positve for sufficiently small B5. From this inequality and (1.6) we conclude m(p, a)e
<pd, m(p, a)e>ab. Thus we have completely proved (1.4).

The following theorem is clear.

(1.9) In a G-space & with non-positive curvature, if the segments conmecting a point
D to points on an extremal subarc x (1) ,1, gt <t,, are unique then f(t)=px (1) is semi-

convex in [t,, t,].

It is to be noticed that f (#) can not necessarily be strictly semi-convex, even if &

has negative curvature. (1.9) yields

(1.10) S (p, @p) is convex.
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We shall say that G} has negative curvature in stron g sense, if @ has negative curvature
and is straight and the function S () in (1.9) is strictly semi-convex whenever p ¢ x(2),
L<t<y,,.

(1.11) Let a G-space G has non-positive curvature in H. Busemanwn's sense, and be
straight. If a point P (€®) has a foot fon a straight line L(ED), then every point on the
half ray & which has the initial point f and contains D has only one foot f on .

Proof. Let x(#),— oo<#<+ oo, be a parametric representation of I. Then f(¢) =pa(¢)
is strictly convex (3). Hence p has only one foot f on I. On-the other hand, it is
easily proved that every point on the subarc 7' (f, p) has a unique foot f on I except p.
Consider now a point ¢ on & such that ¢ €T (b, f) and gm(p, )<pf. Let /" be the foot
of ¢ on I. We assume f#f. Then 4 >qf" because gx(t) =g(%) is strictly convex. From
the assurnption of (1.11), we have .

e M) <5 af < Lo

Therefore :
m(g, m(f, ) < m(q, Hf.
This fact shows us that the foot of (2,1 (€T (f, @) is different from J, which contra:

dicts the above mentioned fact. This proves (1.11).

It seems difficult to prove (1.11) in G-spaces with non-positve curvature in the
present sense. But we can prove the following theorem.

(1.12) If « G-space @& has negative curvature in Strong sense, then a point » (E®)
has only one foot on a Straight Iine L (¢ p), and when p varies continuously, the foot also
varies continuously. _

Proof. Let x (%), — 00 <t <+ o, be a parametric representation of {. Then px(%)
=g(t) is strictly semi-convex. Accordingly p has only one foot f on I. Let {Dn} be a
sequence of points which converges to a point p and Ju be the foot of by on I(n=1,2) It
is sufficient to prove tﬁat {fnl converges to the point f which is the foot of p. If it were
not the case, there would be a subsequence {f,,.} of {f,} such that S, = as np — oo
and f'#f. Then 7'( Prw Jnp) converges uniformly to 7°(p,f") and we can conclude that
S is the foot of D, which contradicts that S is the unique foot of b- Therefore {f,}

converges to f.

2. The universal covering spaces for a G-space with non-positive curvature. In this
paragraph, we assume that G-spaces have the property of domain invariance. This as-
sumption was adopted by H.Busemann (3, and formulated as follows: “If X is a subset

of a G-space @& and is homeomorphic to an open set U, then X is open in @”.
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By making use of this assumption, he extended the well known theorem in Riemannian
spaces to that of G-spaces, that is to say,

(2.1) If a G-space & satisfies the property of domain invariance and has. non-positive
curvature then the universal covering spaces for & are straight, and have non-positive curva-

ture.
In the above theorem, if ¢ has non-positive curvature in H.Busemann’s sense and

satisfies the property of domain invariance, then the universal covering spaces for @& also
‘have the same properties and are straight (3J. Next we shall prove (2.1) in the present
sense.

Proof. Fix a point p (€®), and put K={x| px = ay /o) (ap>0). For u €K let
x(u, t), 0< ¢ <+ o0, be the parametric representation of the half extremal issuing from the
point p (=x(%,0)) and containing #. Then (u,2) and x(#,%) are-in one to one corre-
spondence for 0<% <%p. Fix #, and t, >0. .
Then

0= 'l%fa{x (20, 1)
0==i<to

is positive. Consider a sequence «{%,}(C K) which converges to %,. {x (%,,)} converges
uniformly to % (#,,%) for all £ in [0 ,%]. Therefore there exists a positive integer N
such that '

U S (x (%, 1), 6/4) Dx(uy, t), 0t =<t, for n=N. -

0=i<to

We shall now prove that each extremal subarc of {x(#,,%), 01 <, } (n = N) disjoins
the others except p. For, let % (#4,,, t), 0 <t <1, intersects ¥ (,1), 0t t,, at
x(tty,t") (#'F0). Then x(#y,, t) x(t,, t) < 6/4. Let ¢’ be the first value of t for
which x (#,, 1), 0<t<t,, intersects & (%,, ), 0 <t <4 . Put % (u,,t) = 2 (ty,,
) and ¥ =1/ (0Lt ).
Then

|7—2| = | "=t | | V=t | =2(uo, ¥') x (4, 2" )<0/4.
we have from this

(U, B2ty D) (5, ) 2 o, B') + 2 (0, ¥ ) 2(2t, 1)<C0/2.
Therefore the T (x(#t,,, ¥), x(#t,, £)) is unique for every pair (¥,%), and the functon
F@&)= x(u,,, tt'/t') x(u,, t) is semi-convex, but f(#)=s(0)=10, which contradicts
the definition of the semi-convexity. Similarly we can prove that every X (u,, 1), 0<iZ
t, (n=N) hasn’t common points with the others.
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On the other hand, we can find that all half extremals x (, 1), 0Zt<ap, (u€
S (4, 6/4) | K) simply cover a neighborhood S (2, , €) (0 <e<6/4). For if this were not
the case, then there would be a sequence {v,,} which converges to %, and is not contained
in {x(u,?t) | 0=t=Zap, u€S(u,, 6/4) NK}. Every half extremal passing through
Un and having p as initial point intersects in the first ‘K at only one point #,, then {26,,}
converges to #, as { T (P, v,)} converges to T (p,u,). Therefore there exists a positive
integer IV such that S(u,, 6/4) N K3 u, for n>N, which contradicts our assumption.

The half extremal connecting p to g(€S (uod, ¢)) is unique and expressible by x(0'; 1),
0= ¢ <+o0, Put g=x(u',t). The point x (', ') corresponding by the relation # ={%,
—¢/2+% to ¢ makes a set of points U as ¢ varies in S (#,, €). This correspondence is
one-to-one and bicontinuous. Therefore U is open by the assumption of domain invariance.
We know in the above correspondence that U J x (u, , £,). Hence we conclude

(2.2) If a Gspace ® has non-positive curvature and satisfies the property of domain
invariance, then every point of a half extremal ¥ has a neighborhood  simply covered by a
.sysfem of half extremals containing ¥ and having the same initial point as ¥. All points in
such a neighborhood are locally in one-to-one correspondence with pairs (u, ).

Let ® be the set of pairs (%, £), 1. e., the topological product of K and half real line: 0=t
<+ 0co. Then every element (,t)(E®) has a neighborhood W which is in one-to-one corre-
Spondence with a sufficiently small neighborhood U of % (#,t). Hence we can define locally

and isometrically a metric on & by making use of the above correspondence between %%

and U. Therefore we can define a homeomorphism® ¢: W—IJ, We can extend the

definition of this homeomorphism on all . Thus we have a homomrphism?: G—®. Hence
®is a covering space for . We can define a curve length of any continuous curve
connecting two elements (points) in @&. From this the distance of any two points is
defined by the least upper bound of lengths of all Continuous curves connecting these two
points. Then any two points (%, ,1), (05, $) can be connected by the arcs (u,, 1), 0
<145 (v,,5), DX 85 & v Hehice the distance (%, , %,) (v,, s,) is finite and symmetric.
Hence the axiom A is satsfied in @. Sin_ce ® is a covering space for & and (u, 1) (v, s)
=% (u, 1) x(v, s) for any two points of @, if a set of points {(#,, £, )} is bounded, then
tat (g,=x( %,, t,)) is bounded in G. Therefore { ¢, } has an accumulation point g.
From this, we can easily prove that the axiom B is satisfied in &. It is also clear that
the axioms C, D are satisfied in ®. Hence @ is a G-space.

We shall next prove that @ is simply connected. If we consider a simple continuous .
curve € in @, then we can establish a continuous correspondence between the pairs (%, t)
and the points of G. At this time, @& is ‘contractible to p. Hence @& is simply connected-
and is a universal Covering space for @, ’
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We shall next prove that @ is straight. To do this, we shall show that for any
fixed # the curve (#,t), 0<t#< o, is a ray or that the arc (#,?), 0<t=<
%,, is a shortest connection of p=(#, 0) and (% ,%,) for every %, because f, is the arc
length of (#,%), 0<#<1t,, from the defintion. Let @ be the least upper bound of those
,. Then a==ap>> (. Therefore we have to show =+ . If « is finte, then there exists
a half extremal x (#,1), 0<? <+ oo, such that (#,¢), 0<¢t<a+p, (0>0) is not
segment. But in this case a segment connecting (#,a+p) to p (# ,0) can be represented
by (v,8), 0<t< the distance (%, 0)(%,a+p), which contradicts the definition of &-

From the fact mentioned above, every half extremal issuing from the point pisa
ray in ®. Let ¢ (=(#,, %,)) be a point of @® different from p. Because & has non-positive
curvature and @ is a universal covering space for &, every point of a half extremal with
the initial point ¢ has a neighborhood simply covered by a system of half extremals
issuing from the point g. Let two half extremals &,&’ having the same initial point q
interect at 7. At this time, we may assume 7Fp. Then 7 has a neighborhood U simply
covered by the two systems of half extremals passing through neighborhcods of &, ¥’,
Consider a continus curve @’ connecting 5 to 7, we can from these systems pick up two
half extremals, which intersect at a point 7 in U E'. We can apply the same consider-
ation to 7. Thus when 7 tends to D, these two half extremals don’t coincide because
@ has non-positive curvature and @ has the same local property as &. There exist through
27 two distinct extremals with a point ¢ in common. Hence every half extremal with the
initial point ¢ is a ray. We see that @ is straight.'

Next, we shall prove the last part of (2.1).

Let ¥ (3), ax<t<a,; ¥ (5), B <5< F, be two extrerhal subarcs in . As we
can see from the above proof, there exists a real number 7 for the segment X(2), a, <17
< @, such that if any extremal subarc z () ,7, < # <7, which is a segment in this case,
is contained in U S (% (), 7) and zZ (7)) € S(X (@), z) (i=1, 2), then the function f ()

ar=i<a;

=% () z(af+b) js semi-convex, where ar;+b=a; (1=1. 2). If we put ¢ the lower bound
of those 7 for all segments connecting two points which divide the segments T (X(a;),

¥ (B)) (i=1, 2) into same ratio, then & > 0. We divide two segments T (X(a;), ¥ (,35))
(i=1, 2) into # parts of equal lengths d;/# (i=1,2) by points ¥ (a,)=X;, Xi, = ;
xX: Y, =3 ((B) and by points E(a,)=%}, X, rw-reeees , %o %, =y(B.), where d,,
d, are respectively the arc-lengths of T(% (), ¥(2)), T(X(a.),y(B.)). If n is sufficiently

large, then the eneighborhood of the segment 7 (%., X,) contains the segments T(x% ™,
.%1;_1), T(fc‘.j“, E:“) for every =1, 2,-+---=e+, # — 1. Let AR AR TR , X" be points
dividing the segments T(E: s By) (3=0,1,9; vorsroeen , 1) into a ratio f — @, a,—1 (a<li
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<a;) where =% (1), %" =7 (@t+3) and o, =ap, + 3 (1=1,2). Then we have

ED @ +8) <SFE <max(d,, d,).

The above proof is applicable to any subinterval of [a,, @,]. Hence we can see that if
& has (negative) non-positive curvature @ also has (negative) non-positive curvature.
Thus we complete the proof of (2.1). _

(2.3) If a simply connected G-space @ has non-positive curvature and satisfies the
Droperty of domain invariance, then ® is straight. .

This theorem easily follows from (2.1). The following theorem is clear from the
proof of (1.2).

C.4) In a Gspace ®, i, Sor any point p (€®) and for any bounded extremal
subarc issuing from p, a neighborhood of every point except p of this subarc is simply covered
by a sysiem of half extremals with the same initial point P, then the universal covering spaces
for ® are straight.

(2.5) If a compact G-space ® has non-positive curvature and satisfies the broperty
of domain invariance, then & is not simply comnected but has finite connec tivity.

This theorem is clear from (2.1). The last part also can be easily proved.

3. Asymptotes and some remarks. E. Cartan (6] had dealt with the relation Eetween
a ray and its coray in a hYperbolic space. The theory of asymptotes is also due to his
work. Later H.Busemann systematically studied thess objects. In an E-space G, let {
be a ray whose parametric representation is ¥ (2), 0 <t <+ oo, [et {t.} be a sequence
of real numbers such that l,—>+ 0o as n—oo and let {p.} be a Cauchy sequence which
converges to a point p. Then the sequence of segments {7 (p,, % (%))} contains a
subsequence coverging to a ray ¢ and having the initial point p, and ¥ is said a coray from
p to I. H.Busemann (2) proved that the above limit is equivalent to thé closed limit
introduced by Hausdorff.

It is clear that there is not necessarily a unique coray & from ptol, But if qet—p,
then there is, one and only one coray from g to I, and the coray is a subray of & (3). The
union A of all the cariers of the corays to | which contain & as subray is said an asym-
ptote .to [, If the asymptote 9 carries a straight line, then there does not exist the initial
point of 21 but generally exists. The initial point of 9 is said an asymptotic conjugélte
point to |. The_re érise many interesting problems for the set of asymptotic conjugate
points, and some of the results (8] obtained by the author will be published elsewhere.

Specialy, if @ is straight, then the set of asymptotic conjugate points to aray |

. is empty. In other words, every asymptote carries ‘a straight line. In this €ase, the theory
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of asymptotes is simple and the sequence {p.]} in the defintion of corays can be substituted
by only one point p. If a G-space @& has non-positive curvature in H.Busemann’s sense
and is straight, then the conceﬁt of asymptoteé is symmetric and transitive, in other words,
if 2f is an asymptote to I, then the straight line carrying [ is an asymptote to 2I.
H.Busemann (3] obtained the many results by making use of this property.But even if @&

has non-positive curvature in the present sense and is straight, the concept of asymptotes is
not necessarily symmetric and transitive. Therefore many results corresponding to the
Busemann’s cannot be obtained. ‘We also come to the same conclusion in a straight
G-spa_c_e with non-positive curvature in the sense of F.P.Pederson. F.P.Pederson assumed
in (4] the divergence property: “ZTwo rays & and ¥ having the same initial point satisfy
the cpnditions:
tZim x(1) E’=tl_z;111 £ () =+ oo,

where x(1) , 0 <t <+ o0,; &' (#'), 0 Xt <+ 0, denote parametric representations of &, &'
respectively”. .

Under this assumption, he obtained many results analogous to the Busemann’s.
We can also in the present sense obtain these results. But it is important to investigate
more precisely the properties of divergence and domaine invariance. We. hope to study
these two properties and moreover the property of set of the asymptotic conjugate points

to a ray in differentiable Riemannian or Finsler manifolds in a later paper.
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