ON THE NORMALITY IN MINKOWSKIAN SPACES

Yasuo NASU

(Received Sept. 30 1954)

In an #-dimensional Euclidean space R, let a function F (&) defined on vectors X
=(&,8&, ... , §") be positive homogeneous of the first order in the variables &'s. 1t C:
F (§)=1 is convex, then we can define a Minkowskian space R by inaking use of C as

unit sphere. Specially, if C is convex and differentiable, a transversal hyperplane to a

vector Xo=(§,, &, ---rooe- ,» §%) is given by
(0.1) =z (ili> (6—&)=y.
’ i=1 o&t ¢

In this case, we sajr that” the vector X, is normal to the hyperplane (0,1) or tha’; the
hyperplane (0,1) is transversal to X,. H.Busemann extended the concepts of the normality
and the transversaltiy by rnaking_ use of the S-function defined in his work (1] and he
briefly proved A.E. Taylor’s theorem (see (2)). On the other hand, W. Barthel (3] studied
Minkowskian spaces from the standpoint of volume and area defined by H.Busemann. If
C is merely strictly convex, we can introduce the concepts of curvature and curve length
by using Minkowskian metric, area, and volume in place of Euclidean metric, area, and
volume respectively. We shall devote this note to extend (0,1) to the conditon of nor-
mality and transversality in H.Busemann’s sense. W.Barthel (3) incompletely studied
this problem. We shall deal with the part overlooked by him. We assume in this note
that C has a point as center, i. e, F(&)=F(-¢). '

//

1. Let V be a set on an aflat A in R, then the Minkowskian area RALES

defined by
@ VP VE, o()=o@) ),

where (@) = n 92/ (~g—+ 1) is the volume of the Euclidean unit sphere in A, | VIE

denctes the Lebesgue measure of V, and U (A) denotes the point set in which the a-flat
parallel to A through the center of C intersects the interior of C. ‘ '

Let the a-flat A intersects the bflat B in the dflat D where d is given by min
(@,0)=d+1. At this time, siz(A,B) is defined and b (=a+b—d) is the dimension
of the flat @ spanned by 4 and B. We shall call m-box an m-dimensional parallelepiped,

and denote it by P,,. Let P; be a proper d-box in D and P,, P, proper @ and b-boxes
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in A and B respectively, which contain Py as face. Let P, be the g-box spanned by
the boxes P, and Pj. Then we define the function Sm (A, B) a3 follows:

(1,2) Sm(A, B) =|P,M | P,M)| p, M | Py |M
=sin (A, B) (D) (Q)/s(A)s(B).
We can easily show that the above definition does not depend on the choice of the boxes
s Pb, F;. We say that A s normal to B in Q 44 D, or B is transversal to A in Q
at D, when Sm (A*, B)<Sm (4,B) Jor any a-flat A* through D inQ,

If we take a system of orthogonal unit vectors X, =(¢, E:-, ------ y €D (@E=1,9, -, a)

]
parallel to A, then o(A4) is represented by

\

3 T (D=0@/ [Gur....qu0
F(eah)<1

Hereafter we shall put o(A)=Fa(X,, ...... » Xa). Let X; (¢=1,2, - » @) be other inde-
pendent vectors parallel to A, then we have

Xy =31CX;, detIC |+,
7

By putting #* =25 G, ¥, we have
k

(1,4) Fa(x, ..., X',,)zww)/ f QU e iy
F(&a")<1

=F@ (X, ... , X,) [det 1Cn |,

Hence we have the function F(@)(X, X, g Trereeens » Xz) defined on linealy independent
vectors X, X, , ----.. » Xo KX, Xy, e

» <Xg are in partciular linearly dependent,
then we assume FO)(X,, X, ...... X2)=0. Next, we shall deal with the relation
between . the differentiability of F (“)(Xl . ; a), with respect to the éempomnents
of vectors and that of the indicatrix function F (&) with respect to the variables &'s.
(2,5). Let X;, X,, -cvee.... » Xo—1 be a system of orthogonal unit vectors parallel to
an (a—l)—fldi & containing the centey of C let Cp be the inlersection of the interior of
C and @; Iot o vector X, be perpendiculars 1, &; let ¥ be a half aflat spanned by the
vector X, and @; and I pe 4 2flat perpendicular to ¥ at O whicy, contains X,. If | ¥ C|L

is laid off on the ray ¥ (I from O when ¥ varies under the above condz'z;ion and @, []

are fixed, then the resulting curve I' in [T is differentiable when F (&) is dfferentiable.
* Hereafer we use the term “perpendicular” in the Euclidean sense.
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Furthermore the ordey of  differentiability of I is not less than that of F(&). Ir Cis
(strictly) convex, then I' is also (strictly) convex. :

We introduce rectangular coordinates (x,y, %Y -+ -..... , #%71) with O as origin,
such that //is the (x, ¥) -plane and @ is the (o) e » #®71) _plane. We also introduce

polar coordinates (7, ¢) in JJ. Then the equations of /" are given by

x= (fr (@ uty -oneee » wTL) dut-dut=1y cose,
Co

y=(fr (psut, -oone, yo—1) du'---du®=1) sing,
Cyp ’ '

where 7 (¢ u’, ... » #°71) is the length of segment cut off by C[]¥ on the ray perpen-
dicular to Cp at (0,0, U, e » #971) and ¢ is the angle between the ray //[1¥ and
Faxis.If Cis (strictly) convex, then the functions 7(¢;u, ------ » #21) cose and 1 (¢ ; w0,
------ » #°71) sing are both (strictly) convex as ¢ varies and 'y, 41 are fixed. This
fact yields that, if Cis (strictly) convex, then I is also (strictly) convex.

_On the other hand, » (727 SO , ugl—l) is the moving radius of the intersection
of C and the 2flat paralle] to z7 8t (0,8 288, s » #371) whose parameter is . If we
take a rectangular coordinate system (x, y, !, --. ... yut 1l ya ... u"")with O as origin,

then &', ...... » §” are represented by the linear combination:

In the equaton of C, if we substitute (x,9,0, .. » u"2) for (&, oo » €”) and put
¥=rCos e, y=rsing, w=u:, W=, sson » w8 l=00=1 e o=y ~2= 0 we then
have the equation of the intersection of C and the 2-flat parallel to /] at (0,0, -+ ’

#?~1) as an ‘implicit function. .
~From the theorem of “implicit functions and the differentiability of F (), we
see that the order of the differentiability 0;‘. r wiith fespect to ¢ is not less than that of
F (&) in the €s. Thus we complete the proof of (1.5).
We can easily see from the explanation in the next paragraph that Fa(Xx,, X,,
""""" » Xz) is differentiable with respect to the components of vectors, when F (&)

is differentiable, and that the order of differentability is not less than that of F ®.

2. In this paragraph, we shall directly extend (0.1) to the condition of normality

and transversality in H. Busemann’s sense. Generally that A4 is normal to B does not
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imply that B is norma] to' A: Therefore we must distinguish the two cases a=d-+1 and

b=d+1 for our purpose.
I a=d+1: Let A* be an a-flat perpendicular to B at D; let z bé a vertex of

Pd, and let 2% be the ray perpenchcular to B at 2. Then 2z* is contained in A¥. Let B¥*
be the b-flat conta_ining the b-face parallel to B. Then the a@-box P, is cut off by B and
B* on the aflat A through D in @, Let 6 be the angle between the ray 2z* and the
- ray 2% perpendicular to D in A. Then we have

'fPaJL =sec § JPZ‘[L,

where P} is the a-box cut off by B and B* on A*. From-the definition of Sm(A4, B),
we can easily see that A is normal to B, when secf o(A) is minimal (or |U (A) [L cosg
sSomstmAly, Lag Koy Xam1, X0 XKe v Xa 1, Xaggyo X (XKoo y Xp 1) be
the system of orthogonal unit vectors with the directions of edges of P, , Py, P, at z

respectively. The unit vector X, with the direction zx is represented by

. _ ;
X,=uc XZ-{—%“’H Xa+1+’ ......... +quq (ﬂé‘a (uc>2 :1>

By virtue of the definition of F\9(X,, ---=, X,) if we put A= |UCA) &, we get
ﬂ)(a) :Z F(a)<X1’ ......... ,Xa>:1;‘(a)<X1, """"" 5 Xa_i,XXa>-

Hence the (¢—d-+1) -dimensional hypersurface
T FO(X,, e, X, 48 X w5t Xy e + 11X, )= @

is the locus of the points % such that zx= |UCA) Y, when A varies. If C is strictly
convex' then so is 7, and its order of d1fferent1ab111ty with respect to the variables #’s
is not less than that of C. Therefore the supporting plane of 7 parallel to B in Q is
unique and has only one common point with 7, when C is strictly convex. Let this
common point be % . Then the a-flat A spanned by 2% and D is normal to B. The
direction perpendicular to this spupporting plane is given by

( L ) ( OF@N ( OF@ \ )
v ou? oo 3ua+1) 0 ’ oud )o
where (), denotes the value at %, and this vector is proportional to (1,0, - -----.... ,0)

which coincides with X;. Hence, in order thai A is normal to B, when C js strictly




On the Normality in Minkowskian Spaces 15

convex and differentiable, the. condition

oF(a) .
agi- 5:1#0’
a
(2.2) -
oF\a . s )
( aEz Eé =0 (C-:(Z-}—l’ ......... ,q>
a

is necessary and sufficient. If a=1 and b=n—1, then B is a hyperplane and d= 0. In this
case, T coincides with C: F (§)=1 and we have the condition (0. 1) as aspecial case of (2.2).

II b=d+1.In this case, let A*, B, D be spanned by the systems of orthogonal
unit vectors (X, ------ v Xp1 Xipq, oo , X;k), (X, , -eeee Xo—1, Xp), (K, , coveee o Xp_1)
respectively, and let z be a vertex of F,;. The ray zz* perpendicular to A% at z s contained
in B, Accordingly, we know that zz* has the same direction as Xj. Let G be the set of
all lines perpendicular to A* at every point of BT, We shall consider in @ the a-box P,
cut off by G on the a-flat A through D. We can easily find that | Pyl=|PIL secd,
where ¢ is the angle between the ray zx perpendicular to A at 2z and the ray zz*, and
Sm(A, B) has the maximal value if and only if |U(A)E cos@ is maximal, when A
varies and Pp is fixed. This fact easily follows from the definition of Sm(A, B).
Therefore we know that an a-flat perpendicular to such ray zx at D is normal to B.
Next we shall assume that C is differentiable and strictly convex. Let A be spanned by a
system of orthogonal unit vectors (X,, = Xp_1, Xpr1ee, X4). Then the vector X perpen-

“dicular to A is expressible by

‘ .
(2.3) X=ub Xy +ub+1 XZ"_H e s o mme : —I—thX; ( = (uC)2=1>
c=b .
The components of the vector X is also expressible in terms of components of the unit
vectors X,, X, , e - s Xt Kgopgy =osses b. ) A » Yy_gwhere Y, . cveeennn. s X
is a system of orthogonal unit vecotors perpendicular to @ in R. Therefore F@) (X, ... ,
Xp—1, Xppq, -oeveeees » Xz) is a functon on the unit vectors expressed by (2.3). Hence we
can put ‘
(2.4) F@)(X,, ... R T N — Xy
=TF(@) (yb Xy + ud+1 X;‘_H_,_ ......... _|_qu;‘>

From this, we can easily prove that F(a)(X) is represented by F(@) (g, ...... , ™) where
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in other words, F(@) (X, oeeee » Xp—1, Xpp 1, woeeee » Xg) is also a function on X=(&, -,
£"). Furthermore, F(2) (X) is positve homogeneous of the first order in the'variables &’s.

Hence by virtue of the definition of the function F@ (X) we have
(2.4) : F@ (uP Xy +ub+1 X?—f—l o i § S + 24 X:Zk)zw(a‘): '

if we use (%0, ub+1, ...... »#7) in place of (Aud, dub+1 ...... » 2u?) where ] denotes | U(A)IL.
We can easily find that the order of differentiabilty of F(@) (X, -----. s X1, Xppp, oo s

Xy) with respect to the variables ¢'s is not less than that of F(@ (X, ----.. » Xp—1, Xpi1,
--;---,Xq) with respect to the vector components. :

» If |UCAE is 1aid off on the ray 2% perpendicular to A from z. the equation
(2.4) is the locus of the end points in €, We shall denote this locus by 7. If C is strictly
convex and differentiable then so is 7. | U (A) |£ cosh is maximal when the supporting
plane of T is perpendicular to zz*. At this time, this supporting plane has only one
common point % with 7. The a-flat perpendicular to 2%, is normal to' B at D. This fact
yields that the vector

' aF(a 3F (@) (@)
@,5) (G ), (Bm) o B
ou 0 ou 0 ou? 0
is proportional to (1,0, ---weee... 0) where (), denotes the value at X, . Hence, in order that

A is normal to B the Sfollowing condition is necessary and sufficient.

oF(a) .
“oE & %o,
(2.6)
dF (@)

28 EZ‘i =0 (c=b+ I, coeeeeens , Q).
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W. Barthel did not distinguish the two cases I, II. and his theory was also ambigu- -
ous because he did not make use of the property of the-locus 7 in I, IL

Kumamoto Univ.
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