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1. The widest generalization of the theorems on existence of solutions of the differen-
tial equation:

where x denotes a point of the #-dimensional vector space R” and ¢ a real number, to the
case of an infinite-dimensional vector space E, seems not to have ever been given. It has already
been classical that Piacrd’S‘existeﬁée theorem, i.e. the existence theorem under Lipschitz
condition holds true in any Banach space. But Peano’s existence theorem, i.e. the existence
theorem under the condition of continuity alone of the functon f(x, £) cannot always be
valid. In fact, an example to the contrary was given by J. Diudonné [1)®.

On the other hand it was proved by A. Tychonoff [2) that Peano’s existence theorem
holds true in case E is a product space lli R} of one-dimensional spaces K} with product
topology. Therefore, in our case of generalization of #-dimensional space to infinite-dimensional
ones, it might be more natural to consider £ as a product space than as a Banach space.

Now, as is easily seen, Peano’s existence theorem bases its validity on that of Arzeld’s
theorem, whose proof is essentially based on the two properties, i.e. the completeness of
the space E and the property, which shall be called here temporarily property (M) and is
stated as follows: “every bounded subset of the space is relatively compact.” These two
properties are preserved on the procedure of product of spaces (3, Chap. I, 10, Th. 2, Cor.
and Chap. II, 5, Prop. 4). A Banach space provided with these two properties is no otﬁer
than finite-dimensional, which is trivial. Among infinite-dimensional vector spaces with these
two properties, most particular is a space (M), i.e. a locally convex, metrisable, and
complete space, with these two properties (4, p. 79). This space has almost fhe same
character as. a finite-dimensional space K". Hence it will be natural to expect the validity of
Peano’s existence theorem in a space (M), and moreover, after Tyconoff’s procedure (2],

in a product space of spaces (M) with product topology, which will be verified in the
following,

2. Let E be a space (M). Since E is metrisable, its topology is defined by a denom-
brable sequence of semi-norms {p.} (5, Chap. 1I, 5, Prop. 6). Let x(#) denote a function

(1) Numbers in brackets refer to the bibilography at the end of the paper.




120 M. INABA

on the closed bounded interval I=[a, &] to E.

Lemma 1. If the sequence of fuuctions {x™ (¥)} is equicontinuous in the interval I and
is convergent on a subset M dense in the interval I, then it converges uniformly in the whole
interval I.

The proof is analogous to that of the one-dimensional space (6, p. 61, Hilfsatz 23,
with slight modifications on uniform continuity as follows: for an arbitrary positive number
¢ and an.arbitrary set of semi-norms {Pn,, Dny,y -ooooe , D}, there exists a positive integer

N, such that the inequalities
m, m' >N
imply those

P (™ (@) — 2™ (1)) <, (F=1,8, -w=ener B

for every tel.

Lemma 2. If functions of the sequeuce {x™ ()} arve equicontinuous in the interval I
and bounded at évery point of the interval I, then there exisils such a subsequence {x™ ()}
as converges uniformly in the whole interual I.

The proof follows, by virtue of the property (M), from Lemma 1, analogously to the
case of the one-dimensional space (6, p. 60, Hilfsatz 1].

~ We denote the set of all functions % () on I to E, continuous in the interval I by
C (I; E) or simply C, and each function % (#) considered as element of C by X. Let X+
denote the sum function % ({)+y (Z) and « X, where ¢ denotes a real (or complex) number,
the product function ax (#) multiplied by «, and then the set C will be a vector space.

Moreover, if we define ¢, (x) as follows:

q, (x) = ?Exp b, (x (t))’ e s et S A S BRI 4 DS S0 S - v ©))

then each ¢, is, as is easily seen, semi-norm of the vector space C. Thus the vector space
C will be topologized by a denombrable sequence of semi-norms (g, n= 1,2, e } and
then shall be denote by C(I, E; ¢q,, n=1,2,--- ) or simply by C(Z, E; q,). The
completeness of the space E implies that of the space C (I, E; gq,).

Since the space C (I, E; gq,) is metrisable,- compactness and sequential compactness
are coincident, and threfore we shall have the following fundamental

Lemma 3. (Arzela) A subst F of the space C (I, E; q,), consisting of functions x ()
equicontinuous i ihe interval I and uniformly bounded there, is relativelj/ compact.
3. Let E be a space (M), and f («, ) a function on EXI to E, where I=[l,,
t, + 7]. '
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Theorem. Let the function f (x, t) be continuous and bounded in EX I, i,e. for every
7 let there exists a positive constant M, such that

2. (f(x, )M,
Then there exists at least one solution of the differential equation (1):

L —fn D

which satisfies the initial condition: x = x° for t = #, and is defined in the interval I.

Proof. The problem can be reduced to the existence of solutions of the integral equa-
tion:

x(@) =2+ S: flx (@), t)dt, x () eC (I, E; q,) ovooveereereenns (3

Now, let X the set of all functions C (I, E; g,) which satisfy the following conditions:

@, P2.(x®—2")ZM,

x(t+h)—x(2
@, timsup p, (D= 5
=0
Then the set X will be easily found to satisfy the conditions of Lemma 3, and therefore it

is relatively compact. Since it is closed, it is compact, and obviously convex.
The relation

y(@) =x"+ S:of(x ), t) df ....................... e (4)

will define a transformation @:

y=0(x)
which transforms the set X into X-
(X)X
‘Indeed,
2OW-D=p({raemnm< ([ pFE®, na
- .
and

lim sup p,

h—0

(2ED=y() ) =timsw £, (5 (" (x (), £ D)
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1 t+h

= tim sup 57 (| 2. F @, Dy aD)
h—>0 z ”

< lim sup _l;il"' |h|. M, =M,
h—0 3

The transformation is continuous. Indeed, let
y =2 (x)
and then

P =@ = .| f(x@®, D —FE®, O} &)

x

< (oo n-rGEon na

Now let €, ¢ be arbitrarily given positive numberss, such that & < e. Because of the

continuity of the function f (%, 1), there exist a finite set of positive integers my ,my s

m;,} and that of positive numbers {0}, Oy, o , 0.} such that the inequalities:
pm;.‘ (x (t) —x) < 5? (] =1,2, )
imply those ~
. ; — I3
D, {f(x(t), 1) -—f(x (t>, H < et R g e+ R 5)

Hence much more the inequalities
g (x =) < [ == Ty By o o 1)
imply (5), accordingly
2. (0@ —y @) <€,
therefore '
7.y —y) =< e

According to the above argument, for any pair of a finite set of positive integers

m, gy , %} and that of positive numbers {&, , &, == , €}, there exist a finite

NP W/ =1,2, k
set of positive integers m;(

. ) and that of positive numbers 8}’
J = 1,2, -ceeeeene ; li

> such that the inequalities

G (3 — %) < O

imply those




4
| 4

On Differential Fquations in Locally Convex Spaces of some Types 123

gn: (¥ — ¥) <oy,
which shows the continuity of the transformation ¥ = @ (%)  ‘Hence from Tychonoff’s fixed
points theorem follows that the transformation ¥ = @ (%) of the compact convex subset X
into itself has at least one fixed point x¢ X: x = @ (x), which proves the theorem.

4. Let E, be a space (M) for each index A¢d, and its defining sequence of semi-
norms {Px1, Pazs y Davm s oo ---}. The product space E= 17 E; with product topology
is complete, since so is each E, (/16/1) and is provided with th° property .(M) (but not
necessarily a space (M) except in case the set of index A is at most denornbrable). Each

point X of the space E can be represented by
= (e Ky e ), 2,¢E,, Qe

Let f(x, ¢) denote a function on the product space EX I to E and f (%, t) its projection
on E), and then the function f (x, ¢) is represented as follows:

f(x’ t) = ( ......... ; f)‘ (x’ t>, ......... >, Aed.

The boundedness of the function f (x,?) is represented as follows: for every 4,7 there exists

a positive number M,,, such that

plvn (f (xr t)) g M)nn .

The theorem will be found to hold true in the product space E by some modifications
of Tychonoff’s procedure (2] as follows. Let C, X, p,, M, corresponding to each Ej be
denoted by C,, Xy, Pan> My, and then X, is compact and convex. Each point X of C
corresponding to product space E= k[i E, is represented by

x=< ...... ) Koy e >, x}ec}‘,

and C itself is a product space of C, (A€ ) with product topology (3, Chap, I, 8, Prop.

2, Cor. 1J:
C = H C)‘.
AsA
The space C is complete as product space of complete spaces. Let X denote the product
space /1 X, of subsets X, (Ae4), and then X is also compact and convex as product of

such ones. On the other hand X is'considered as a set of pomt x of C satisfying the follow-
ing condition:

(@hn Dra(x (@) — )M,

B lim sup prn (ZERZED 5y
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Since the topology of the product space E=;\” E, is defined by the family of semi-
€A

norms {Prxns Aed, n=1,2,----- }, the remaining pracess is quite analogous to that of
Tychonoff (2].
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