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REMARKS ON DUALITY IN LINEAR SPACES

Keishirs OHIRA

(Recieved January 10, 1955)

1. Introduction. Given any locally convex topological real or complex linear (Hausdorff)
space E, a topology ¢ for its conjugate space E* is cafled reflexive if E is algebraically
isomorphic to its second conjugate space E** under the “natural” mapping (cf. (1I2 ). It is
well known that if the closed convexification of a compact subset in F is again compact,
the k-topology for E¥ (i.e. the topology for E* according to which convergence of functionals
means uniform convergence on the compact subsets of E) is reflexive. In this paper we will
note that this condition is also necessary for reflexivity of the k-topology for E¥.

Therefore, it becomes clear that the following conditions are equivalent:

(1) The k-topology for E* is reflexive.

(2) The closed convexification of a compact subset in E' is again compact.

(3) The k-topology for E* is equivalent to the c- topelogy i.e. the topology of uniform
convergence on the convex, compact subsets of E.

(4) The k-topology for E* is weaker than the «- topology i.e. the topology of uniform
convergence on the convex, weakly compact subsets of E.

M. F. Smith considered the following question in his foregoing paper (cf. (2)). ”For what class
of topological groups does the Pontrjagin duality theovem hold » He answered this question in
part, by showing that in reflexive real linear spaces and real Banach spaces the Pontrjagin
Duality Theorem is valid. By applying our result, we shall answer the above question completely
in the case that the considered topological group is a locally convex topological real linear
(Hausdorff) space. Our answer is stated as follows. Let E be a locally convex topological real

linear (Hausdorff) space. In order that the Pontrjagin Duality Theorem should be valid in

_ E as a topologicai group, the following conditions are necessary and sufficient:

(1) The closed convexification of a compact subset in K is again compact.

(2) Any k-compact subset of the conjugate space E¥ is equicontinuous.

2. Preliminaries.

Let E be a locally coﬁvex topological real or complex (Hausdorff) space, E* its con-
jugate space, i.e. the space of continuous linear functionals on E. The zero vector in E is
denoted by 8, the zere functionsl en E by 6*. Let E* he the space E with the topology ?.
When we wish to talk of a notion in the #topolegy, we shall refer to f-notion— e. .

‘1) Numbers in brackets refer to the bibliography at ‘the end of the paper.
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f-compactness, imeighborhood. A topology ? for E*%s called reflexive if E is algebraically
isomorphic to E** under the “natural” mapping N defined by
N (x) = X if and only if F (%) = X (f) for all fe E*. (x¢E, XeE*.)

The polar in E* of a set K in E, denoted by K°, is the set of all f in E¥ such that,
i xisin K, then |f (x)|<Z1. The polar in E of a set K in E* is defined as the set of
a1l x in E such that, if fis in K, then |f(%)|< 1. Furthrmore, a set K such that, if
A+p=1, andif 4, 2=0, then AK+p K C K, isconvex, aset K such that, if |2] =1, then
2K K, is circled. The smallest convex enveloped of a set K is called the convexification
of the set K, and denoted by Kuome. The closure of a set K is denoted by K.

We use the notions of the k-, p-, ¢, weak k-topologies and the topology which we
call k*-topology. The topology for E* of uniform convergence on compact subsets of E
is called P-topology, and k-neighorhoods of 6* are the sets K°, where K is a compact subset
of E. The topology (for E*) of simple convergence, is called p-topology, and p-neighborhoods
of 6% are the sets K°, where K is a finite set of E. Furthermore, we call C-iopology the
topology for E* of uniform convergence on convex, compact subsets of E, and c- neighbor-
hoods of 6% are the set K°, where K is a convex compact subset of E. The weak topology
for E has neighborhoods of 6 of the form K°, where K° is the polar in E of a set K in
E*. The topology for E¥ of uniform convergence on convex, weakly compact subsets of E,
is called x-fopology, and has neighborhoods of 6* of the form K°, where K is a convex,
weakly compact subset of E. The kE*-topology for E has neighborhoods of ¢ of the form K°
where K is the polar in E of a k-compact set in E*. This k*topology is strorlger than
original topology for E. '

Next, assume that E is a 1ocahy convex topological real linear (Hausdorff) space, and
that E is the character group of E as a topological group. The Pontrjagin Duality Theorem,
known to be true for locally compact groups, asserts that the given group E and the character
group E of its chardcter group E are isomorphic under the “natural” mapping M defined
by : _ '
M(%) = @ if and only if (%) = @(¢) for all peE. (x¢E, PcE.)
We shall answer the following question completely in section 4: “For what class of linear spaces
as topologzcal groups does the Pontrjagin theorem hold > We shall denote the set of all f
sausfymg the condition X by {f; X}. : '

3. Reerxwrty of k- topology.

Let E be a Tocally convex topologmal real or cornplex lmear (Hausdorff) space, E* its

con]ugate space.  We prove ‘at first -the following
LFMMA IfFAisa k nezgoborhood in E* then k*. topoloay is equwalent with weak topology
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on A°, where A° is the polarin E.

Proof. To prove this lemma, it is sufficient to show that, corresponding to each %&*-
neighborhood Nk*<xo):xg + C° of a point % e A, where C is a k-compact set in E¥, a

weak neighborhood N”(%,) of a point % can be found, such that
N (x) N A° = N*"(x,) ] A°.

Now, let Nk(f) =f+ (1/4)A (feE*), and let Ny (0)={4f}°. Then, if g¢ Kk(f),
xeN/(6) A°, “then4(g —f)eA, xcA°, and xe {4f1°. Therefore, we have two
inequalities:

lg®) — D<K, If@IZ 14
Hence, |¢ ()| <2 (x) — £ ()| + |7 () | <1

That is, corresponding to each feC, there exists a k-neighborchood N*(f) and a
weak neighborhood Mu(ﬁ), stich that lg ()| < 1/2 for all ge N (f) and xeN;(6)[)A°.
Let f,,..., f, be a finite number of points in -C such that Ux_, Nk(fa) covers C, and let
N(x)= x, + U:-IZMt(ﬁ). Now, assume that xe N (%,) (] A°. If f e C, ‘then felvk(fa)

for some «, and 1/2 x—1/2x, EN;; (6). Since A° is a -convex circled set, we have the

relation 1/2 £—1/2 %, ¢ A°. ‘Therefore, 1/2 x—1/2 %, € Nf’:(ﬁ) 1 A°. Hence |f (1/2 x —1/2%,) |
=1/2. That is, {f(x—x,)| < 1. Therefore, x—, e C°. That is, x ¢ %, +-C°=Nk*<xo>. Hence,
N*(x) ) A° = N*"(x) [ A°.

Next, using the above lemma, we prove our main

Tusoren 1. Let E be a locally convex topological real or complex livear (Hausdorff)
space, E* its conjugate space. If the k-topology for E* is reflexive, then the closed convexifi-
cation of a compact subset in E is again compact.

Proof. Assume that the A-topology for E¥ is reflexive, and let K be a compact set in
E. Then the polar A=K" in E* is a #neighborhood. Since the polar A°=K°° in E*** ig
D-compact, and the k-topology for E* is reflexive, the polar A°=K°° in E is weakly compact.
Therefore, by the above lemma, A°=K"° is £#*.compact. Hence, K°° is a convex, circled,
compact set in E. Since Kl C K°°, we see that Kb, is compact.

From the above theorem 1, we have the following

Cororrary. Let E be a locally convex topological real or complex linear (Hausdorff) space,
E* its conjugate space. The following four conditions are equivalesnt:

(1) The k-topology for E* is reflexive.

(2) The closed convexificaiton of a compact subset in E is again compact.

(8) The k-topology for E* is equivalent to the C-topology.
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(4) The k-topology for E* is weaker than the k-topology.

4. The Pontriagin Duality Theorem in linear space.

From theorem 1, we have the following

Tueoren 2. Let E be a locally convex topologzcal real linear (Hausdo;ff) space. In
order that the Pontrjagin Dulity Theorem should be valid in E as a topological group, the
following conditions are necessary and sufficient:

(1) The closed convexification of a compact subset in E is again compact.

(2) Any k-compact subset of the coujugate space E** is equicontinuous.

Proof. The character group E of E as a topological group and E** are algebraically
and topologically equivalent as topological groups under the mapping 7" of E** into E defined
by

Tf = X where X (x)=exp [if (x)] for all x¢eE.

(cf. (2)). Indeed, by lemma 1 in (2), E** and E are algebraically isomorphic groups. It is
clear that 7 is continuous. For a open k-neighborhood (K, e)={feE¥* |[f(x)|<e xeK,
K compact, K C E. }/ of 0% in E*, let K, = U:___, A, K, where A,=(2nz—c¢)/(2nm+ ¢)
(n7=0), 4 =1, and let &, <e. Then, we-see that

(fe E* |7 —1]<e,, xe K, }C(K, e),

and K, is a compact set in E. Therefore the inverse mapping 7~ is continuous.
Therefore, to prove this theorem 2, it is sufficient to show that, in order that E****

and E should be algebraically and topologically equivalent, two conditions (1), (2) of this
theorem 2 are necessary and sufficient. By theorem 1, we see that the condition (1) is

necessary and sufficient for algebraical equivalence of E**** and E. We can show easily that

the condition (2) is necessary and sufficient for topological equivalence of E**** and E.
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