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1. Preliminary. We consider a sequence space E, which is an (abstract) linear space
and consists of infinite sequences X= {%,, %, ===+ . ), called points of the space E,
where each %, (n=1,2, - ) is an element of each linear convex space [, and is called
the #-th coordinate of the point X. A sequence space E is called a coordinated space if it
is topologized locally convex with a fundamental system of neighbourhoods U= {U} such
that each mapping %, (x): x—x, (=1,2, - ) is linear and continuous. For any point
x= {x%, %, -, %, }, the point, which is constructed by equating some of the coordinates
of X to zero, is called a projection of the point X, and especially that which is constructed
by equating the coordinates with indices greater than 7 to zero, is denoted by xl3,

We call a coordinated space E to have the property (P), if, for every neighbourhood
of the origin U (of the fundamental system 1), the relation % ¢ U implies that [projection of
x] e U. For the future we shall assume this property; indeed, a great number of usual ab-
stract spaces have it, as most Banach spaces (e.g. space (I”) (#>>1), space (¢), space (m),
and space (¢) ), the product space of an enumerable number of spaces of real numbers, and
its subspaces. For an point X of E there is considered a sequence of points {«™}. The space
E is called to have the property “Abschnittskonvergenz” or simply (AK)[1]Vif, for every
point X, the corresponding sequence {x"'} convergss to x, that is, if, for an arbitrary
neighbourhood of the origin U ¢ 11, there exists a positive integer IV such that x—x™ e U for
n>N. Among the spaces above indicated, the first two and the product space have this
property, but the second two have not. In the space E provided with the property (P), the
property (AK) is stated simplied as follows: for an arbitrary neighbourhood of the origin
Uell, there exists a positive integer N such that x—x"1e U. For the future we shall
consider only coordinated spaces with the two properties (P) and (AK).

Here we introduce a lemma on (AK) for continuous functions. Let I be a compact
interval [z, T], and % (¢) a continuous function on I to E. Then the 7-th coordinate
%, (#)=x, (x(¢)) is also continuous as continuous function of a continuous function, and
therefore so is x1 (¢) as finite sum of continuous functions.

Lemma 1. Let x(t) be a continuous function on I to E. Then, 2™ (t) converges to
x(t) wniformly for tel, that is, given an arbitrary neighbourhood Uell, there exists a
positive integer Ny, (dependent on U, but independent of t) such that x (t)—x" () e U for
7 2 No.

(1) Numbers in brackets refer to the bibliograply at the end of the paper.
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PROOF. For given Uell, there exists a positive integer N (U, t) (depending on U
and ?), such that for n > N '

x (D) —x™ () e %U e (1)

Because of the continuity of the function % (2)— ™ (#), there exists a positive number &
(depending on U, ¢ and NV, hence on U and £) such that the inequality |¢—#'|<6 implies

the relation
{x @)—a™ (D)} —{x (1) —2™1(#) e %U .............................. (2)

The relations (1) and (2) imply that
x () —x (i’)EU ............................................................ (3)

for [#—2'|<8. In other words, for every point # of I, there corresponds a pair of a positive
integer /V and an open interval [; = {¢/; |t—#'| <6} (a half open interval, at the terminals
7 and 7), such that the relations (3) holds there. By virtue of Heine-Borel covering theorem,
there exist a finite set of such intervals [y, L, , -+ , It,, as cover the whole interval I,
and a finite set of corresponding postive intergers, namely N, , Ny, ==+ , N,.. Let N, be
the maximum of these positive integers. Then, for an an arbitrary ¢ of I, there exixts an

interval Li of the set such that ie:Iti , and therefore
x()—xPd () eU,

by the property (P), we have
()= () eU

which proves the lemma.

2. Continuous Dependency and Uniqueness. In this paragraph, we shall assume only
the completeness of the linear convex space E. Let I be a compact interval [0, 7] and
S (2, %) a function on IXE to E. For the future we shall assume the continuity of f (£, x)
with respect to (Z, x). Lipschitz condition shall be stated in a more general form as follows:
for the function f (¢, x) there exists a positive, (Riemann-) integrable function x (%), such
that S:ﬂu (#) dt <o and that, for an arbitrary neighbourhood of the origin U e, the
relation & — %' e U implies that f (¢, x) —f ({,x") e (¢). U for every pair of points %, &’
belonging to the space E (or, if necessary, to a given domain of E).

The problem of an ordinary differential equation:
dx .
TR S P, ) e s s oo e oo § 5 s » SRS § SRS § SRS § SV § S 5 € 5o i
y F(tx) (I)

under the initial conditions: x=a for =0, can be, as usually, reduced to the problem of the




Differential Equations in Coordinated Spaces. 235

integral equation:
z
x(@)=a+ Sf(t, K(E)) dE ceerre (ID)
0

In the present paper we shall assume the existence of a solution x (), instead of proving
it, which may be difficult or, it seems, impossible under the conditions postulated in the
present paper. The following theorem, although it does not immediately refer to the main
subject of the paper, will afford the essential of the procedure of the proofs.

Theorem 1. (Continuous dependency) Let f (¢, %) and g (%, %) be functions on IXE
to E and continuous, and we assume that the latter satisfies Lipschitz condition. Further, let

x (%) be a solution of the equation (1) and y (1) that of the equaiion

both under the same initial condition.

Then, for a given neighbourhood of the origin U e, the relation
F@x)—gt,x)elU, for tel, xcE
implies that x (£)—y (t) eoU, , where o is an arbitrarily given positive number such that
a>Te Sg’u(t),z: )
PROOF From the definition of % (#) and y (¢), it follows that
O —y® = x®) -y @) a
A ICEIO B CRION L
t
g S [g(t (1)) — g, vy @) dt s (5)

From one of the assumptions, we have

f(t, x(t)).__g(t’ x(t))er, ............................................. (6)

therefore
(ra sen-ga@ s aterw,

The functions % (¢) and ¥ (#) are, as solutions of the differential equations, continuous
functions of #, and so is the difference % (£)—2y (%). Since the set of points {x () —y (%);
tel } is compact as continuous image of the compact set I, there exists a positive number A
such that

x(t).-.y(t)eon for te] ...... | sieimis eiwieTNie 8 SiwiWiese iwie o wieseimie w eeiTe siegwieie ® wiwieb @ Sy (7)
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Lipschitz condition upon the function g (#, x) and the relation (7) give the relation

gt x@)) =g, vy () €A () Uy, vorvvrvvemmmrmeieiiiiiiiiniii (8)

therefore we have ,
(et s —gty@Natea([n@ar) U, e (9
hence from the equality (5),

x (t) —y (i) e (t_}_ 2 S:'a (t) dt). UO ....... s 5 s s e 4 s 4 s 10)

Here, if we substitute the relation (10), instead of that (7), into the left-hand side of

the relation (9), we shall have, instead of the relation (9), the relation

[ et s —gty e (§tucorara§ o (uwyar ) o, o 9"

hence, from the equality (5), we shall have the relation

2(8)—y(t) e [t+ S:t,a(t)dt—i—Z S:#@ S:,J@d; dt]. oA _—

instead of the relation (10).

After p times iterrations of such procedure, we have
t 13 Z t
FORIOY [t+ [tucoar+ -+ W0l S tu()dt---di
0 0 0 0
1 & I3 ¢ .
+ 2 So'u(t) So ...... SO ...... S‘J/l(t)dt ...... df:l s []0 ..................... (11)

By virture of simple calculations and an evaluation, the relation (11) can be written as

follows:

HORIOK: [t{l + %S:,{e@)dt-{— %(S:#(t)dt)z_}_ ...... .

1 13 t dt P- Z t d )p U
= (G BN R (VIOL) LR a2
The expression enclosed with the bracket [ J on the right-hand side of the relation (12) can

be taken smaller than the beforehand given number o, if we take the number D sufficiently
large, accordingly we have

x(t) -y (t) €Uy oo (13)

which proves the theorem.
The case, in which f (¢, ¥)=g(¢, x), gives the following
Corollary. [Uniqueness.] Let the function f (t,x) be continuous and satisfy Lipschitz

condition. Then the differential equation (1) has at most one solution wunder the given
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initial condition: x=a for t=o.

Remark. The relation (11) and (12) are significant in the point of view of approxi-
mations of the solution %(¢) of (I) by that ¥(#) of (4). If, especially, the function z(Z) of
Lipschitz condition is constant, then the situation can be more simplied, namely, the relation

(11) can be replaced by the relation

MG C)

(t)z+ ...... p, + 2 p’ :,Uo‘ (14)

1 pt
x(t)—y(t)s[ P |:1, +
Hence we have a more concrete estimation
x(@) —y @ eo-U,

where o is a positive function, arbitrarily taken but subject to the condition

3. Théoreme des Réduites. In this paragraph we assume that the space E is a co-
ordinated space provided with the two properties (P) and (AK) and moreover that each

space E,, space of coordinate X,, admits Picard or Peano existence theorem of the differen-

=f.({, x,), ase. g. finite-dimensional spaces, Banach spaces, or spaces

dax,

dt

(M) and product spaces of spaces (M) [2].
We assume the initial condition:

xX=aqa for BTt 19 rovawvsis simsase o sronssee o oswunien # staseis o o eressiese sieiwieieie v etwieye § ofassseis simieie (16)

With a function f(#, x) defined on I X E, whare I = [0, T], we associate three

functions

£, ), £t 2™, @ &)

and denote each by

Fon (t 2, Fon (& 2). Frg (2

respectively. As is easily seen, the continuity of the function f (#, X) implies that of the
three associated functions, and the fulfillment of Lipschitz condition on the former implies
that on the three associated functions with common s (#).

Now, with a given differential equation

d
T’tc:f(t,x) ..................................................................... (1)

we associate following three differential equations:

dx A
dt _f[n] (t x) ........................ e S e £ VL s £ S L N § (I.‘A)
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dx > '
'—;— — ] (t, x) .................................................................. (I B)
—d’tl — ?[ﬂ] (t, x) .................................................................. (1.C)

Let each solution of (I), (I.A), (I.B) and (I. C) under the same initial condition (16)
be denoted by % (2), £t (2), %ty () and Fpy (¢) respectively.

Theorem 2. Let f (¢, x) be a function on I X E to E, where I = [0, T], and con-
tinuous with respect to (¢, x), and satisfy Lipschitz condition. Moreover we assume the
existence of a solution % (1) of (1) under the initial condition (16).

Then the solution x (1) can be approximated uniformly on the ‘interval I by each
solution Ry (1), Zpy (1), %pm (1) as nooo, i. e. for’ an arbitrary neighbourhood of the

origin UeW, there exists a positive integer N such that
n =N implies x (3) —%pg (2) eU, for tel
and similarly for % (2), %y (2).

PROOF (i). Let U be an arbitrary neighbourhood of the origin, and # an arbitrarily
chosen but fixed positive number such that

7
; <%e—sou(t)dt

where ¢ () is the function characterizing Lipschitz condition on the function f (#, x). Since
x (#) is continuous, so is f (¢, * (2)) and therefore by virtue of Lemma I, there exists a

positive integer V such that we have for 72> N
f@2@) =™ x (@) el
or
F 2@)) = Frg (8 (D)) €Uy,  worreeeeeeee e an

where U, = zU. Because of the continuity of the solutions % (#) dand £pg (¢), there exists

a positive number 4 such that
X <t> - j\‘;[”] (t) AU, v T S (18)

By virtue of Lipschitz condition upon f (, ) and the property (P), the relation (18)
implies that

f[n] (t: x (t>> _f[n] (t7 -7%[711 (t>> & 1/1<t)' U,

or

Fom @ (D) — Fom (& R (D) €A (£) Uy voerevmmrmemnienicienii, 19
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Now, replacing the functions £ (4, x) and ¥ (¢) in the proof of theorem 1 by those
_f w1 (3, x) and () () respectively, we have the relations (17), (18) and (19) corresponding

to those (6), (7) and (8) respectively. Hence, according to an analogous argument there, we

have |
2(1) — Fm (@) e [t v L lewa+ L ((pwa)—
S CEEDY 1 37 <SZ/1. D) dt)p—l} + % <S:,1 ) dt)pJ-Uo ............ (20
For sufficiently large P, we have
x () — f;[n] (D) exly = U wvvvvereereeese e e (21)

which provides the proof for X (%)-
(ii) Again analogously to the proof of Theorem 1, we can proceed as follows. From

the definition

£ (1) = kg (D = (|7t 2 (D) = Foa (& 20 |

([ For (b 2 (@) = Fon & oo () ] @t e (22

Let U be an arbitrary neighbourhood of the origin, and # an arbitrarily chosen but fixed

positive number such that

sl g™ §7 u(t)at
By virute of the continuity of the solution x (#) and Lemma 1, there exists a positive integer
N such that we have, for n >N,

X (t) — X ([) e, oo e e e e (23)

where # U, = U. Since fpy (¢, 2 (2)) = f (4, %ny (1)), by virtue of Lipschitz condition
on the function f (Z, x), the function (23) implies that

F @)= Fra (b £ @) et (£)-Upe  woeeervmmmeieaiaiiiiiin, (24)
Therefore
S: [f(i, £ (D) = Fog (4, % (t))] die (S:,, O] dt)-U,,- .................. 25)

Because of the continuity of X (#) — %p,; (%), as frequently observed, there exists a

positive integer 4 such that

x () — Xy (D) edU,,  ovoiveeennn s ¢ srsvesecs » iRoATE » S SV s ie e s « s (26)
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accordingly

at () — x5} () 2T, .
This relation implies, since frg (¢, ) = f (f, 2*) again, that

Fom (& (D)) = Foug () o) €2 (£) Uy woveveemeeeemmereeiiniennines @n
Therefore

([T @t 2@ = Fur & 5w D | @te2([n a@t)-v, (28)
The relations (22), (25) and (28) give the relation

50 = 5 D e +D ((n @ )T,
Analogously to the proof of Theorem 1, after p times iterrations, we have

x(t) — Zpq(@) e [—i—'- S:,u (t) dt + % (S:ﬂ ) dt)z e

1 [ P2 »
% —,<S,u Wat) + 4 (S#(t) dt) ]U
pl \s A p! \s
accordingly, since U, = U, we have
x(t) — Xy (2) e UL
which proves the second part of the theorem.

(ili) Let U be an arbitrary neighbourhood of the origin. Then, by virtue of the
Lemma 1, the just proved, and the property (AK), there exists a positive integer IV such
that we have for # >N

x(t)_x[n] (t>5_é_U’ e e e e (30)
% (8) — ¥y () € % U, cooeieeen R (1)
a — g™ € % S R R (82)

By virtue of the property (P) the relation (31) implies that
PR LFY o GO 8 2k T s s v s s v s« s s v 0 5 w55 g vwen (33)
o

Since 1 () = % () and %y (B) — * (1) = @ — o™
it follows that

T (&) — #lx (B e % T oo (534)
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The relations (30), (33) and (34) give the relation
X (t) - }“_7_"] (t) & T s s swmeis 5 3 ¢ s &SR0T § 950 § SRR 3 HRUE IR § SRAN « Dieir » smessin (35)

which proves the last part of the theorem. Thus the proof has been completed.
Remark. In casea =0, clearly X, (£) = £pg £ (#), hence the last proof (iii) is
superfiuous. '

Example 1. We consider a differential equation

under the initial condition (16). This satisfiess the continuity and Lipschitz condition, con-
sidered as equation both in the space (#2) and in the product space, and its solution is
given as follows:

t

B A /A I R R (37)

In cass the sequence {@.} of elements of a = {a,,a,, - Sy } is not convergent
to zero, Theorem 2 holds in the latter space, but does not in the former, which, of course,
has not the property (AK). On the contrary, in case the sequence {@ , @, -+ y @y oo }
is convergent to zero, considered as equation in the space (&), Theorem 2 holds, and clearly
this space has the property (AK).

Example 2. We consider the differential equation (I), where £ >0, |x|< /. We assume
that each component f, (£, £) of the right-hand side of (I) is continuous with respect to Z,

uniformly for both th= coordinatz numbzr # and X, and moreover satisfies the condition:

If(t, %) — £, 2 |< o <t)gcnilx-i S P —— (38)

where each series >, C,; (€,;==0) is convergent, uniformly for the number #, and each
T=1

T
sum is bounded by a positive constant L, andS p (1) di<eo for every value of 70 ([3],
0

whose summary only we we know through the review of Mathematical Review.).
Considered as an equation in the space (), the equation (I) satisfies Lipschitz

condition in the form:

Wl #) —F@ BV p i) |m = oy seerssomesavms snnmmesss s s v (39)

but the property (AK) is not fulfilled, and therefore the result of Theorem 2 cannot be

guarranteed. Now we define a norm as follows:

then we have x| <X L/, and Lipschitz condition in the same form as (39). The s2quence

space, topologized by this norm, has thz proparty (AK). Indead, for an arbitrary positive
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number €, there exists a positive integer IV such that, by virtue of the uniformity of the

convergence of the series 2 [, E Coi <7 Ll for n=>N, hence it follows

i=n+1

| x — x| = sup S ot ]x5l<——l=

t=n+1

Thus the result of Theorem 2 is ascertained.

4. Case of General Coordinated spaces. Let I be a family of indices, ¢ an element or
index of I', and for each r¢/, E, a linear convex space. We consjder a set E whose
elements % are {%.}.r, where &, € E, and is called the ccoordinate of X. E is called a
(general) coordinated space, if it is toplogized locally convex by a fundamental system of
neighbourhoods U= {U} such that each mapping % (%): x—x. is (i) linear, i. e. for every
a, B, x (ax+pBx") = ax, (%) + fx (x') and (i) continuous, i. e. for an arbitrary neigh-
bourhood of the origin U el in E, there exists a neighbourhood of the origin U, in E,, such
that the relation x¢U implies that x.¢U.. A projection of X and the property (P) are
defined analogously to the case of special coordinated spaces (Cf. D).

Let a finite set of indices { ¢, ¢, =" , t,} be denoted by J, and ordering (<) by
setinclusion, the totality of J forms a directed system {J}, denoted by . A set of points

(61

directed by § is denoted by {xJ} e - J-convergence aud S.limit are defined as fllows:
{25} Fes 1s S-convegent to % (called -limit of {x ]} JES>’ if, for an arbitrary neighbourhood
of the origin Uell, there exists an element J; ¥ such that the relation J, < J implies that
%, — xeU. For an element J of & and a point & of E, there corresponds a projection of X%,
donoted by x1, which is constructed dy equating all «coordinates (/) of X to zero. The
space E is called to have the property ”3-Abschnittkonvergenz’ or simply “Abschnittkon-
vergenz”, if for every point to %, the corresponding directed set {7} 7 is S-convergent to
x. Specially in the coordinated space E provided with the propety (P), (AK) is stated
simplied as follows: for an arbitrary neighbourhood of the origin Uell, there exists an
element J, of &, such that x — 57 e U.

A lsmma analogous to Lemma 1 is given, whose proof is quite the same.

Lemma 2. Let x (1) be a continuois function on a clompact interval I to E, which
has the property (P) and that of (AK).

Then {x7- (1)} IS is S-convergent to x (2) uniformly for te I, i. e. given an arbitrary
neighbourhdod U, there exists an element J, of & (dependent on U, but indepent of 1) such
that x (8) — x7° (&) e U for L, <.

We shall assume also in this paragraph that each space E, space of coordmat\_ Xos

=ﬁ(t, x.). As

done in the preceding paragraph, with a function f (¢, ) defined on IX E, associate we,

admits Picard or Peano existence thezorem of the differential equation

for eah [ ¢ S¥, following thrze functions
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AR CENNACE SO NP ASICESD)

and denote each by

fm (s %) Jf[.nf@; Xir1)s ?m (2 x).

Correspondingly, with a given differential equations

we can associate following three differential equations:

dx 2
W:fl-fl (t’ x) ....................................... B ¥ e lBET § SRS § Bl ¥ e ( I‘a)
da. -~
d_’: — f[J‘j (t) x> .................................................................. 1./
a =
7;6— :f[JJ U’ x) .................................................................. @$mn

and we denote each solution of (I), (L.«), (I.8) and (I.7) under the same initial condition
a6 by x (&), £y (&), %y (1) and Ty (£) respectively.

The argument in the preceding paragraph, is, as is easily seen, quite applicable to
the general coordinated space and S-convergence without almost any modifications. Thus we
can state the following more general

Theorem S. Let E be a complete, general coordinated space provided with two properties
(P) and (AK), andI a compact interval [0, T). Let f (4, %) be a function on I X E o E,
continuons with respect to (t, x), and satisfy Lipschilz condition. Moreover we assume the
existence of a solution x () of (I) under the wnitial conditions (16).

Then the solution % () can be approximated uniformly on the interval I by each so-
lutions 2.7 (), % 51 (2), T, (8), or more precisely, for an arbitrary neighbourhood of ihe
origin U €W, there exists an element Jo € such that Jo < J implies X ) — Zry e U for
t eI and similarly for % ., (£) and %.n (£).
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