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§1. The author, having been engaged in investigation of higher order singularities
of differential equations, was, once on his way of study, struck with an idea to prove the
singularity criteria hitherto known for the first order differential equations in a far
easier way than those usually done. Until present, it seems to have been a tradition to
deduce the criteria by the aid of matrices, transformations, characteristic equations, etc®.
The author believes the methods adopted are too circuitous and seem awful for ‘beginners,
who will think it something mysterious. If it concerns only with the classification of
singularities and with the criteria for distinguishing different types of them, there is no
need of such circuitousness nor even necessity, for the most part, to solve the differential
equations. As the differentiatiation is easier and always possible while the integration is
not, we prefer the former to the latter in examining the properties of the solution curves.
We shall develop here our idea mainly for the first order differential equations.

§2. Suppose that there is given a first order differentiai equation of the type
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The origin is a singular point. As any other first order differential equations, the
singular point of which lies at any other point than the origin, may be reduced to the
form (1) by simple translation, we always consider the differential equation in the form
(1. Let ¥ =f (%) be its solution, if any, satisfying the initial condition x = 0, ¥ = 0.
Imagine that we follow along the sclution curve until we reach the origin. We examine
the slope of the curve how it changes along it. We shall inspect preliminarily a few
special cases and compare with the solutions themselves already known in the purpose of

explaining our ider and making clear how simple it is.
(a)
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Solving it gives y=Cx. There are an infinite number of straight lines through the

origin, which is a node. But if we try to infer the property of the origin without solving

the equation, we proceed as follows. % is an indeterminate form if x— 0, ¥y —0. In

both members of (2), passing to the limit as X — 0, especially applying L'Hospital's rule
to the right member, we obtain

D Cf, e. g., Bieberbach, L.: Differentialgleichungen; Niemytzki, V. V. and Stepanov, V, V.:
Qualitative. theory of differential equations.
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(%)~ (&).
dy’

This means that any value whatever of (——) may be had by the solution curves
. 0

dx
of (2), i. e., solution curves may enter into the origin along any direction. The origin is
dy _
ax?

thus a node. Differentiating (2) again, we have 0, which means that the solution

curves are straight lines.

(b ;
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Solving (3) yields ¥ = Cx" All integral curves either (i) pass through the origin
and are tangent to the y-axis there except y =0 (0 <<a< 1) or (i) pass through the
origin and are tangent to the %x-axis there except X = 0 (a>>1) or (iii) are asymptotic
to the axes, only £ = 0 and ¥ = 0 passing through the origin, which all others pass by
(a < 0). But we prefer to proceed as follows, not integrating (3) but differentiating it.
Passing to the limit as x— 0 in (3), we obtain ’

()= (&),

! - - -
which is satisfied by (Zﬁ \ = 0 or o, indicating that infinitely many solution curves
/0
touch the coordinate axes at the origin or no curves pass through it except ¥ =0 and

y = 0. Differentiating (3) again, we have

d’y = a<a_1)y OO P PP PPEPPRRRE TR ‘ (4)
ax? x ,

Taking (3) — the slope — and (4) — the curvature — into account, and considering the
uniqueness theorem, we obtain the following possible distributions of curves (Figs. 1, 2
and 3), indicating that the origin is either a node or a saddle point. In the figures, the
marks / and \ signify that the slopes are positive and negative there respectively and
the marks \J and [\ that the curvatures are positive and negative there, respectively.
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Solving (5) yields ¥ =xlog| x|+ Cx, which is a little hard to be graphed at a glance.

Let us graph it not integrating (5) but differentiating it. Firstly, passing to the limit as
X—0 in (5), we obtain

_ff'y_> = (ﬂ)
<dx 0 LF dx /e

2.
which is satisfied by (—%) =oo. Next, differentiating (5) gives Zii = ix Noting the
signs of slopes and curvatures, we easily obtain the possible distribution of curves near
the origin as shown in Fig. 4, indicating that the origin is a mode. See how simple it is

as compared with the integration method.
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Solving (6) gives ¥*+ a*x*= C,

which are ellipses. If we proceed as

in the previous cases, making £—0 as

well as ¥—0, we obtain

2
(&)
dx /e
which no real directions saﬁsfy. This
means that we cannot make ¥y —0 as

, Y . I - X—(, i. e, no real curves pass through
7SO liné of the origin. Combining the two imagi-

ke Elaf & nary straight lines entering the origin,

line of perpendicularity which have the imaginary slopes
Fig. 4 _ + ia, we obtain Y* + a’x* =0, i e,

a point ellipse, which hints at the fact
that the ellipse-like solution curves pack the neighborhood of the origin, which must
therefore be either a center or a focus. We shall discuss this case in more general form
later. :
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Solving (7) in polar coordinates gives #=Ce", which are logarithmic spirals. Pro-
ceeding as in (d), we obtain

9’1)2:_
(dx 0 L

Remark is the same as in (d).

§3. Now we shall turn to the general case (1). Assuming that ¥y —0 as x—0,

making use of L'Hospital’s rule and arranging in (ﬁiji> » we obtain the following quadratic
0

dx
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s fayy.
equation 1 s
. _43;)2_ _ (CLJ’)_ -
O(dxo <B T) dx /o #=0
the discriminant of which is

A=(p—r1)*+4aod.

We distinguish the following three cases.
(i) A>0. We have two real distinct directions in which the s

the origin. Differentiating (1), we obtain

olution curves enter

—(B—T>xy—ax2. ........................... (8)

2 a2
23 = (as—pn) =

dx® (rx+0oy)°

\ My =
X\ y=mx

=~ ax+By=0
line of max. & min.

y=mx

rx+0y=0 .
line of perpendicularity

Fig. &

y=mx

T~ yx+6y=0

Yy=mX

~ax+By=0
line of max. & min.

Fig. 6

line of perpendicularity
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Considering the slopes and curvatures, we draw all possible distributions of integral
curves near the Ofigin as shown in Figs. 5 and 6, which indicate that the origin is either
a node (ad—@r<0) or a saddle point (ad—pr>0).

(i) A = 0. We have one real direction in which the solution curves enter the

origin. Regardless of the sign of a6—pP7, we obtain a figure indicating that the origin
is a node (Fig. 7).

e B~ (iii) A<0. Combining into one
& the two imaginary straight lines

e v —
y:ﬁ rizz Ax
26

"~k 154 By=0 which enter the origin, we obtain

V' —(B—1)xy—ax’=0,

Fig. 7 ax+pfy=0 - which is a point ellipse, indicating that

. the neighborhood of the origin is packed
with ellipse-like integral curves. Integral curves appear to surround the origin in this
case. To see how they surround the origin, we imagine a point moving along them,
introduce time concept, rewriting (1) in the for_m of simultaneous equations

dx
j 7 =rx+oy
...................................................... 9
ay (9)
aF —ax + By
the characteristic equation of which is
D—y )
=0
a D—p
having the roots
D= ,8-!—73:2'1 —
2
The solutions of (9) are
' B+ — F—
x=¢ 2 t(ClcosV2 Az‘-l—Czsz'n} 5 /—\‘t)
2o (8=1, V=R, V=K . V=K
< =g 2 {C <L7: coS — ; —V‘ ............
y 1\ 53 3 ¢ 55 sin 5 t) (10
SN SN _ SN
+ G, <1 “Acos1 Az‘-i— 5 Tsingt)}
20 2 20 2 7

where C, and C, are arbitrary constants.

We see from (10) that the solution curves encircie the origin either periodically
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(B47=0) or spirally (8+7r30). The origin is thus a center (8+7=0) or a focus
(B+7+0). ' ‘ ‘

§4. In conclusion, a few words about Poincaré’s theorem. Let the equation be of
the form:

dy _ ax+By+P(x,y)

dx  1x+8y+Q(x,9)

where P(x,%) and @(x,y) are O(x*+y7).
Proceeding in the previous way, we have, when x—0, ¥ —0,

(g)z “*@<g§‘>o

showing that the terms of higher order than the first do not affect the character of
singularity of the origin, which hints at Poincaré’s theorem. Case when 8-+ 7 =0 must
be considered separately as one sees clearly from the fact that the nonlinear form like

ay _ _ ax’+Bxy+7y°

dx alx2+B’xy+lez

belongs to this case, which will not be touched here.




