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1. Preliminary. Preparing the previous paper [1)®, we were interested in some
properties of coordinated spaces, that is, especially in relations between the coordinatedness
and the existence of basis of linear convex topological spaces and in those between the
coordinatedness of a linear convex topological space and that of its dual space. In the
case of Banach spaces, one of the former relations is well-known ((2), pp. 110-111) and
one of the latter is partially solved by Karlin (3). In the present paper we shall generalize
these relations to the case of linear convex topological spaces and moreover afford a
more general positive answer to one of the three unsolved problems proposed by Karlin
(03], p. 984): “If the dual space E’ has a basis does that imply that the space E has a
basis ?”

Here by a sequence space we mean an abstract linear space, whose each point X
is represented uniquely, or more precisely one to one, by an infinite sequence of real or
complex numbers {%;, X, ==+ y Xy e }, or simply denoted by {,}, such that each
mapping %,(%X): x—x, (n=1,2 - ) is linear, and by a coordinated space a sequence
space topologized locally convex, such that each mapping x,(%): x—x, (n=1,2, -+ ) is
continuous. For each point X, the point which is constructed by equating to zero the co-
ordinates with indices greater than n is denoted by £™. A coordinated space is called to
have the property “Abschnittkonvergenz”, or simply (AK) (4], if for every point X of
the space, the sequence {x'™} converges to x as # tends to .

‘2. Coordinatedness and Basis. Coordinated spaces have not always a basis, as it is
seen in the space (7) and (c¢).

Theorem 1. Let E be a linear convex topological space. If E is coordinated and has
the property (AK), then E has a basis.

Proof. For 1 =1,2, y My e , let € be a point represented by the sequence
{8in; n=1,92, - }, where 8;,’s are Kroncker’s deltas. For each point X of E represented
by the sequence {%,}, ™ can be expressed in the following form:

n
™= x,¢'.
=1

Since the property (AK) implies x"™—x as #—, x can be expressed in the form:

The uniquencess of the representation by coordinates implies that of the representation
(1), and therefore the set of points {e, &% -+ S €y e } is a basis of the space E, which

(1) Numbers in brackets refer to the bibliography at the end of the paper.
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proves the theorem.
The converse of this theorem can be given in the form of the following

Theorem 2. If E is an F-space (i. e. a complete, metrizable, linear, convex topological
space) and has a basis, then E is a coordinated space with the property (AK).
Proof. Let {€”} be the basis, and then for each % of E we have

{x;} being uniquely, or more precisely one to one, determined, or

3

¥,8'>Xx as N—o o,
i =1

%

We consider a sequence space E, consisting of the sequences %:

Thus we have a mapping @ of E onto E, i e. @: x— % This mapping @ is linear
and one-to-one.
Let the topology of the space E be defined by a family of seminorms:

() =2l (Ae )

o . n X e
Since >)x:¢"is convergent, |>14:€*|x is bounded for each 2 and we define semi-norms || %
=1 =1

of the space E as follows:
1Zlx= sup [ xex.
1Snlee i=1

The space E thus seminormed is an Fspace.
The inverse mapping £ = @ (%) of the mapping @ is linear, one-to-one and con-

tinuous. In fact, by the definition of [|%X]., we have

lxlh=lo7* @ L=1%l,

((5) II, § 5, p. 100, Prop. 9). Thus the mapping @™ of the F-space E onto the F-space
E is bicontinuous ((2), p. 41, The. 5, or (5) Chap. I, § 8, p. 36, Cor. 1), and therefore @

is an isomorphism.

The functional % defined on E, such that <#, X'>=2x, where ¥=1{x,}, is evi-
dently linear, and also continuous. In fact, for each Ae A, |2 L << 2 |#]x, or |x| <
NEN
el
so is the space E, since the mapping %,(x): ¥—x, is continuous as composed mapping

for seminorms | [, such that [[€![,>> 0. Hence the space E is coordinated, and

of two continuous ones
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X—X and X—%,.

The property (AK) is obvious. Thus the proof is completed.
We can conclude the equivalence of the coordinatedness with the property (AK)
and the existence of basis for F-spaces.

3. Coordinatedness of a space E and that of its dual space E'.

Theorem 3. If E is coordinated with the property (AK), then its dual space E' is
also coordinated with the property *weak-(AK) (that is, (AK) for the topology o (E', E)).

Proof. For each point-x of E represented by the sequence {%.}, we denote %, e"
by ¥y, where each €’ is a point represented by the sequence {J;,} as before, and Xem=
Xy (X), where Xy on the right-hand side is the mapping: ¥—X¢»y. The space K, of the
points X,y is a subspace of E isomorphic to R' or C, the space of real or complex
nwmbers.

The dual space E’ is a sequence space. In fact, for every point &’ ¢ E', since the

continuous linear functional x(.y defined by

_ / .
<x7 x,(n)>—'<x(n)<x>: x>_<x(n)’ xl>
can be considered as a linear continuous functional defined on the 1-dimensional linear
subspace E(,, we may put

Xy ="%n €.

Hence %' can be represented by the sequence {#,}. This representation is unique,
because if, for all #, x,=0, then %= 0 for all #, which implies that for all # and
for every x ¢ E, <X, Xy >=0, or <A, ¥>=0, or furthermore <%, ¥>=(, and
from the property (AK) and the continuity of the functional &', it follows that, for every
point ¥ ¢ E, <x, x> = 0, which proves that x'= 0.

Each mapping #,(%): x'— %, is continuous. In fact, a fundamental system of
neighbourhoods of the origin in the dual space E’ consists of the polars of the bounded
subsets of E, 7. e. of the subsets {¥'; | <{x, ¥>|<1, ¢ B} where B is a bounded
subset of E, and a fundamental system of neighbourhoods of the origin in the space Ei.,
of the points X(., consists of the polars of the bounded subsets of the subspace Ey.
Bounded subsets in the space E(, is also bounded in the space E. Thus the mapping
Zemy (%) %' x4, accordingly ,(x'): x'— x, is continuous.

The representation {%,} is *weak-(AK). In fact, since

n n
<oy H> =<, 3> = <y o>
1= 1=
K kd
= & Fon > =, #> = a7, 2>,
= . =



192 M. INABA .

the property (AK) for the space E implies that, for all x ¢ E, <x, £ >=< 4", x>
converges to <%, £ > as # tends to o, and therefore ¥ converges x-weakly to «'.
The theorem is proved.

The converse of this theorem is given for Flspaces by the foilowing

Theorem 4. Let E be an F-space. If the dual space E' is coordinated with the prop-
erty *~weak-(AK), then the space E itself is also coordinated with the property (AK).

Pyoof. For each point &' of E' represented by the sequence {%,}, we denote the
sequence {6 Xn; 1=1, 2, -+ } by X and {6i; 2=1,2 - } by €%, and then we
have X,,= %,€“. For each point X of E, we have

\x; x/(n)> xn<x: l(")>-

Here if we put <%, €®>>=ux,, then we have <%, X(,>=x,%,. Therefore the point
x is represented by {x,}.

This representation {%,} is linear and unique. The linearity is evident. If, for all
n, x,=0, &. e. <%, €“>=0, hence <X, Xm > =0, then <x, x> = 0. The prop-
erty *-weak (AK) implies that, for every &' ¢ E', <%, x'>>=0, and therefore x = 0.
Thus the uniqueness of the representation is verified. '

The mapping %, (%): x—x, is continuous. Since x,=< %, €“>> is a continuous
functional of %, the mapping is continuous.

The ‘prOperty wweak-(AK) implies that for every Xe E and every &' ¢ E', since

<%, '>=1lim <%, £™>= lim Z<x, Xy >

n—rcc n—ree =

= lim Z %<%, €P>= lim Z‘x, x:,

n—roe<c 7 n—rec =

oc
the series >) x,%, is convergent, and also that <e™, €™ >=3$,,,, where €= {0pm.; 7
n= .

The representation has the property weak-(AK). In fact, for each x' ¢ E we have

n
<™, 2> =3 <xe®, A >= E x,<e®, ">
=

i=

-

n

n o<
Extz 6mzxm = Z xix:ly

=1 m=1 =1

n
and since > %;x; is convergent to <x, x>, <x™, x> converges to <x, &> as n
=1

tends to o for each &' e E’, and hence 2™ converge to X weakly as # tends to .

Thus the completion of the proof will be reduced to the following

Lemma. If E ié a coordinated F-space and its dual space E' is a sequence space, then
the property weak-(AK) implies the property (strong) (AK) (that is, the property (AK)
is equivalent for boih the weak topology and the original one).

Proof. Now let FE, denote the closed linear subspace generated by the countable
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set {e!, &, -+~ , e, -~i--:---} of points of the basis of E. :

We first show that Fy=E. If we suppose the contrary, then there exists such a
point x° of E, as does not belong to £, hence by virtue of Hahn-Banach theorem, there
exists a linear continuous functional %' defined on E, such that

<x% x>=1 and <x, ¥ >=0 for each x ¢ E,.

Hence we have <e", % % >=0or Z Oin X:=%,=0 for each 7, accordmgly #'=0, which

contradicts to the propepeety <xf’ x>= 1.
In order to prove that each point % ¢ E; or E satisfies the condition (AK), ¢
the point

n n n B .
xn) — Zl Xeny= 21 xjejz 21 <x, e/(_y)> e’
j= i= =

converges (strongly) to the point X as # tends to ©, we must previously prove that the

countable subset {5___,‘ e, n=1,29 - } is bounded. Since >) %; x; is convergent, the
i=1
countable set of numbers {Z XX m=1,92, } is bounded, and let Sup IE %, %;| be
=1 <nleo i=

denoted by (%, x'). Let U be an arbitrary weak neighbourhood of the origin in the
space E,i.e. U= {x;|<x, 5, >|<1, k=12, - , 1}, and max C(x, 2%)] be denoted
B 1Sk

by M,. Then we have |<C Zn] xe, > | < (x, ¥*)XM,, and hence i x;¢°e M,; U for
n=19 - . This shows that the contable set {Z‘, xein=1,9 - } is weakly
bounded, and accordmgly (strongly) bounded.

Putting s.(x) = 2 x;€', a sequence of linear countinuous applications S, (%) on E

into itself: x—>2 x;€" is defined. Secondly we must prove that the set of applications

{Sprm=1,92 e } is equicontinuous. A neighbourhood of the origin in the space
R (E, E), with the topology of simple convergence, of all linear continuous applications on
E into itself is defined by the set of linear continuous applications #(x) such that (M)
CV, where M is a finite subset of E and V a neighbourhood of the origin in E, and
is denoted by T'(M, V). For each pair of a finite subset M and a neighbourhood V of
the origin in E, since the subset {s,(M): n=1,2, - }=ZLJ”{S,, (x):m=1,2 } s

bounded as a finite sum of bounded subsets, there exists a positive number A such that

s.(M) C AV,
and accordingly
[Sa; m=1,8 e zT(M V).
Thus the set of applications {s,: 7z =1, 2, - } is bounded in the space & (E, E) with
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the topology of simple convergence, and accordingly equicontinuous ((6) Chap. IV, §3,
p. 27, Th. 2).
We have now to prove that S,(%x) converges to X as 7 tends to . In case X =

msn

Z‘.xle the proof is evident, since S,(x)= 2 x;€° converges to Exze = x. In case

i=

the point X is a limit point of the sequence of points {x™ m =1, 2, }, where a™=
ix{"e", we proceed as follows. Because of the equicontinuity of the set of applications
t{_s,,: n=1,2 - }, for an arbitrary neighbourhood V of the origin there exists a neigh-
bourhood U of the origin (independent of #), such that s,(U) CV for n=1, 2, s
V'= UV being a neighbourhood of the origin, there exists a positive integer #%,, such
that

xMm—x e V=U VOV,

and accordingly

Sp(a™— x) = 5,(&™) — s, () eV
From the first case, it follows that there exists a positive integer #, (depending on
Mm,), such that # >, implies the relation:
S.(a™) — x™e V.
These three relations implies that
S,(x) —x e 8V for n=>n,,

which proves that s,(x) converges x as 7 tends to . Thus the proof of the lemma
is completed.

Remark to the lemma. In the case of the dual space E’, the result of the lemma
does not hold, that is, the property #*-weak-(AK) does not always imply the property
strong-(AK), as is seen in an example: E = (I), the space of the absolutely conver-
gent sequences and its dual space E'= (m), the space of the bounded sequences.
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