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ON A COMPLETELY HARMONIC SPACE WITH
AN ALMOST COMPLEX STRUCTURE

Takeo OHKUBO

(Received Jan. 15 th 1958)

§1. Consider a Riemannian n-space V, for which

ds’=g,dxd'x’. an

If P,(x}) is a fixed point of the V, and if s=s(x;, £°) is the length of arc of the
geodesic joining it and a variable point P («°), then the V, is called (centrally)
harmonic with respect to the basepoint P,(x,) if

wlg ox" <1/— N ax’> (1.2

is a function of S alone; it does not involve the coordinates x° of the variable point
explicitly, but the coordinates &% of the base-point may be involved as parameters.
If this holds for all choices of the base- point, the space will be called completely
harmonic. If V, is completely harmonic and 4,5 has the special form (%—1)/8,
then V, is called simply harmonic. E. T. Copson and H. S. Ruse® showed how to
obtain the conditions, in_term of the curvature tensor, that a V. should be comple-

4,8 =

tely harmonic. These conditions were infinite in number and involved the covariant
derivatives of the curvature tensor.

A. G. Walker® (1942) has found another method of obtaining them, using Ruse’s
invariant p. The Ruse’s invariant p is defined by
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o I ) ox%9x?

Walker has given the expansion of log o:
W, W ., W, , W,

log[O— 2 S 1 S + """ (m"‘l)' S + (14)
Each of the coefficients is the frace of a certain polynomial in matrices 7, F, f,
etc. (of degree m2—1 or JZL, whichever is an integer), where

F':(R;JL xhzj>, F: (-R}n.k, z /‘\h'{j)\l>’

j;': (R}:!jk; m Ahiikll”‘); etc.

(1) See the Bibliography at the end of the paper [1]
(2) See[2]
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and A is the unit tangent vector of the geodesic P, P at P,. These coefficients
must all be evaluated at P,

When and only when the space V, is centrally harmonic with respect to P, o
is dependent only upon.S, i. e., independent of A* and completely harmonic when it
holds about every point of the space. These conditions can be derived from the
equation (1.4), i. e, we require that each W, shall be independent of oIt is
easily seen that W, is of the form

Wr:Wiliz---ir /iil Xiz'" Xir

where Wiy....sr assumed symmetric in the suffices, are functions of the foundamental
and curvature tensors and their derivatives. As the & satisfy £;A°’A= constant, the
required conditions are

Wiisir =0, r; odd number,
(1.6)

Wisigtr= Rr XGi10851" - ir—1sry T: €ven number,

where the #’'s are scalars, the sum being taken to give an expression symmetric in
suffices. When these conditions are satisfied at P, it appears for any point P that
p is a function of S, and is expressed as a power series in s%, strictly in es’ where
e=m,~2i,i"= t 1 or 0. )

When a space is completely harmonic, conditions (1.6) are satisfied at every
point of the spasce. We see easily that, in general, the form of p as a function of
25* must be the same for all choices of base-points. It follows that the sealars £, in
(1.6) are all constants.

It is well known that another special class of spaces, that is to say, simply
harmonic spaces, consists of those spaces which are completely harmonic and in
which o =1 for every pair of points. (1.4) implies that ¢ =1 only when W,= 0 for
all ’s. Therefore the conditions for a simply harmonic space are that the equations:
W,.=0, r=1,2,8, ----+- must be satisfied at all points of the space and for all direction
A

Let & be any direction and put 4 = gyA'4’. As the matirces I, I, I’ ete. are
all zero matrices for a symmetric space we have the following theorems.

Theorem A. A symmelric space is harmonic if, for all N, the trace of I'Y is of the
form kyA¥, where I'Y is the N-th power of I" and Ry is independent of the Xs.

Theorem B. The necessary and sufficient conditions for a symmetric V, to be harmonic
are that the latent roots of I should be of the form

O, al A, azA’ ............ 5 aN—lA

where the &; is independent of the X's.

Theorem C. The necessary and sufficient conditions for a symmetric Space to be simply
harmonic are that all the latent roots of I should be zero for all A's.

A problem of characterizing all harmonic spaces H, has been only partially
solved. Harmonic 2-and 3-spaces are trivial, and for real harmonic 4-spaces the
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following theorems have already been established.

(1) Every harmonic 4-space H, with signature 2 is a space of constant
curvature, and the proposition also holds for #_>4.

(2) There exist Hs which are symmetric, but are not spaces of constant
curvature. All such spaces are known; some have definite metrics and others have
zero signature. )

(8) There are H,s which are recurrent, but are not symmetric. All such
spaces are known and have zero signature.

(4) Every real H, with definite metric is symmetric.

(5) Every simply harmonic 4-space with definite metric is a flat space and
the proposition also holds for 7 >4.

(6) Every simply harmonic recurrent 4-space has the metric of a form

ds’=a(x, y)dx*+2r(x, y)dxdy + g(x, y)dy* + 2dxdz + 2dydt.

Only 2 few properties of harmonic spaces H, with n>4 are known. Some of
them are following:

(7) A harmonic space H, conformal to a flat space is a space of constant
curvature.

(8) A Riemannian space V,, admitting a null strictly parallel p-plane is
simply harmonic.

(9) The product of two simply harmonic K*-spaces is also a simply harmonic
K*-space.

(10) If a harmonic K*space is decomposable, it is a simply harmonic K*-space
which is flat-extension of a certain simply harmonic K*-space.

(11) If a homogeneous space E of a Lie group G has a locally spherically
transitive isotropy subgroup H, and a positive definite Riemannian metric invariant
under G, then it is completely harmonic.

(12) The following spaces, (1) spheres, (2) real projective spaces, (3) complex
projective spaces, (4) quaternionic projective spaces, and (5) the Cayley projective
plane admit positive definite Riemannian metric which are harmonic.

In following sections we observe an even dimensional Riemannian manifold
which admits an integrable real-analytic almost complex structure @i and also is
exact. We shall show that a space of constant holomorphic curvature® in such a

- space is completely harmonic.

'§2. We observe in a manifold of dimension #=2#" a coordinate neighborhood U, of
which points are written by % real coordinates &%, x% ------ , X*. Under an almost
complex structure J of class C* in a differentiable manifold M", we understand a
tensorfield @} of class C* with respect to %% satisfying a; @, =—0;. Then we have
linear mapping b=Ja which is represented by @ =aib’, where @' and 0" are the
components of vectors @ and & respectively. We put

(1) See [3] and [4]
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x“—l—zx" Z”', Vs ...;1’2’ ...... . m,'ﬁ:/l'l'm- ‘ (2_1)
A contravariant vectorfield in the manifold M™ is written by the components a'(x),
------ ,a"(x) in a local coordinate system (%°), and by ag), =", @& in a y-coodinate
a k
system (3°). Then we have in U.NU,, af, = ayx’ aky (k, b, =1,2, ,n). We
call the complex masses
Aty= aty+ ial, 2.2)

the complex components of the vectorfield with respect to z-coordinate system,
where (2*) is the complex coordinate system belonging to x*. To a vector @ with
the complex components AY, we make correspond the vector b=J.a with the com-
ponents B, by means of

Bt,= iA¢t,. 2.3

In the above we have shown the mapping by Jw, where the index (2) shows
that the mapping is defined by using the coordinate system (z). Such a mapping of
vectors should be independent of a choice of local coordinate system. Jw and Joo
are equal, if and only if Cauchy-Riemann’s differential equations holds between z*
and w’. We say that a complex structure is given on M7, if M" is covered with
such complex coordinate system that all coordinates transformations w'= w’(z) are
complex-analytic, where (wv) is the complex coordinate system belonging to Y-
Then we have®;

For a coordinate system belonging to one complex structure, the multiplication of the
complex vector components with 1 =+v/—1) is a linear mapping admitting A’= —1I indepen-
dent of the coordinate system. And also we have:

If the multiplication of the complex vector components with 1 in z-coordinate system and
in w-coordinate system rvespectively is the same mapping, these both coordinate systems (in
their intersection) are connected by a complex-analytic transformation.

Therefore a complex structure is well determined by the belonging mapping. In
the other words, to one complex structure belongs a well determined almost complex
structure. Such almost complex structures derived from a complex structure are
called integrable.

From the above, we see that an almost complex structure belongs to at most
one complex structure, while an integrable almost complex structure does to just
one precisely.

When an almost complex structure J is defined by & and the torsion tensor
aa,, aa,
2xt ox*»
Theorem. A necessary and sufficient condition that a real-analytic almost complex

structure is integrable, is vanishing of the belonging torsion tensor.
We now consider the manifold M™ with a positive definite metric and assume
the almost complex structure on M™ is real-analytic and integrable.

by thu=aa;—ai.a; where @i, = we have:

(1) See [5]
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Furthermore we assume the almost complex structure & is orthogonal, or the
length of any vector is invariant. Then we have

G @ + gpal = 0. 2.4)

Then we assume that a differential form w= a;; d¥’Adx’ where =
namely

S al, is exact,
dw=0 or Dlai,~+ Diaﬂ‘l‘ Djaz,;:O, . (2.5)

where D; represents the covariant derivative with respect to gu.

§3. Now we assume that in a 2m dimensional real analytic manifold which has an

almost complex analytic structure defined by @ of class C® a positive definite
metric '

d32 — gq;j dxi dxj

is given and that the structure @ is orthogonal and without torsion. Furthermore
we assume that the differential form w is exact. By these assumptions we have:

a) ;= Gna; =— ay
b) dw = 0 or Dl a;; + .D,, a;, + .Dj a,; =0
c) ;:1: -

¢) implies that (@} x—aj;)al—(a},—ai;)al=0 or (Dwai—D,a})ai—(D,ai—D,ai)ai=0.
After some calculations we get the relation:

D, ai = 0. 3.0

If we take an unit vector #, as well readily seen, the vector ¥*=a#’ is also

unit and orthogonal to #*. Then we have a holomorphic sectional curvature with respect
to #° defined by

k = = Rijkl ui ’Ui uk UZ

where R is the curvature tensor. ff the holomorphic sectional curvature is always

constant with respect to any vector at every point, the curvature tensor has the
form:

—F
Ryj= 5 (81 &in + Guip) Ay + Qij Q). (3.2)

This space is symmetric in Cartan’s sense.

Now we shall prove that it is a completely harmonic. In our space, the matrix
I’ defined in §1 has the following form:

Tf= R P ¥ = 2 (a5 — 362+ 300), 3.3)
where we put

I'= a} 2* or equivalently /; = a,; ¥, NGRS
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X being any direction and A; = &; . Then we have

A=LF =g ¥ and LI = QI = 0. coereeemmmms (5.5)
From the equations (8.3), (3.4) and (3.5) we get after some calculations:
Iyl = Akl and I'i3* =0 (3.6
and A
riri=t%ars 4 3 bl
(3.7

ririr= ( k )A ri+ 19 15k LD, ete

Now by mathematical induction we shall prove that the N-th power of the matrix
I has the following form:

Iy =o'y + g EL} 3.8

where « and @ are certain scalars.
In fact when ¥ = 2, we have (3.7);. If we assume that (3.8) holds good, we

have
= (a5 + g lk)} ')
= E o + 2 sa ) + g )
= A" {a' () + §'(F lj)},
where we put a'= —%@ nd f'= ik— a + Bk.
In the other hand we see that all the matrices I, I, I', -+ are zero matrix,

since the space is symmetric. Consequently the trace of the matrix I'™"(N=1,2,3, =)
is the form ky 4%, ky being independent of 4%, and from the Theorem A in §1 we
conclude that our space is completely harmonic. Thus we have

Theorem. If a 2m dimensional real analytic manifold which has an almost analytic
structure defined by @ of class C° and a positive definite metric ds'= G,;d%°d¥ satisfying
do =0 and (2.4), has the constant holomorphic sectional curvature, then the manifold 1is
completely harmonic.
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