A NOTE ON THE SEMIRADICAL OF A SEMIRING

Kenzo IIZUKA and Isamu NAKAHARA

(Received February 28, 1959)

S. BOURNE has introduced a concept of a Jacobson radical of a semiring¹⁾, and recently S. BOURNE and H. ZASSENHAUS have given a definition of a semiradical²⁾. It is shown, that the semiradical contains the Jacobson radical of a semiring and both radicals do not coincide in general; [4].

But we shall note here that the semiradical coincides with the Jacobson radical. In this note we shall adopt the same terminologies and notations as in [4], but we shall recite them here for the sake of completeness.

DEFINITION 1. S is called a semiring if and only if

(i) A composition + is defined in S such that (S,+) is a commutative semigroup having an identity 0;

$$0 + a = a \qquad (a \in S).$$

- (ii) A composition \cdot is defined in S such that (S, \cdot) is a semigroup.
- (iii) Distributive laws hold;

$$(a+b)c=ac+bc$$
, $a(b+c)=ab+ac$.

DEFINITION 2. A subset I of S is called a left (right) ideal if and only if

- (i) $i_{\scriptscriptstyle 1},\;i_{\scriptscriptstyle 2}\in I$ then $i_{\scriptscriptstyle 1}\!+\!i_{\scriptscriptstyle 2}\in I.$
- (ii) $i \in I$ then si (is) $\in I$ for all $s \in S$.
- (iii) $0 \in I$.

We use the term a two-sided ideal of S as usual.

DEFINITION 3. If $i_1+x=i_2+x$ is solvable in S, i_1 , i_2 are said to be equivalent and denoted as $i_1\sim i_2$.

It is known that \sim is an equivalence relation and the equivalence classes i^* represented by $i \in S$ form a semiring S^* according to the operations defined by

$$i_1^* + i_2^* = (i_1 + i_2)^*, i_1^* \cdot i_2^* = (i_1 i_2)^*.$$

In the semiring S^* the cancellation law of addition holds. Therefore S^* can be imbedded into a ring \tilde{S} generated by S^* by the method given in (4).

DEFINITION 4. The right ideal I is said to be *right semiregular* if and only if for any i_1 , i_2 of I there exist j_1 , j_2 in I such that

(1)
$$i_1 + j_1 + i_1 j_1 + i_2 j_2 = i_2 + j_2 + i_1 j_2 + i_2 j_1.$$

DEFINITION 5. The Jacobson radical R(S) of S is the union of all the right

¹⁾ Cf. (2).

²⁾ Cf. [4].

semiregular ideals of S.

It has been proved that R(S) is a two-sided ideal of S and is characterized as the maximal right ideal in which for every i_1 , i_2 of R(S) there can be found elements j_1 , j_2 in R(S) such that the equality (1) holds.

DEFINITION 6. The semiradical $\sigma(S)$ of a semiring S is the set of all elements i

of S for which i^* is contained in the Jacobson radical $R(S^*)$ of S^* .

From the above definition, it follows immediately that $\sigma(S)$ is a two-sided ideal of S and $\sigma(S) \supseteq R(S)$.

The following results are the known facts; (4).

(a) The semiradical of a semiring S is the maximal right ideal I of S in which for every pair of elements $i_{\scriptscriptstyle 1}$, $i_{\scriptscriptstyle 2}$ of I there exist $j_{\scriptscriptstyle 1}$, $j_{\scriptscriptstyle 2}$ in I and j in S such that

(2)
$$i_1 + j_1 + i_1 j_1 + i_2 j_2 + j = i_2 + j_2 + i_1 j_2 + i_2 j_1 + j.$$

From (2) we obtain readily

(3)
$$i_1+(j_1+j)+i_1(j_1+j)+i_2(j_2+j)=i_2+(j_2+j)+i_2(j_1+j)+i_1(j_2+j).$$

(b) The semiradical of a semiring S is the maximal right ideal I of S in which for any pair of i_1 , i_2 of I a pair of elements j_1 , j_2 of S can be found such that the equality (1) holds.

Theorem. The semiradical $\sigma(S)$ of a semiring S coincides with the Jacobson radical R(S).

PROOF. Put $I=\sigma(S)$. For any pair i_1 , i_2 of I there exist j_1 , j_2 in S such that

(1)
$$i_1 + j_1 + i_1 j_1 + i_2 j_2 = i_2 + j_2 + i_1 j_2 + i_2 j_1.$$

We multiply each term of the above equality by i_2 on the right,

$$i_1i_2+j_1i_2+i_1j_1i_2+i_2j_2i_2=i_2^2+j_2i_2+i_1j_2i_2+i_2j_1i_2$$
.

Exchanging the sides of (1), we multiply each term of the resulting equality by i_1 on the right,

$$i_2i_1+j_2i_1+i_1j_2i_1+i_2j_1i_1=i_1^2+j_1i_1+i_1j_1i_1+i_2j_2i_1\,.$$

Adding the last two equalities and addint $i_1\!+\!i_2$ both sides of the resulting equality we obtain after rearrangement that

$$i_{\scriptscriptstyle 1} + j_{\scriptscriptstyle 1}' + i_{\scriptscriptstyle 1} j_{\scriptscriptstyle 1}' + i_{\scriptscriptstyle 2} j_{\scriptscriptstyle 2}' = i_{\scriptscriptstyle 2} + j_{\scriptscriptstyle 2}' + i_{\scriptscriptstyle 1} j_{\scriptscriptstyle 2}' + i_{\scriptscriptstyle 2} j_{\scriptscriptstyle 1}'$$

where $j_1'=i_2+j_2i_1+j_1i_2$, $j_2'=i_1+j_1i_1+j_2i_2$. As I is a two-sided ideal, we see that j_1' , j_2^\prime are in I. Hence from the definition of a Jacobson radical, we get $I \sqsubseteq R$ (S). Therefore we obtain $\sigma(S) = R(S)$.

We shall consider an example which is essentially the same as that of BOURNE and ZASSENHAUS; [4].

Let T_i be the semiring of all polynomials in the indeterminates x_i (i=1, 2) with non-negative rational integral coefficients.

Let S be the semiring formed by the pairs $(t_{\scriptscriptstyle 1},\ t_{\scriptscriptstyle 2})$ with $t_{\scriptscriptstyle i}\in T_{\scriptscriptstyle i}$ and the rules:

$$(t_1, t_2) = (t_1', t_2')$$
 if and only if

(i)
$$t_2=t_2'$$

and

(ii)
$$t_1 = t_1' = 0$$
 or $t_1 t_1' \neq 0$,

:addition and multiplication in S are defined as follows

$$(u_1, u_2) + (v_1, v_2) = (u_1 + v_1, u_2 + v_2),$$

 $(u_1, u_2)(v_1, v_2) = (u_1v_1, u_2v_2).$

It is evident that all the elements $(t_1, 0)$ form an ideal A of S which consists of only two different elements (0,0), (1,0), and therefore A is not isomorphic to T_1 . In this example $\sigma(S)=R(S)=A$.

Refferences

- [1] N. JACOBSON, The Radical and Semi-simplicity for Arbitrary Rings, Amer. Jour. Math. Soc., vol. 67(1945), pp. 300-319.
- [2] S. BOURNE, The Jacobson Radical of a Semirings, Proc. Nat. Acad., vol. 37(1951), pp. 163-173.
- [3] , On Multiplicative Idempotents of a Ponent Semiring, Proc. Nat. Acad., vol. 42 (1956), pp. 632-636.
- [4] S. BOURNE and H. ZASSENHAUS, On the Semiradical of a Semiring, Proc. Nat. Acad., vol. 44 (1958), pp. 907-914.