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On groups of motions of Finslerian manifolds, H. C. Wang [71° showed that if a-
connected Finslerian manifold of dimension n3=4 admits .an effective and connected.

group of motions of dimension >%n(7’t—~1)+1 then the manifold is Riemannian and.

of constant curvature, and later this fact was proved by N. H. Kuiper and K. Yano
[3]1 by a different method.
Recently, Gy Soés [6] treated homothetic transformations of Finslerian manifolds

and showed that a Finslerian manifold with constant curvature R=-0 admits no
homothetic transformation which is not a motion. Y. Nasu [5] also showed that a

complete and connected Finslerian manifold of class C' admits a homothetic trans-
formation which is not a motion then the manifold is Minkowskian. A similar theorem.
for a Riemannian manifold was already proved by S. Ishihara and M. Obata [2].

In the present paper, we shall study the structures of #-dimensional Finslerian
manifolds admitting homothetic transformation groups of dimension > —;—n (n—1)+1.
The results will appear in theorems of the paper. In the special cases where the
manifolds are Riemannian our theorems coincide with already known theorems which
were obtained by K. Yano [8] and the present author [11.

Let MM be an #n-dimensional commected differentiable Finslerian manifold with
fundamental metric function L. For each coordinate neighborhood U of I, L has the
expression L(#, £7)” which is defined on u(U)X R*, R* being 7-dimensional real
number space and # the coordinate system of U. 1In the following we shall denote
by 2: and 9; operators giving the derivatives of a function with respect to #° and &’
respectively. We put

| gu=0; 5 F, Cou= 8,5, 3, F, Ciy=g" Co (F= L"),
=4} — Ci Gi—Ci G5+ Cina G1 &7,
() =1 g0, Buat 30 Za—2e &), Gi= 3 (£}6°€")
and

Rifi=0, T =0, I'ff— (8 L33 8+ (3 LT e
+T3 T~y T,

1) See the Bibliography at the end of the paper.
2) Throughout the paper the indices take values 1,eeeeee s
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where g% are elements of the inverse of the matrix [gux|®, and we denote by a
semi-colon an operator giving covariant derivatives of scalar and tensor fields with
respect to I, for example,

Ték: =0, ﬁk'_<éa T?n )11;;“ £+ T;L Pa’zz
— T T3 —The 5.

We notice that, with respect to the coordinate neighborhood U, gj, Ciu, 9,5, R
and Tj;,; are respectively components of tensor fields of I and I 3¢ is an expression
of a linear connection of I _

A differentiable homeomorphism on N is called a transformation on MM if its
inverse is also differentiable. Given a transformation ¢ on MM, take any coordinate
neighborhoods U and U’ such that UCl¢™*(U’). Then the ¢ maps /7 on ¢ () (cU')y
and is expressed in terms of local coordinates as ut=fi(u, , #*). If there exists
a positive number « determined by ¢ only and

L, ¢)=a L(u', &%) (¢"=¢"0,f*)

holds, then ¢ is called to be a homothetic transformation of It and « the associated
number of ¢. If a=1, ¢ is called to be a motion or isometry.

Let G be a homothetic transformation group of I, that is, a Lie transformation
group each element of which is a homothetic transformation of M. In the following
we assume that G is connected and effective. To each ¢ of G there corresponds the
associated number @(¢) and the correspondence « is a homomorphism of G into the
multiplicat"ive group of real positive numbers. If we denote by M the kernel of «
then M is a group of motions and

dimM:dZ‘mG_l 1

holds. We can also prove that if G is compact G is necessarily a group of motions.

We take a point P of N and denote by G, the isotropy group of p. Each ¢ of
G, induces a linear transformation ¢p on the tangent space of P to M, where Op is
the differential of ¢ at p. The correspondence ¢—¢, is a linear representation of G,
onto the so-called linear isotropy group Gp and, from the following Lemma 1, this
linear representation is faithful. If we denote by M, the kernel of the contraction of
a to G, and by M, the image of M, under the linear representation then we have

dim M,= dim G, or dim M,= dim G,— 1

according as the identity component of G, is a group of motions or not.
H. C. Wang [7] proved that, at any point p of WM, a set of all the matrices lail
satisfying the relation

L(u;, af&*)=L(ui, &)

Jor all € makes an orthogonal group up io a conjugation, (ui) being the coordinates of P.

8) We assume that the matrix | gjz| has rank .
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Therefore the M, is necessarily a group of orthogonal transformations under a suitable base.

Lemma 1. The linear representation G,— G~p defined by ¢ —Qp is faithful.

Proof. Let ¢ be an element of G, such that B, is the identity element of Gy
Taking a cubic coordinate neighborhood V of the point p covered by local coordinates
(u*) (|#*|<a), since ¢ leaves invariant the point there exists for the V a suitable
small neighborhood W( V) covered by local coordinates (u)(|ut] <b, b< a) such that
¢(W)SV. Denoting by wi=f{(u', -, u") the expression of ¢ in terms of local coordi-

nates, we have
) f (0, -, 0) =0 and (35S u=0e= 63,

(0, ---, 0) being the coordinate of p. For arbitrary but given values &% we have

) B fe) . wif gl b ¢
2 9 akfl:-é[}k(u’ ?Z’:‘)EF}}?(”, 5)8(,f‘—1—',';j<u , €0 f Wt
(&"=¢£"2.1*)

which holds on the demain: |u‘|<b.
We consider a system of partial differential equations

li % a &
(3) 05 0r U :];IJK“, 35)

with 7 unknown functions #',---, #'™. (2) shows that (3) has the solutions f*(u', -,
#") with the initial conditions (1). On the other hand, functions #'‘=u’ are clearly
solutions of (3) which have the same initial conditions. Therefore these solutions
must coincide, more precisely, for a suitable positive number c(<b) we have fi(u)=
#'(|u*| <c) and consequently 3,/ ‘=gt Thus we see that there exists a neighborhood
U(SW) of p such that, for any point ¢ of U, ¢ G, and @, is the identity element
of Gq.

We consider a set N of points ¢ of I such that ¢e G, and @, is the identity
element of G,. It follows immediately from the above argument that N is open in
SN, On the other hand, we can easily prove that IV is closed in M. From the assu-
mption that MM is connected we have N=9. Therefore ¢ leaves invariant each
point of M and is the identity element of G, because G is assumed to be effective.

A tensor field T of I of any type, for instance, of type (1, 2) is said to be
invariant under a homothetic transformation ¢ if the relation

Ti(u', €2, 0 f=T5(u, £)3.f" (6"=¢"3.1")

holds with respect to the local coordinates of any coordinate neighborhoods U and U
such that U Ce (U").
Here we notice the following. For a homothetic transformation ¢ we have
easily
R*(u', £)=ale)*R*(u, §) (§"="3.1°)
(R*=R*. £,

from which we have a fact obtained by Gy Soés [61: if a scalar field of M whose local
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expression is R* is constant and not equal to zero then there exists no homothetic transformat-
don of W which is not a motion.

' Lemma 2. Let ¢ be a homothetic transformation of W which is not a wotion and
leaves invariant a point P of WM and T a tensor of type (#, 8) at the point. If the
components T4 .5 (04, &) of T are homogeneous of order t with respect to the variables
£° and r—s—1t7£0 holds, (4}) being the coordinates of D, then the T is a zero-tensor, that is,

T'L'I.--i,— jl"'js (uo, 5): O

Sor all &

~ Proof. Since ¢ is a homothetic transformation which is not a motion, the
associated number a(p) is not equal to 1. Therefore we assume without loss of
generality that a(¢)< 1. For any given positive integer 7, the associated number of
the homothetic transformation ¢™ is a(¢)™ and

L(us, (%i €¥)=L(u;, &)
holds for all €7, where we have put
Gi=ap)™ (3 /) (uy)
-and(v;g':(u) is the expression of ¢™ around p. The 7 being invariant under ¢™ we

have for any given values &4

(4) Qi o g8 T g o (i, ol B%)
(m) (m) (m)

=ap)" qit e i T (i, €9)
o om

Now we can assume without loss of generality that the matrix Ilaff, i is orthogonal.
m)
Therefore the matrices [la;f,ll(m= 1,2,--) make a sequence in the full orthogonal group
0 (n) and there exists a subsequence les| (7= 1,2,-) which converges to an orthogonal
ml

matrix [#5] because 0 (#%) is compact.
When / tends to infinity, the left hand side and the second factor of the right
hand side of the relations obtained from (4) by replacing 7 by m,; converge to

5 BTy, (U5, BEY)
and
Bt -+ Bar T gygy (h, €9)
respectively. If #—s—{ is positive, a(@)™"*® tends to zero and we have
T oy (0}, PEEY)=0,
from which
T gy (i, 89)=0

by virtue of the arbitrariness of &%. If r—s—1# is negative, ()™= tends to
infinity and we have
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T 4.5, (ul, 89)=0,
. We notice that tensor fields whose components are respectively g9 F ., Cham: s
0, It and R*', are invariant under any homothetic transformation. Hence we have

Theovem 1. If a Finslerian manifold admits a homothetic transformation which is not
a motion and fixes a point then the above cited tensor fields of M are zero at the point.

Lemma 3. If nF=4 and

dim G>—%—n(n—1)+1

then G is transitive.
Proof. Take any point P of MM such that

dim G,> dim G—n.
Then we have
dim M,> dim Gy— 1> dim G —n— 1= _;: (n—1)(n—2).

According to a theorem of D. Montgomery and H. Samelson [4], in an Euclidean space
of dimension #3=4, the full rotation group cannot have a subgroup K such that

L (n—1) (n—2)<dim K< 5 n(n—1).

Therefore we have

dim M,= % n(n—1)

" because M,, is an orthogonal transformation group under a suitable base, and conse-
quently dim G>dim G,. From dim G>dim G, and :

dim M,= % n(n—1),

it follows that G is locally transitive at the point, that is, the orbit of G passing
through P contains a suitable small neighborhood of b.
On the other hand, G is clearly locally transitive at any point ¢ of M such

that
dim G,=dim G—n.

If we take an arbitrary but fixed point P, of I and denote by N the orbit of G
passing through 2., then N is open and closed in M. Consequently, from our assum-
ption that M is connected, we have IN=UI which proves our lemma.

Theorem 2. Let M be a connected Finslerian manifold of dimension . Then the
maximum dimension of effective and connected homothetic transformation groups of M is

= n(n+1)+1,
In fact, let G be an effective and connective homothetic transformation group
of M and assume that
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dim G> 2 n(n+1)+1.
Then we have at a point p of IN
dim M,>dim G,— 1 >dim G—n— 1> —%— n(n—1)
which is a contradiction. Hence
dim G T%n(%+1)+ 1.

It follows from the following example that % n(n+ 1)+ 1 is the maximum: a group

of all homothetic transformations in an Euclidean space. This example is trivial, but
the appositeness of this will be understood from the following Theorem 3.
H. C. Wang [7] showed that in a connected Finslerian manifold of dimension

74 there exists no effective and connected group H of motions such that
% n(n—1)+1<dim HZ % n(n+1).

By using this fact we have easily

Theorem 3. Let I be a connected Finslerian manifold of dimension nF4. Then M
admits no effective and connected homothetic transformation group G which is not a group of
motions, such that

%n(n—l)—i—z <dim G<%n(n+1)+1.

Theorem 4. Let WM be a connected Finslerian manifold of dimension n and G an
effective and connected homothetic transformation group of M. (a) if )

dim G = %n(n+1)+1
then M is locally Euclidean and (b) if n3-4 and
dim G ———.% n(n—1)+2

then W is Minkowskian.
Proof. First we prove (a). The group G is not a group of motions. In fact, if
it is true, we have at a point P of IN

dim My=dim G,=dim G—n=L n(n—1)+1

which is a contradiction. Therefore G contains a subgroup of motions whose dimension
. 1

is equal to 7%(7&—}-1). From a theorem of H. C. Wang [3], [7], M is necessarily
Riemannian. It is clear that G, of each point p of I is not a group of motions.

Therefore, from Theorem 1, the tensor field of I whose components are R*;, is
zero on M and hence M is locally Euclidean.
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Next we prove (b). At each point P of M, G, is not a group of motions. In
‘“fact, if it is true, we have

dim W,=dim G,=dim G—n=—~ (n—1)(n—2)+1,
from which
dim M,= % n(n—1)
because #7F=4. Since G is transitive from Lemma 3, we have
dim G = —é—n(n+1)

which is a contradiction. By using Theorem 1, the tensor fields whose components
are respectively g F.,, ;i and R*'j, are zero on M. From the fact the second
and third tensor fields are zero on M it follows that each point of I has a suitable
coordinate neighborhood U of the point on which the connection parameters I'i are
zero. Therefore, from g% F.,= 0, we have L,z =2:L=0 on U and consequently L
do not contain the variables #°. This proves that M is Minkowskian.
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