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Introduction. In the paper we deal with a complete Finsler space of class C' -
which admits a non-isometric similarity or a transitive abelian group of motions. We
showed in [11® that, if a complete Finsler space of class C' admits a non-isometric
and global similarity, the space is Minkowskian or isometric to Minkowskian according
as its indicatrices, which are unit spheres of tangent Minkowskian spaces, are convex
or not necessarily convex. But we did not deal with the case where a Finsler space
admits a non-isometric and local similarity. Hence we discuss first the properties of
such a Finsler space and second the properties of a Finsler space which admits a
transitive abelian group of motions.

H. Busemann showed in [3] that, if a metric space called a G-space admits a
transitive abelian group of motions, the space is locally Minkowskian and homeomorphic
to the topological product of the finite number of real lines and circles. Under a
suitable assumption of differentiability the above also holds for a complete Finsler
space. But, if the space is of class C', the above is not obvious. Hence we show the
above under a reasonable assumption.

§1. Let R be an n-dimensional complete Finsler space of class C' with integrand
F(x, %) (n=>2). In a coordinate neighborhood U a point with coordinates (&, -+ LX)
will be denoted by % and a contravariant vector with components (&4one ,&") by £.
Suppose that the function F (x, £) is continuous in the variables %'’s and &*'s and
satisfies the following conditions:

i) F(x,6)>0 for any vector & + 0.
i) F(x,¢8)=cF(x,¢) for any positive number .

Suppose further that for any two points there exists an arc which connects these
points. Then, by integral method, the length /x(C) of a curve C of class D’ from a
point P to a point ¢ is defined, and the distance p (P, q¢) is defined by the greatest
lower bound of the lengths of those curves from P to ¢. By use of the distance P we
can again define the length /(E) of a continuous curve E. Obviously Z(C)</,(C).
The equal sign always holds when and only when the indicatrices are convex.

Let ¥ be a transformation of R on itself such that, if P¥=1" and qr=¢,

e (P, q )=ko(p,q),

where % is a positive constant not equal to 1. Then ¥ is said a non-isometric simi-
larity or simply a global similarity of the space R on itself. If for a point P a positive

1) Numbers in brackets refer to the references cited at the end of the paper.
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number J, exists such that

p (%, yI)=ko (x,5) (k>0, #1)

holds for any two points X and ¥ in the sphere neighborhood S (2, 6,) (= {x|p(p, x)
<5p}, 6,5>0), ¥ is said a local similarity of the space R on itself.
If the space R admits a global similarity ¥ on itself then the space is isometric

to a Minkowskian space. If further the indicatrices: F (x,£)=1 are convex, the space
is Minkowskian [11.

§ 2. Letjé be the universal covering space of X and £ a covering transforma-
tion of R onto K. Then we have

(2.1) If the space R admits a local similarity & on itself, then the space R admits a
global similarity T on itself such that TQ=QU.

Proof. Let P be a point of R and put pZ=p'. Suppose further that the universal
covering space R was constructed by choosing the point P as origin. Hence 5——‘ » and
we can put PR=p.

Let X be a point of R and put x¥=2x', and further let C be an arc from P to
%x. Then C¥ is a continuous curve from P’ to ¥'. We denote this curve by C'. Let
D be an arc from P to P D the arc which lies over D and issues from 15 and c the
continuous curve which issues from the end point p of D and lies over C'. Then
the end-point ¥ of C' lies over x'. Let C be an arc which lies over C and issues
from p and ¥ its end-point. The point X lies over %.

By virtue of the assumption the sphere neighborhood S(%,d,) is mapped onto
S(«,6,) (6,=F5,) under the local similarity ¥. On the other hand there exists a
positive number p, not greater than 6. such that S (%, p.) and S (¥, ps) <‘0x—k‘0x)
are under Q isometrically mapped onto S(x, p.) and S(%/, p.) respectively. From this
we see that there exists a similarity 7 of S(%, p.) onto S(X, o2) such that

p(f’f", E’j')=k,o (¥,2) for two points ¥ and Z in S (X, p.)
and further
o (579, 200)=p (59U, 200)=kp (3, 2),

where y2=y and Z2=z. It is easy to see that the similarity ¥ can be extended to
the whole space R. Obviously ¥ is a local similarity of R on itself. Hence the
proposition is proved by showing that ¥ is global. To do this we prove the following

(2.2) If the Finsler space R is simply connected, then the local similarity ¥ is global.
Proof. Let G be a shortest connection from a point P to a point ¢ and put
P'=p¥, ¢'=q¥ and G¥=G".

Then G’ is a continuous curve from P’ to ¢ and we see from the definition of local
similarity
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kI(G)=Fko (D, @)=1,(G).

1f L,(G')=p(P',q'), the proposition is clear. Hence we assume that there exists a
shortest connection G’ from P’ to ¢’ such that

p (P, a)=1L(G")<L(G).

Let UXV be the topological product of the segments U: 0<#<{1 and V- Py,
Since R is simply connected, there exists a continuous mapping of UXV into R such
that f(0,0)=p", /(1,1)=¢" and f(#, 0), 0<u<1, and J(%, 1), 0<u<1, coincide with G’
and G" respectively.

Let g(u), 0<#<1, be the parametrization of G such that

&(u)¥=1(u,0) for 0<u<1.

To simplify the notation we put Poyy=p,(#). Then there exists a subdivision of
the interval [0,11: 0=16,<2t,< ------ <#,=1 such that each SCa(u), p(u)) is mapped
onto S(f(”u O): xolo<ui>) (A‘%(ui}k:plo(u'i)) under ¥ and

S(go<ui>: Po(ui>) A S<go<ui+1>; ."o(f"iﬂ))#?S
(Z'zo’ 1,0 ,m_1>.

From this there exists a positive number v, such that

S, v,) T S(f(ue, 0), /()

for u,<u=w,., (i=0,1,-+---- ,m—1) and for u,  <u<u,(i=1,--- ,m). By considering

the contraction of ¥ to each S(g(u.), p(#:)) we have a continuous curve g (%),
0=<u<1, from P to ¢ such that

gx(”)gp‘:f(u: vl)’ 0=#<1, and
&(u) T SCg(u:), pou))
for u,<u<wu,, (i=0,1, - ,m—1) and for wu;  <u<w,(i=1,--, m). Under the same

consideration we have from g,(#), 0<#<1, and S(u,v,), 0<u<1, a continuous curve
&(u), 0<u<1, such that

&(u)T=1(u,v,) for 0=<u<],

where 0<v,<»,<1. By repeating this process we have after finite steps a continuous
curve g(u), 0<u<1, from P to ¢ such that

&(u)T=1(u,1) for 0<u<1.

We denote by H this continuous curve. It is easy to see from the above that the
length of the curve H equals ,,(G")/k. Thus we have

Rl,(H)=1,(G")<,(G)=kL,(G).

We therefore have L,(H) <{l, (G). But this is a contradiction. From this it follows
that ¥ is a global similarity.

B If the space R admits a local similarity 7" on itself, the universal covering space
R admits a global similarity 7 such that 7'Q=0Qv. The space R is Minkowskian [11.
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1f R is .compact, then R does not admit a local similarity with dilation factor less than
1. If the dilation factor k is less than 1, the space is simply connected. Hence 7 is
global. Since there exists on R only one fixed point under 7 there exists also on R
only one fixed point. Thus we have from [1] the following

(2.3) Theorem. Let R be a complete Finsler space 0, f class C* with convex indicatrices.
If R admits a local similarity ¥, the space is Minkowskian or locally Minkowskian according
as its dilation factor k is less than 1 or greater than 1. Then the space R has only one fixed
point D under U and is isometric o7 locally isometric to the tangent Minkowskian space at the
point P according as the above two cases.

The arguments apply to a Riemannian space which admits a local similarity, i.e.,
we have the following

(2.4) Theorem. Let R be a complete Riemannian space of class C'. If R admits a
local similarity, then the space is Euclidean or locally Euclidean according as its dilation factor
is less than 1 or greater than 1.

At the end we consider the case where the indicatrices of the space R are not
necessarily convex. Let us denote by 7. the indicatrix: F(x,£)=1 at a point x. Let
7, be the convex closure of 7. Then 7. is represented as F(x,&)=1 by choosing a
continuous function in the variables x¥s and &Ys such that F(x, &) is positive for
&0 and positively homogeneous of first order in the variables g¥s. Let R be the Finsler
space with the indicatrices 7= instead of 7.. Then the space R is isometric to R 21
Hence, if R admits a local similarity ¥, the space R also admits the local similarity

¥. From this we have the following

(2.5) Theorem. Let R be a complete Finsler space of class C' with not necessarily
convex indicatrices. If R admits a local similarity ¥ on itself, the space is Minkowskian or
locally Minkowskian according as its dilation factor is less than 1 or greater than 1. Then the
space has only one fixed point P under W and is isometric or locally isometric to the tangent
Minkowskian space T, at the point D according as the above two cases.

§3. In this paragréph we deal with a Finsler space R of class C' which admits
a transitive abelian group of motions I'. For two points X and ¥ there exists a motion
w(Er) such that y=x¥. If @CI’, we have then

o(x, x0)=p(x¥, x0¥)= (2T, x¥0)=0(9,yP).

It follows from this that every element of I" has no fixed point unless it is identity
E. Hence I" is simply transitive.

We topologize the group I’ by defining the distance of two elements ¥ and 1y
such that ¢ (&, @)=p(x7, x0) (xCR). Let {®,} be a sequence of elements of I'. 1If
for a positive number e a positive integer N exists such that (@, @) <e for m, n>N,
there exists a motion @ of I’ such that limn_,ma(@”,@)=0. Hence the group I is
closed. We first prove the following

(3.1) Theorem. Let R be a combplete Finsler space of class C* with not mecessarily
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convex indicatrices. If R admits a transitive abelian group of motions I" and (%, x@, x@*)?
Jor a point X and for a motion @(FE) of I', then the space is isometric to Minkowskian.

Proof. Let P be a point of K and U a coordinate neighborhood of p. Let 6 be
a positive number such that S(p,6) C U. Further let [ be a Euclidean half straight
line issuing from P and x the first point on [ such that p (P, x)=6. The totality of
such points X coincides with the boundary K (p,6) of S(p,5). Thus we see that
K (p,6) is homeomorphic to an (n—1)-dimensional Euclidean sphere.

As we said at the begining of this paragraph, the group I is simply transitive.
Hence for a point x of K (p,5/2) there exists a motion @ of I” such that PO=x.
The point @ clearly lies on K (9, 6), since (P, p@, p@*). The totality {x®} of such
points x£¢ is homeomorphic to K (P, 8/2) and therefore coincides with K (D,8), We
put x@=x, x=x,. Under the same consideration there exists a point %, of K(p, 6/2%)
and a motion ¥ of I such that

PU=x, pU'=x¥=x and P’=0Q.

If we put x,¥=x;, then we have (P, %, %,), (%, %, %,), (%, %,, %,) and (P, x,, x,).
We denote by L, the Euclidean polygon {p, %, %,} and by L, the Euclidean polygon
{p, %, x,, x,, %,}. Repeating this process, we have a sequence of Euclidean polygons
{L.}. The sequence {L.} clearly converges to a shortest connection G from P to «,
which is called a geodesic arc [31.

Obvoiusly the geodesic arc G is reversible and its prolongation is locally possible
and unique under motions of I". We denote by 7' the whole prolongation. 7 is called
a geodesic and denote by ¥, the totality of such geodesics. Two geodesics of F» have
no common points except the point p. Next we prove this.

Suppose that there exist two geodesics 7, and T, of ¥, which intersect at a
point ¢ different from p. Let G, and G, be the subarcs of 7, and 7, from D tog
respectively and suppose further that ¢ is the first common point of 7, and 7, from
b. Then L(G,)=[(G,) and there exist a positive integer m(=2) and the two points
by, b, on G,, G, such that L,(G,)/2"=s and o (D, p.)=p(p, p.)=s. By the assumption
the points p, and p, do not coincide. If we put P¥P=p, and pP=p,, then it is easy
to see

PET=p0"=q, (D, pPT*"7, pU™) and (p, po™, po™).
We have from this
rro-T=F,
On the other hand, since ¥@7'#E, we also have ¥*"0~""#E, which contradicts the
above.
Let {@.} and {b.} be sequences of points which converges to a point @ and a
point & respectively and for each 7 G, the geodesic of Tan through the point &,. Then

the closed limit of the sequence of geodesics {G,} coincides with the geodesic of Ba
through the point . The set of all points on the geodesics of §, forms an open and

2) If for three points x, ¥ and z p (%, ¥)+p (3 z)=p (%, 2), then we denote this by (x, ¥, 2).
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closed set and therefore coincides with the space R.

From the above we se€ that the geodesics of ¥p simply covers the whole space
R except p. Let ¢ be the totality of such systems X (xCR). If p2=%, QCI, then
we have Fp@=%F,. To prove the theorem we show the following

(3.2) Let G, b and C be three points which do not lie on a geodesic of ¥ and b and
c' the poinis on the geodesic arcs which connect a,b and a,c respectively and such that
20(a, b )=p(a,b) and 20(a, c=p(a,c). Then o(b, ¢)=20(b,c").

If in the proposition 20(a,b)= o(a,b) and 20(a,c')= p(a,c), then 2p (b, b )=
p(b,a) and 20(¢, ¢=p(c,a). This is clear from the above proof. 1f further the
proposition is proved, it is also clear that 20(c’, b)=p(c, b). Next we prove the pro-
position.

Proof. We put ar=b,a®@=>" and b'Q=c'. Then the following is clear:
rQ=q@,al*=>b and ad’=c.
1f we further put d=a¥Q¥, then

bQ:aIFZQ———a?F(DT:d and
b= ar @ =a( Q) F=av’=c.

Hence the point d lies on the geodesic arc of % connecting the points b and ¢ and is
the mid-point of these points. It is easy to see

P =a@T=a¥Qr=d and b'F=D.

Hence p(?', ¢ H=p0'F,c 1) =p(b, d)=p(D, ¢)/2, from which the proposition follows.
Let & be a point of R and ¥ the motion of I such that p¥=x. We put x¥=
x' and denote by x'=x6 this correspondence: x—zx'. In such a way W€ define a
transformation 6 of R on itself. Obviously @ is a non-isometric similarity with
dilation factor 2. The space admits the similarity @ and the point P is fixed under 6.
Hence the space is isometric to Minkowskian. '

Remarks. If in a Minkowskian space the spheres are convex, all straight lines
are geodesics. Even if the spheres are not conves, all straight lines are geodesics in
the sense of I length but not in the sense of [zlength. It is to be noticed that in the
theorem the assumption of the convexity of indicatrices is not necessary. 1f in the
theorem the indicatrices are convex, the space is clearly a Minkowskian space.

Let ¥ be a motion of R on itself and a point x be carried into 2 point ¥ under
¥. Let U and V be coordinate neighborhoods of X and ¥ and (&, , %) and o,
""" ,y™) their coordinates respectively. Then the relation: y=x¥ can be represented

in the following form:

Obviously the functions P s , &™) are continuous in the variables xVs. If each
FAE o ,x™) has continuous derivatives of first order with respect to the variables
4's. The motion ¥ is said to be of class C'. ‘
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(38.3) Theorem. Let R be a complete Finsler space of class C' with convex indicatrices.
If R admits a transitive abelian group of motions I' such that each of I" is of class C', the
space is locally Minkowskian and homeomorphic to the topological product of the finite number
of real lines and circles.

If in the above theorem the space is of 2-dimensions, then the space is either a
plane, a cylinder or a torus with Minkowskian metric. Next we prove the theorem.

Proof. As we said at the begining of this paragraph, the group /' is simply
transitive. Let p be a point of R, ! the half straight line issuing from p and 1 (=(1},
""" »2")) is the Euclidean unit vector with the direction of I. If a point ¢ on [ tends
to p, we have by virtue of the convexity of indicatrices

-, p(ha)
Wer Fp, e o, ) =

Let ¥ be a point of R and p¥=x, ¥CI. Further let U, be a coordinate
neighborhood of % and ¥ a point of U, such that the Euclidean segment E(x,y) is
contained in U,. Then the motion ¥ carries the Euclidean segment E(p, ¢), whose
length equals 1 and direction is 4, into an arc L of class C. Let {7.} be a sequence
of points of L which converges to the point X and 4. the Euclidean unit vector of each
E(x,7,). Then the sequence of Euclidean unit vectors {1,} converges to a vector Ve
and we have by putting ¢,=7,0"'(n=1,2,---- )

G.49 . F(x,b)e(x,n)
e "B e By 22) = 1

where e(x,y) is the Euclidean distance between two points X and ¥ and F'(x, &)
denotes the integrand in the coordinate neighborhood U,. From this it follows that
the correspondence: A=y, is one-to-one and bicontinuous and the tangent Minkowskian
spaces Ty and 7, are isometric in the above directions A and He-

Let z be a point of E(%, ¥) and . the Eulcidean unit vector at 2 which corres-
- ponds to 2 as in the above. We show that ¢z and py, are parallel.

Let E(x, x') be the Euclidean segment with length 1. There exist motions @
and X' of I' such that &'=2x@, y=x3; @, XCI". Then the images of E(x, ') under X
and of E(%x,¥) under @ are arcs with the common end-point, since the group I is
abelian. Let %" be the point of E(%, #') and @ the motion of I” such that x"'=x¢'.
Then the images of E(x,y) under @' and of E(x, ') under X have also the common
end-point. From this we see that there exists a 2-dimensional surface S of class C*
represented as f(#%,v), 0<#<{1, 0<v<(1, which satisfies the following conditions:

E(x,2): f(u,0), 0<u<y,
E(x,9): f(0,v), <01,

for fixed # f(u,v), 0<v<1, is the image of E(x,9) under the motion @” of I" such
that x@"'=f (u,0) and for a fixed v S (u,v), 0<u<1, the image of E(x, x') under
the motion X' such that x3'=£(0,v). Then it is easy to see that
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3.5 o(£(0,v), fCu,v))=p(f(0,0"), f(%,0')),
' Co<u<, 0<v<1.

Let A., be the Euclidean unit vector with the same direction as a Euclidean
segment E(f(0,v), f(#,v)). We have then

G p(f(0,v), f(u,v)) 4
WM "B F(0, 1), Auo) € (FC0,0), F(®,0))

The group I” is abelian and liM.s Auo= 1 (=pr0). Hence by (3.5) we get

Go F(£(0,0), ) e(f(0,0), F(wv)) _
W FTCFC0, V'), Auwr) € (FCO, V), F(2t,07))

for any ¥ and v'. The tangent Minkowskian spaces at points f(0,v) and f(0,?")
are isometric in two directions g, and p.. Hence we have

F'(f(0,v), p)=F(f(0,0"), pw).
Therefore we get by (3.6)

_ e(f(o,0), f(#,9)) _
lims 500, 0, FGt,0)) &

We denote by L. the arc f(#,v), 0=v<1, and by M, the arc f(#,v), 0Zu<1.
Then L, and M, are identical with E(x,y) and E(x, x') respectively. Let « is a
positive number and %#,? and v' positive numbers such that 0=u<1, 0<v<v'<1 and
a=p(f(o), £(0,v))/p(f(0,v), f(#,v)). If under these conditions ¥’ tends to ¥ and
# tends to zero, the Buclidean quadrangle f(0,v) f(%, v) f(u,v') f(0,2") tends to the
point f(O, v) so as to be similar to a parallelogram.

Let P be the 2-plane determined by the segments L, and M, Then P is the
tangent plane of S at f(0,0). The Euclidean unit vectors (0<Zwv<1) lie on P and
I,(L)=1,(L,) for each #. Hence a consecutive arc Ly.a. of L, lies on P and its
length equals that of L, From this it follows that the arc Ly.a. is a Euclidean
segment parallel to L, and hence the Euclidean unit vectors sp(=p=) and w(=py)
are parallel. Thus we see that in U, the function F(x,&) does not depend on the
variables x”s and the space is locally Minkowskian. Since the group I’ is locally
compact, connected, locally connected and commutative, the last pé.rt of the theorem
is clear [4]. Thus the theorem is proved.

1

It is also clear that, if in the theorem the indicatrices are not necessarily convex,
the space is locally isometric to Minkowskian. This follows directly from the same
consideration as in §2.
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