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THE POINT ESTIMATION OF THE VARIANCE
COMPONENTS IN RANDOM EFFECT MODEL

Nagata FURUKAWA

(Received July 15, 1959)

1. Introduction.

In this paper we shall be concerned with the estimation of the variance compo-
nents of the r-way layout of random effect model. Concerning the theory of estimation
in the design of experiments the author should like at first to mention the work of
R. C. Bose [21V, where the estimation problem was fully discussed under the general
linear model, which is applicable to the estimation of the treatment effects under the
fixed effect model. In his work the normality of the distribution was not assumed
and the arguments were solely based on the Markov Theorem.

On the other hand concerning the estimate of the variance of the error term
and that of the variance components in both the fixed effect and random effect model,
there have not been known so far except for the unbiasedness.

Neverthless in view of the developments of the theory of estimation as a part
of the current statistical inference theory (Lehmann-Scheffé [61, Lehmann [5]), it has
been felt to be needed to develop the theory in the model of design of experiments
from the standpoint of the current statistical inference theory. In this connection we
mention the work of Y. Washio [7], where he proved that the ordinary estimates of
the parameters in the fixed effect model are the best unbiased estimates in the sense
that the estimates are of uniformly minimum variance as are based on the complete
sufficient statistics. Thus the problem concerning the r-way layout of the fixed effect
model has been solved, and also he treated the same problem concerning the random
effect model. His result, however, is restricted to the 1-way layout only.

The purpose of this paper is to treat the problem of estimation in the r-way
layout of random effect model. The main difficulty in this problem lies in deriving
the joint density function, and for this purpose we have to prepare with some compli-
cated notation system.in handling the variance matrix, its determinant and inverse
(Theorem 4.1 and 4. 2). After such cumbersome calculations, we shall come to the
derivation of the joint density function (Theorem 4.3), and then we shall observe that,
as is pointed out by Washio, the sufficient statistics of the family of the distribution
in our concern can not be proved to be complete by the usual method appealing to
the unicity of the Laplace transform. Therefore we shall prove, instead of following
the line of Washio, that the estimates of the variance components ordinary used in
the practice of statistical analysis are the minimum variance estimates in the sense
of Bhattacharyya (Theorem 4.4). In proving it we shall appeal to the result due to
Bhattacharyya [1], which enables us to prove it without verifying.the lower bound of

1) Numbers in brackets refer to the references of the end of the paper.

11/
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Cramér-Rao [3] or its generalization due to Bhattacharyya is attained by the variance
of the estimate. .

As the arguments and the notation system are very much complicated we shall
treat the special case of the 2-way layout (Section 3) as 2 preparatory exposition to
the general case.

After treating the random effect model, there naturally arises the corresponding
problem for the case of the mixed effect model, which the author wishes to discuss on
another occasion.

The author expresses his hearty thanks to Professor T. Kitagawa and Mr. A.
Kudb of the Mathematical Institute, Kyushu University for his valuable suggestions
and encouragements while the author was preparing this paper.

2. .Preliminaries.

In this paper we shall be concerned with the r-way layout of random effect
model whose model equation is given by the following

@. 1D Kegtyt,=pt P SV Grigetapt €ttty (t:i5=1,2, " , Mg, F=me k)

k=1 T 3;CTr

where p denotes the general mean, u-tix denotes the interraction between 1,-th,
i,th, - i,th factors with the level iy By 2F ,ti, and @se.s, denotes the error
term. In the above equation T, denotes the set of suffixes, fy, b= ,t, and Ty
denotes a subset (fi, fogyoo i) of T,=(t, Loy ,t.), with the relation 1<yl oe e

<ik.T 2;7 denotes the summation for all subsets To=L b+ ,t:,) of size kin T,=
Tk r

(b, ,t.), or in other words for all subsets of integers (&, =" L) in (1,2, oo 7).
We assume that g is a constant, all @t and €iey.z, A€ distributed indepen-
dently to each other as normal with mean all equal to 0 and variance of @iyt equal
to o445, the variance of €1,.1, all equal to g '
The Kronecker product of two or any number of matrixes are defined in this
paper in the way reverse to the usual ones for the convenience in handling the cumber-

some notation systems, which will become clear in the course of the developments of
the arguments in this paper.

Let A=(as;), B=(b:), the Kronecker product denoted by AQB is defined as
the matrix with the (7, 7)-th submatrix Ab;; instead of @B, in the usual manner.
The Kronecker product of any number of matrixes is defined as the natural genera-
lization of two matrixes, we shall write the Kronecker product of 7 matrixes A, A,

...... A as MRA,

i=1

In this paper we shall make use of the well-known relations concerning the
Kronecker products of two matrixes such as (A®B) (C®D)=AC®BD, (A®B)™'=
A®B™, (A®B)'=A'®B’, and their generalizations to the products of any number
of matrixes without mentioning explicitly. Throughout this paper we shall write nxn
unit matrix as 1, E, denotes the X% matrix with the elements all equal to 1. Let
H, be the nXn matrix with the elements all equal to zero except for the element of
the first row in the first column equal to 1, and let K,=I,—H, namely,
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71 ~ 711 e 1N 71 Qe [1 70 [
1 0 : : 00 2 1
@2 I= E.~=| ; P Ha=|: L K= L.
0 * . . . % 0 .
{ 1), Lleeeneani g, LOwereeeii0 /), L 1.

Further let 7, be defined as the orthogonal matrix with the elements of the first

1
column all equal to -—1/7 namely
, v

(2.3) T,=|Vn E

Then we have easily

2.4) T,.E,T.,=nH,.

3. The case of the 2-way layout

This section is devoted to the case of the 2-way layout. Although there is no
essential difference between the case of the 2-way layout and the case of the general
r-way layout the notation system we need in the latter case is so ‘cumbersome and
complicated that it would be, the author feels, necessary to treat this special case for
the preparatory exposition of the basic techniques in the developments of the arguments
in the general case.

In this section we shall be concerned with the model equation,

$9=1,2,-, 7,

3.0 Xegt12,= +at1+atz+a11;2+etot112 11=1,2, -7,
$2=1,2, -, M2,

where ¢ is a constant denoting the general mean, and @, Qiy, Gz, and 11,2, are
distributed normally with mean 0 and the variance 0y, 03 g, and o, respectively, and
further they are all independent to each other. Then the variance matrix of these
7, 1, M, variables i, are given by ' ‘

n:
P T ¥
/LMeeeee MY
3.2 V= (ML :

n; . . .
L . .M
M-« -ML,

Mo eeeree e MN /NO-- 0N ‘PO-- 0N QO e QN
: : ON oP N 0Q s
= + = s N
0 °. 0 : 0
M M/ \0 ON/ NOeevers oP/ NOoeeeens 0Q)/

where

e
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‘A B \1 b
A. C C n, = D Q cerecsececas Q
B A J
Ay B :
(33) L= C ., : M= 0 D
B A 0 .
- n; .
. o . o
A
c eeane c A. 0 0 D
B A, , \ J,
N , %
C C B-C-D 0 0
0 B-C-D
.N= P: i
0
C c 0 o |B-C-D
7 \ 7
f \
AB g
o -, 0 0
A-B s
A-B .
° 0 .
0 g~ :
Q= A5 :
: 0
AB o
0 ssedseremnss O ..
0 A’B),
and
A=g,+t0o,+0,T0,
Bf:0'1+172+‘712, )
(3.4 C=g,,

D=g,.

This can be expressed simply in terms of the Kronecker product of the matrixes as
follows.
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(3. 5) V: 01E110®[111®En2 + GzEno®En1®[n2 -+ Ulen0®Inl®In2 + Uolno®[nl®.[n2.

At first we shall evaluate the determinant of this matrix, which is equal to the
determinat of the following matrix.

(3.6) (T2 QT ®@Tw,) V(Taf®@Tw®T,).

In view of (2.4), this is equal to

G- 1,0, Hn @I @Ho, + 11,0, H @ Ha @ H,, + 7403 Hn @ [ @In, + 6,2 @ [, @1,
= 11,0, Hni@(Hon, + Ko, )Q Hry + 11,6, Hn Q H @ (Hoy + Koy
T 100 Hn @ (o, + Ko Q(Hoy + Kony) + 0,(Hoy + Ko )Q(Hy, + K )R (Hony, + Kny)
=m0, + nni0,+ 146, +0,) H, 7@ Hn,QHoy + (01,0, + 1,5, + 00) HnQ K, @ Hn,
+ (nm,0,+ N0y, +0,) HaQH. 1 QKn, + (1o, + ) H. no®Kn1®Kn2
+ 0 { Kn @ Ho @ Ho, + K@ K @ Hy +- K, 2 Hm@ Koy + K@ Ky @ Ky}
Thus the matrix (3.6) is expressed as the linear form of eight matrixes, and as all of

them are diagonal, this matrix is also diagonal, and any two matrixes have no non-zero
element in common. This fact leads to the evaluation of the determinant as follows,

(3.8 l Vl = (non20'1 +nn0,+ Nyoy, +0'o) <non251 + 70y, +Uo>("l—l) (non1¢72 + 7oy, +0'o><n2_1)
. (no(’lz +oo>(’"1—1)("'2—1)0_0‘"1"‘2("0—1)

s

or by writing

3.9 bi=a0,
012=no¢712+0’0;
0,.=n9,0, 4 1401, + oo,
02:n0n102+noo’12+ao,
0E:nongo'l+non102+n0012+00,
we have finally
(3.10) l V[ =0 05"1—1)65"2—1)61(;‘1—1)("2—1)0:1"2@0—1).
Now let us find out the inverse matrix of the variance matrix (3.5). The
variance matrix is given as the linear form of four matrixes,

inverse to be a linear form of these four and of
calculations,

and anticipating its
En@FEs®E.,, we have, after a simple

G1D  [0:En®InQ@FEn, + 0,EnQEn® I, + 1B @ L@y + 6, @ [ R1,]
X En®@En@FEn, + X, Enf®In @ Fn, + X, EnQFn @1,
+ X En @I, @I 4 X, [, I, I, ]
=EnQEn@En [ (11,0, + N0, + Moy, +0) Xe + 2,6, X, +1,0,.X,]
T En@In@En[ (10,0, + 11,6,, + o)X+ 10X, +0.X,]
+En@En QL[ (nn,06,+ 14012 +0,) X, +1,0,X,,+ 0, X,
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+E"‘0®I"1®I‘"z[<no¢712 = ‘70>X12 + 0'12Xo]
+ In°®InI®InZ.X°0° .

In order to have the second matrix which is a linear form of five matrixes to be the
inverse of the first, the product of these two should be the unit matrix, for which we

should have
(nomy0,+ 0o, + n,0y,+ o) Xz + 1,0,X, + 1,6, X,=0,
(nonza, +n,0,+0,) X, + N0, X, +0,X,=0,

3.12) (nmo,+n0,+0,)X,+1,6,X,+0:X,=0,
(noalz g 0'0>X12 +012Xo= 0,

o, X,=1,
The solution of these linear equations is given by
%=,
% (=3,
1 1
@1 X = ( 7 ﬁu>,
1 1
2 = nonl( 0, 012>,
o= s (o =0~ o+ ).

_ Thus we have obtained the determinant and the inverse of the variance matrix,
which enables us to give the joint density function of all the %7, variables in our
concern. By noting the relations

(3.14) EEX, = (zx) ELE =S

i=1 =1
where %, is any n-dimensional vector X,=(x%;, %5, - , X,), and by writing
(3.15)  Uigtyt,= Xyt 12— p,

our joint density function is given by the following

@18) FX)= (A=) ""AVI) " exp (-5 8),

where
@3.17) S= XE(Z 22 u‘o‘1’2)2+Xl E(EE utohfz)z +X2t22 <t2021] utotltl)z
+-X1222 (Z utotﬂz) +X EEZ uto‘lizy

iy 22

where Xz, X, X,, X, and X, are given by (3.12).
After a simple modification, we have finally
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(3.18) f(X) =K 0271/2 01—(“1—1)/2 02—("2—1)/2 0;—2("1—1)("2—‘1)/2 ﬁ;"x’lz(ﬂo—l)lz

-exp __1_ —_1_ ZZE (xtofltz-x-iltz)z'}‘ ol Z (ﬁ_ftl—fff)z
2 00 ig 01 L2

7y 21

NIy ., _ ”n _ _ _ _ NN, , _ ;
Tg%(x..tz—x...)z-x— 0° PIDY CHNRT PR JUIE S T o 8 %(x...—#)z}]

Zy 22

+

where K is a constant independent of the parameters in our concern.
We have the family of distributions whose parameter space is written explicitly
as

. 0 é_ﬁo <007 BE:01+02'_012)
0y < 6,,oo,

3.19) 9= =

€ ) 0., <6, <o, _°°</1 oo,
ﬁngﬁz <°°: ,

and whose sufficient statistics are given by the following five statistics

(3.20) So = ZEZ (xtotitz_-ih’z)z:

7o 21

S, =nm 3 (.~ Y,
Sy =nm, (& .0)—%... ),
2
S12:no Zg (ﬁ_:.tltg_i.tl. _i. . tz+$—r- .. )2,
1

If the family of distribution of these sufficient statistics is complete, the theory
of estimation tells us that the usual estimates are the unique unbiased minimum
variance estimates of the variance components o,, o, 03, 6, and the general mean yZ
(Lehmann [5]). As already pointed out by Washio, we have not so far been able to
conclude whether it is complete or mot, and we shall appeal to the notion of the
minimum variance estimate due to Bhattacharyya, and in this connection we shall
make use of the result due to him [1] (c. f. section 6 of Chapter I in his paper).

In view of (3.18), (3.20) we have '

3.21) Inf=K— %{lnﬁg-l—(nl—l) 1n01+(n2—1)lnﬁz+(ﬂ1—1)(nz—l)_ In 6,,+

So Sl Sz Sl nn.mn (_x_—‘u>2
+n1nz(no_1)ln00} ‘—%«{ 00 + 01 + 02 _*__71:__1_ 0 2 0E }

Hence we have

262 ) S,
(3- 22) n1n2<n0-1> ago - <n1n2(no_1) B 00)f’
207 of 6; *f _ ( S 01) £
(n,—1) o6, nnn(n,—1) oy’ (n,—1) ’
267 of _ 05 °f _ ( S, 0>f
(nz—l) 802 nonlnz(n2_1> 3/12 (nz"“I) . A
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20?2 af ’ o2 az

S A b =< - B »
(nl'—l)(nz—l) 001, non1n2§n1”1)<nz_1) a/la (nl—-l)(nz-—l)
0 _(z.-pf ‘

)/,

NN, O
This fact and the result in Bhattacharyya[1]yield us that the minimum variance estimates
. . 0 Sl S 2
of @,,0,,0s, 0, and p is given by — !
0 O O nn(n,—1) , 1 m—1) no(n,—1)(n,—1) ,
2 . SIZ SIZ _ 0 x
=1y ngn(m—1)(n—1) . m(m— (1) nn(m—1) » 7

4. The case of the r-way layout.

4.1 The determinant of the variance matrixz. In this section we shall give the
results and the proofs in the case of the r-way layout with the model given in (2. 1
under the assumptions stated in the beginning of section 2.

Corresponding to (3.4), we have the expression of the variance matrix in terms

of the Kronecker products as follows

r

" J J
WD V=5 S on aB@T @ (B x L5) 40,1 @@ @,
J=1

k=1 IkCR

where 6;—’;... .ip is a sort of generalization of the Kronecker’s delta which is

1 if j is equal to either of (i, 550 = 1)

) et 0 otherwise.

and E° of a matrix E is defined to be the unit matrix I. The reason for this expre-

ssion is clear. .
Throughout this paper the notations such as 7., Sﬁ, I, etc. mean a set of

integers (fy, 227 Dty (S B s By KB, Bgen o e ,i,) etc. and R=(1,2,3,-""~ ,7), and
the summations such as Ag aA,A§ a., where A, B, C are such sets of integers as
. B ;

stated above, mean the sum of all numbers a4's having A as the suffixes which are
included in B, or included in B and including C, respectively.

For the developments of the arguments in this section we have to prepare with
2 number of notations as follows.

DEFINITION 4.1.

r T g J 3
4.3 A(tl......tm):-‘ E 2 Oiyonig, In &
k=a IxDTw J=0 ’
I1xCR
1o TR T o igyes
“4.4) Aityotay = > SV Gigenip 1L o tgSL P
k=a 127w J=0 )
IxCR-SB

T r _j '
Wws) A=33 cuegllng o

k=1 IxCR J=0 )
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(4. 6) . A(tlm.‘.td) + oy, = B(,l ...... L)y
4. A +6,= B.

Now we shall evalute at first the determinant of the variance matrix (4.1)
THEOREM 4.1. The determinant |V| of the variance matrix V of (4.1) is given _in
the notation of (4.6) and (4.7) as follows -

“4.8) |V|=B-I 1
k=1 IxCR z g
PROOF. Let us at first transform this matrix by the orthogonal matrix which
is the Kronecker product of the matrixes T,.i defined in (2.3), and we have

4.9  (To®Tn@- - ®T, Y V(T ®@Tw®: - ®Ta,)

k=1 1xCR

C 7 — ~7 e r - t f ;
=2} Sl own L5 L@ NO(H % x 184) 4 L @I @@,
=0 =1

r

ro_gd T -8 . '5:: i
=2 3, o JLny R HL® H@ (00 (a4 Ky )

k=1 Ix;CR

+0, 1 ® (Hn,+ Kn,)
J=1

k=1 IxCR

r ¢ - \7 . 7 r
22 E O‘il...“.ikj].:_[on; BllAlrian,)@tI-Il@ (Hnt +5;1-~-ikK"¢)+0'o£1® (Hﬂj+Knj>.

This matrix is also a linear form of the matrikes of the type

4.10) H»®ARAR------ ®A

7

where
4.1 A, =Hn; or Ha;+ Kn=I,.

There are 2" different matrixes of this type, which are all diagonal, and hence the
matrix (4.9) is diagonal. The product of any two matrixes of this type is the null
matrix, and the matrix (4.9) itself is a nonsingular matrix. Therefore the determinant
is equal to the product of #,7,------ 7, numbers each of which is equal to either of the
coefficient of 27 different matrixes in the linear form (4.9). In this product the
coefficient of Hn,® (Hn,+ Kn)) QHny®:----- ®H-,, for instance, appears exactly n—1

times which is equal to the rank of this matrix, and this coefficient is equal to B{y V.
Thus we have &

k=1 I3xCR

(4.12) lV!=[ﬁ 2\ Oi.. ik,ﬁh.li—silmik'*'ao]

” r o 1__8&7.-”
‘I o { D3 I | e L
J=1

(131 -1)(n4p-1).. (53 —1)
k=1 1xCR \p=k LpD Iz }
o LpCR

(mo—1)ny...m,
) ’

BERE

e

which is equal to (4.8) from the definition 4.1.

4.2 The inverse of the variance matrix. Before finding out the inverse of the
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variance matrix, we need to consider some relations between the notations defined in
the definition 4.1. At first we observe the recurrence relation of A(:l m.

LEMMA 4.1

N s ($1--38) __ 1 : (31--38-1) (31--88-1)
(4.13) Auih = [A(fl...,i) - Am..,,ist

nsﬁ
PROOF.
(81--38) =8 1,1 i 8188
(4. 14) A(tl..‘tw) = ’CE ; ; Oiy...ip, H n
® IR sp
r—B+1 -7 sos r—B+1 s
= DI ’Lknn Teang SV ST gy, zkl]n riporsp
k=0 1Ix 27w k=o+1 12T, SB)
1xCR-SB I;CR-SB
1 r—B+1 -: i r—B+1 . r 1_5:3 Fusncs
= - I: E Z giy.. "k H n Lk plyedgeL. 2 E Giyig I n; 125138 1]
Nsg | i=w 1237w k=a+1 JkD(Tu SB) J=0
I1xCR-SB-1 R-8B-1
1 (8188~ 81.-8
— T B-1) ( 1-38-1)
] 1’1,35 [A(tl...tw) (t1 ‘wSB)]

. | S1e8 . . . .
This lemma enables us to express A it in terms of Ag.tani-1, which is given by

LEMMA 4.2.
(3158 1 d P
415) AGIB=———" 3 31 (—1)" A tantp-
Nsy " Nsg p=o LpCSp
PROOF.

We shall give the proof by making use of the mathemat1ca1 induction in .
In case =1, we have

s 1 :
(4.16) AE;R.:“) = n—sl [A(tl...ta,)—A(tl.,.ta,sl)]

1
Ns; p=0 LpCSl

( 1) A(‘l Zlylp)
Then assuming (4.15) to be valid in case f=£ i. e,
(81-+Sh) 1 L
“4.17) A(tl.utm) = _—_n'_ > > ( 1) A(tl tglilp)
sp p=0 LpCSh

we shall prove this is also valid in case g=h+1, which is given by

(S1--Sh+1) I (S1--8A) (S1-+31)
4.18) Auiiig = —Z-]H_—l [A(:l..‘tﬁ) _A(tl.»twsh+1)]

1 1 » . . S » -1)° }]
Tones [ oy oy {p-o LpCSh( 1) Actrtarr-ip pgo L%};( 1) Aty taspritr-tp
_ 1 ] _ PA :I
= ~—n31.“n3h+1 [p ongsh( 1) A(:l talilp) T Zo LPC%H ( 1) (fr-tali-lp)

Zpash+1
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1 h+1

= 2 2 (1D Ay,

Psy = Nspy P=0 LpCSh+1

Now let us turn to the inversion of the variance matrix. The arguments follow
the similar line to that of the 2-way layout.

THEOREM 4.2. The inverse of the variance matrix (2.1) is Siven by

- » -8t J
4.19) XeEn®En® - ®F., + 31 5 X Bn® 11 © (5% ¢ p5s2)

k=1 I3CR 7
+ X, Lo @@ @I,

where

1

g,

1 1 1
“.21) X,.,= n, [ Bess @, ]

1 [(—1)'~’° r-ﬁl s (=D*

(4.20) X,=

4.2 Xiiigip= = 7 5 ] ICR,k-—— 2,0, 7—1),
(4.22) 12t Hnl.—agl...ik B(lz...,) a=0 SaCR-1I B(iy-.ikﬂ-»-m) ( * 1.2 1)
d=o 7
1 (=" 1 =1 o (=1)¢
4.23) Xp= —— [T + B + M T]
In (125 c=1 7.CR (B1--%g) o
Jd=0

PROOF- As we have done in case of the 2-way layout, anticipating the inverse
to be the form of (4.19), we seek for the condition that (4.19) is actually the inverse.
The product of the variance matrix (4.1) and the matrix (4.19) is

420 En@FE.® - .QF,, [XE{ S a,-l.‘.,-,‘ﬁn;"’gr"ikquao}

k=1 I1xCR

T2 Xilmik {2 2] oy, 11 n; 811'"1’”1""1}]

k=1 IxCR I=1 TCR-1 J=0

+ ril E En°® ﬁ ® (E:L;Sflzk Xlii-lmik>
Jg=1

k=1 1xCR

r r—Il+k r 1-—6j
: [z = X{ ST S g O e ’m}+Xoml...,-,,]
J=0

I=k T;DIr m=r SmDIk
SmCR-(T1-1k)

+ 'E"O@)I"l® """ ®I7"r[‘X‘12r (no&lz-'~ T Uo) + Xo”12--~r]
+ [no®lnl® """ ®["r M XOGO

= En°®En‘® ...... QRFEn, ’:—XE(A+UO> EP rz b Xil...ka(il"'i")]

k=1 IxCR

r—1 r s J ' i ” -8 .
T2 S EQIR <E§.f“""’=><lf.;l”‘“=) [X,,{ > S upen L 7 8”"'”"1"""‘-1—00}

k=1 I1xCR m=k SmII J=0
SmCR
r rltk r 1-8}7. .
+ Z 2 -thmtl 2 E Gsl...smH nd- 1rtedom +X00'i1..‘ik
I=k+1 T 121k m=k SmDI} J=0

SmCR-(T1-1k)
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+‘ Eno®In1® """ ®Iﬂ,[X12...,B(12'...,) + Xoo'lg.ﬁ.,-]
+ In°®In1® """ ®In,X°0°
The first term is equal to
(4.25) En@En®----®En, [XE(A+a°) +3 S Xil...,.kA“‘_""'”]
k Ir:CR
— E.@F.® - ®Fs, [XEB +5 5 Xi,...,-,cA“*"'k)]
: i i-1 I2CR

The second term is equal to

r—

A 4 1-—84 ; 5‘?. 2
(4. 26) E 2 Eﬂo@ H @ (E"j e BN In?...zk)
J=1

k=1 IxCR

- A NP
[X,,{z 5 Gt Tl "t}
D

m=r SmDIk
SmCR

7 . r=l+k r 1_5~Z ot sis
i 3 ST Xai 2 2 PRI | Il £ €% R
J=0

I=k+1 TI121L m=k SmDIk
SmCR-(T1-1k)

5 [ 1'8‘31--4' 3 ‘31
=3 3 EQI®(Ey kLot %)

k=1 IxCR

~ T 1_8\11‘..8”‘
- X”;l""ik 2 Z Gy 11 15 +a,
=0

m=k SmD1k
SmCR

= r=1 L

, |
1-8% 2818
£ 50 3 Buwnes { S1 ST e [y o m 4 X
1=1 TCR-1I m=k SmDIk J=0

SmCR-T

531 2 Eno® f;!l® (E;;afl"'k % I:ilzk‘)

k=1 1}CR

r—k
;s ©ACL-tD (Ertr-k)
. [.Xil...ikB(il...ik) + 2 2 Xil.uiktl...tl A(ﬁ---ik) +X0A(i1...ik) /n —I

0
=1 TICR-I1f e

I

Thus the condition is expressed by the following equations, which are the
generalization of (3.11) '

4.27) Xo0=1,
(4.28) XuerBgrs=—Xehizer

r—k
_ (t1-1p) (Freetrp)
4.29) Xiy.iyBoying=— S Xil...iktl...tBA(il...ii)_'.XQ.A(il...ik) /1,

B=1 TBCR-1k

(4.30) XsB=—313 Xu.s, A“P.
k=1 IrR
The proof of this theorem is completed, it is obvious, by proving the following:
LEMMA 4.3. The solutions of the equations (4.27),--+, (4.30). are given by (4.20),-+-+ 5
(4.23).
PROOF. (4.20) comes from (4.27) directly and (4.21) comes from (4.20) and (4.
28). (4.22) is obtained by mathematical induction in k and (4. 20) and (4.21), which
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is as follows. At the first stage, we shall prove (4.22) holds -true for all (7, g+ , 1)

=I,CR when E=7—1. Then we shall prove, assuming that this holds true for all

I, R when k=vr—q, r—q+1,- - ,#¥—1, this also holds true for all J,CCR when

k=r—g—1. '
The equations to be solved in the first stage is

4.30) Xipim; Byt
= —-X12~~rAE::) i7-1) XA(H A 1)/no

@)
l: 129 :\A(H-n"?r-l)
1 1 1 1 1
——l: n, {B(m---r) - gy } + nyo, ] i, {A(ilmiﬂ) A(lz..‘,)}
s { (P1.-8p-1) B(12 r) } ([ _ICR>.
nai, B(lg...,«)
Hence we have
1 —1 1 }
it (I[,_,CR).
(4.32) Xaoips Ny, {B(12 o) ¥ B,..irp (L, )

which completes the first stage.-
For the proof of the second stage, at first we observe in view of the assumptions

for the mathematical induction,
(4.33) Xil...ir.q_lB(il..jr.q.l) .
g+1 1
(t1-2B) (t1-2q+1)
=—> M Xil.“ir_q_ltl...tﬁA(il...i,-.q.l)_ —_Uo [noaoXu_._, + 1:| A(«;lu.ft,_q,l)

p=1 TRCR—1Ir-g1 7y

-+ [-% {(—D“"B s | (—D* }

NT‘Q'l B(IZ--'T) @=0 SaCR-(Ir-g-1UTB) B(’il4..ir-q.111-ulp.!1.us¢)

B i 1 g+1
'2 ( 1) Am Treg-1l1lp) T

p=0 LpCTg B(12~--r) Pp=0 LpCR—Ir-g-1

B=1 TBCR-1Ir-q-1

(=1 )pA(il...i,-.q.lll.‘.lp):]’

% where

59
4.3 N, ,,= Hn e,

1
Now, putting Cepy=A,.4,. 910125, the coefficient to Bew is given by
12---7

435 -3 3 {( 1)”“"}: Z (=1)Agtygans lp)}

B=1 TBCR—1r-g1 p=0ZL
g+1

— >} > (_'1)pA(i1...i,_q.1ll...lp)

Pp=0 LpCR—Ir-g-1
g+1

R B )

B=1 TBCR-I,-¢-1

(-3 5 Cpt 3 (= D3 S Co

[TlCR-Ir-q-l p=0 LpCT1 T:CR-1Ir p=0 LpDT
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A i ¥ (_1)§Lp§qc(p>+ > (—-1)°9§ > Ccp)]

T9qCR-1Ir-g-1 T9+1CR—Ir-g-1 p=0 LpCTg+1

1
except for the coefficient N
‘ r-g-1

The coefficient of C¢y in (4.35) is

= ( - 1>q+1A(i1-~-ir—q-I)

and the partial sum of (4.35) for 1<h<q is given by

4.3 — [ = (—1)"""+;h§hcm+ b3 (—1)"" > Cw

ThCR-1r-9-1 Th+1DR-1Ir-g-1 LrCTh

+ ...... + 2 ( —1)L)§'q C(h) + E ( '—1>° Z C(h)]

TqCR-1Ir-g-1 T9+1CR-Ir-g-1 LZrCTg+1
= [~ o (~ 1 O (— 1R
o +q—h+1cq—h+1] N Cw=0
IhCR-1r-g11

and finally that of Cguyp is
(4.38) — Z ('—1)q+1A(¢1~~»ir-q-1l1-~lq+1): —(—1)q+1A(12~-~r)

Lg+1CR~-1r-g-1
and hence (4.33) is composed of

(___1 ?+1
(4.39) —B(—m)r—)— [A(ilmi"q—l)_Amm')rl

and other remaining terms, among which the partial sum for a+B=c is given by

: c c—B —1)®
4a0) —3 { (1)

f=1 TpCR-Ir-g-1

B »
-S> (—1) A(il...i,_g.llr..lp)}‘

p=0 LyCTg

a=0 SaCR-(Ir-g-1UTB) B(ﬁ...i,.q.ltl...tﬁslu.sd)

This is divided into three parts, the sum for =0, the sum for p=h Q1<hZc—1)
and the sum for p=c. These are evaluated in (4. 43) (4.44) and (4.45) respectively,
where some cumbersome considerations about the number of combinations are needed
in simplifying the notation of summation, and the notations

A(il"'ir—q-l)

(4. 41) D(tl...t Sratgg) =
prieR B(il-'-ir-q-ﬁl---‘581---%-5)

Ay iy ogatyit
(4.42) Euytpiytnsseny = Crtregafi i)

(i18p-g-1E1-ERS1Sg-R)

are used.
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: e (1A iy
@43 > = {E > }: PR
B=1 7pCR=1r-g-1 \&=0 SaCE—(Ir-g-1UTR) (B 8pege1212 818 )
c

= —-Z 2 Z (_I)C_B-Z)(tl...tﬁsl“.gc,ﬁ)

B=1 TBCR-1Ir-g-1 Se-BCR—-(Ir-9-1UTB)

= E (_1>0D(‘1--4c)_T 2 E (—1)1-0(11---'5-131)

TcCR-Ir-g-1 c-1CR-1Ir-g-1 SICR-(Ir-q-1UT¢-1)

— e — 2 E (—1>C—ID(tlsl...sc.l)

T1CR-1Ir-g-1 Sc-1CR—(Ir-q-1UT1)

. [:ccr)(—l)o +cC1<_1>1+ """ +CCC_1( —1>C—1] Z D(tl...tc)
. TcCR-1Ir-¢g-1
= <_1>c 2 D(ll.‘.tc)

TCR-1r-g1

Il

(=2 = Aty

T cCR—Ir-g-1 (E1Bpegeitrnts) =

(4. 44) - 2 Z Z ( - 1)GE(tl...thll.“lhsl»..sc_h)

ThCR=1Ir-g-1 Sc-hCR=(Ir-¢-1UTh) ZLiCTh

c—1
<_1> E(‘l"'th+111“'lh"l““c—h—1)
Th+1CR-1Ir-g-1 Sc-hCR=(Ir-g-1UTh+1) ZhCTh+1

—1)°E, :
( 1 GrethtalIps1-Sc-p-2)
Th+2CR~1r-g-1 Se-hCR~(1r-g-1CTh+2) LrCTh+2 .

- = > (—1>hE(t1...tczl,..lh)

TcCR—-1Ir-g-1 LrCTc

A ) . ' .
= L%] ( ‘1>°_Jc~z.cj:, > >) 20 Eyttytgsysor

ThCR~-1Ir-g-1 Sc-hCR-(Ir-q-1UTh) LhCTh

= 0.
—1) A bygitsts
(4.45) — 2 ( %(1 g-1%12¢)
TcCR—-1r-9-1 (21-%p-g-121--2c) .

Now (4.33).is simplified to

1 (__1)!1+1
(4. 46) Xil...i,._q_lB(il...ir.q_l): m [T) {A(il...ir_q_l)'—'A(lg..,r)}

¢=1TcCR-1Ir-g-1 B('i1---"3r-q-1t1~-'tc)

and we have

J .
- — _1— _ q+1 1 _ 1
6 47 anr.q-l— Nr-q-l [< 1> {B(IZ"'r) B(ﬁ-“ir-q-x)}

+ i} P (—1>c{ : - B(iitr.q-x) }]

¢=1TcCR~1Ir-g-1 B("zl"'ir-q-lil'"tc)

_1)%+1 _1\2+1 : '
_1{(1)_(1)+v2 1

= —1)°
Nr—q-l B(IZ-"r) B(il“"’:r-q'l) ¢c=1TcCR-1Ir-g-1 ) B(il""ir-q-ltl"'tc)

[ ; | 1 .
ol —1 ° —%_]
c-zl chn—zlr.,,q( ) B(il---ir.q.l)

125
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1 (=™ i z - c ! ]
= et + — -
Nr-q-x [ B(12-~r) + B(il..-.ir-q-l) cﬂlecCRZ-IT-qq( 1) B(il...i,_q_ltl,..tc)
1 (_1)'1+1 q (_1)c ]
= 5+ B .
Nr‘q-l [ B(12»-~r) c=0 Tc(:ZlR—Ir-q—x B(i1-~fr-q-1t1~-’c) .

Thus we have proved that the solution of (4.29) is given by (4.22).
Finally (4.23) is obtained by inserting (4.20), (4. 21) and (4.22) in (4.30) in the

following way. _
After inserting them in (4.30), we have

r=1 1 (=% 7 k1 (__1)‘”
(4.48) XgB=—21 > [——‘—— . {—_—B + 22 BP——}
k=1 I}CR Hn_,' 1Tk (12:-7) w=0 SaCR-Ik (BT gS18@)
J=0

LS S (—D Ay |

. Ny Wiy, §=0 13Tk
1 r—1 (_1)7-—1: 13 .
2[5 3 G 5 (D A
I, k=1 I;CR (12-7) p=0 LpClk
J=0 7
1 r—1 r—k-1 ('___1)“ 3
e 2P DI rerwp 22 (—1 At
k=1T(CR a=0 SaCR-Ik (%1% gS1S@) p=0 LpC Ik .

11 »;

J=0

By writing G(,,)=A(zl.4.zp)/B<,z...,) the first term is equal to

= k —1)"""PAq,.
(4.49) — (=1) 5 ‘2
k=1 IxCR »=0 LpClx Qz-)
1 2
3D H G e D DD C DI
NIhCR p=0 LpCI1 I2CR p=0 LpClI2

= e -3 > 5 (—1)'—(7_1)“’G(p)-v
1, 9CR p=0 LpClrn
The sum for »=0 and the sum for p=h (1I=h<r—1) are given by (4.50) and (4.51)

respectively.

(4.50) —;%},Cj( —1)7Gp=— [grcy-j( —1)y7—,C[( —1)’—,Co] Gy

= [~ (-1 Go= {1+ 5=
s —3 S (-1DGw— > 3 (176w

InCR LhCIn Ir+1CR LpClIr+1

A — E 2 (_1)h+1G(h)

Ir—-1CR LACIr-1

= [3 6] 3, B 6e=(-1"F

J=0 IRCR LnClIh INCR B(12~~1) °

A(’il,..‘ih)

On the other hand the second term in (4.48) is equal to

Wy S 3 3 TS S (—1) A

c=1%=1IxCR SckCR-Ik B(ir--‘im--~’c-k) p=0 LpC 1k
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The sum for p=0, p=h (1=h=Ic—1) and p=c are given by

(=14 (=14
(453) _1%}3 Se-1CR-11 _B(m _—1%}13 Sc-2§2—12 BUTNM)
H(=1)’4
—_e. 2 Baro
A

= (-1 >

IcCR B(’l e »

_1 c—h
“5H —> > it >0 Agyeapy

InCR Sc-hCR-1Ip B(i1~-ih61-~-8c-n) LiClIn

—1 c—h~1
2= 2 Z (=D Z A(zl‘..zh)

Ih+1CR Sc-r-1CR-In+1 B(¢1--~ih+1-’1-~-’c-h-1) LrCIn+1

—-1° :
. =Liu8 2 A

ICR B(il--~ic) LrClIc

e=h ; —1)"*4 2.2
——[Heva]s 5 G M

LiCR Sc-hCR—-Lh B(ll...lhsl...sc.h)

(4.55) —[Z‘ =0 2 (—1)Aq,. za]

1.CR B("l 4¢) LcCle

1cCR B('il"'ic)

The combination of (4.48), ------ , (4.55) yields
_— & r=1 _ A o
4.56) X,B=— [K Dl +5 5 (=D"Yaw

II n 2-7) h=1 InCR B(lz...,-)
J=0
S (DA 2 (D44,
tR S R TS e ]
c=1 I.CR (1%¢) c=1 IcCR (%1--c) .

On the other hand A“™ is the sum over the null index set and is equal to 0,

and Lemma 4.2 should holds true even if T,=(f,- s 8a) is the null set, and we have
o 1 s

4.57) A®= >3 (=1)" Agsran

H n h=0 IACR

J=0

1 =
=7 [4+ 3 8 (D et (17 ] = 0
I nj h=1 IhC
J=0

This is equivalent to

“58) 3131 (=1) 4, w=—{A+(=1Y A, )

k=1 I)CR

Inserting (4.58) in (4. 56) we have finally
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(459) X_E: 1 [{(_1)’+1}A _ A+<_1>7A(1z...r)

H n,B Buer By
J=0
5 =14 = —1)°A i
c=1ICR (%1-%¢) c=1 IcCR (i1-+%6)
= : { (_1>rA - (_1>TA(12~--r)
ﬁ n;B " Bus..r» Ba:.»
J=0
( DA & (—1)Agyio
+§ Ing B(h ) ; I:;?C—'R B(il...«ic)
— 1 (—1) ( 1)'- -1 ( 1) . r—1 (_1)0]
- fI n; IZB(H'"') B N Cgl -’GEC}R B(‘l ic) g ICZCR B
J=0

1 [ (=D, 1, = (=1)° ]
I nj[Bm..,) B T2 2 Baw

J=0

Thus we have completed the proof of this lemma and also Theorem 4.2.

4.3 The joint density function. We have derived the determinant and the inverse
of the variance matrix, and what we have to do is to derive the joint density function
as the ‘generalization of (3.17), which is ennunciated in :

THEOREM 4.3. The joint density function of Xty..s, is given by

460 F(X)=(2m) ™" B Il L (B app) 470 kB s

k=1 IxCR
1 (- = 1 r Sirin S
cexp| — 5 Mny(X—p) 5 #L+—°H
p[ 2 {a’~o ‘7( /j) B i EI%R B(il---ik) O ’
where
= 1
4.61) Xey.t;p= R E SN Kigerots (LﬁCR, B=1--- ,7),
ny ik ‘;J}-'é-}tzd_riﬂ )
J=0 . 8
= 1
(4.62) X = H % 115: Xtgtyt,
n;
=0
T —5‘3 g -BY 2
(4.69) Swrip = Hn, 5% 5 { S (=1 ﬂXm.,t,f,}
J=0 tiy, -, tix \B=0 LBCIk ’

(4.64) SO:: zz} (x:ozl 2, th...t,)z.
0, %1,

PROOF. In this proof we shall use the convention that if (tuy, .. tzﬂ) is the null
set Xtu tzg—'X As the density function should be the mu1t1var1ate normal density
function, the constant factor in (4.60) is easily derived from Theorem 4.2, and there
remains only to derive the quadratic form of Xg;..z,.
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Now let us introduce new variables defined by

(4.65) Usyty.t, = Xegey..t, — U
(4.66) Ut«;l...tik= M > Uegty...t,,

11tk B
1

“.6n U= X , Yoty = H %-U_,
Jd=0

20,21, .2,

= 1
(4. 68) Uiz'xmtik: Y Uz,,;lmtik,
7, RERY

J=0
and we shall use the convention for (7:1,..4,5 same to that we have made for thl---tzp at
the beginning of the proof.

As the inverse matrix has already been derived in Theorem 4. 2., the density
should be written as exp [—S/2] except for the constant factor, where

(4.69) S=XE< s u)+2 > Xk{ 5 (z zw)}

20,21, -, 2, k=1 IxCR a1, -, Pig C‘ktj;-k o
kCR- I

2
+‘X'12..A,t12t (Z uto’r--’r) + Xo Z , ugotl"'tr

o o, 21, -,

:XEU2+§ Z {XLI..Aik 2 U%il..,zik}
2y, big

k=1 IxCR

+X12A..r Z U?lmz,'i—Xo 2 u?otl,..;,
t 2, I t,

V1,

1 (=1 1 r-1 (—1)°
o [ 1 E]
Bouw VB T2 2 B

Hn. c=11.CR
J=0 J
=1 1 (=D * ok (=~
P2 BB V) v [GT S s DT
k=1 IxCR \tiy, - tip I, BURY Gz-7) @=0 SaCR—-1Ij (F1-2f 31 Sw)
J
d=0 :

L1171 o,
+ 21.2 teity 7, [B(lzu-r) & ] + 2 Utyty..t, .

8 0 Ty 2,81, 2,

1 1 . :
After evaluating the coefficient to Boyin ) and B(' S in (4.69) which are
Gt 1227

given by
1 .
4.70) Deiy.spy=1"— (-1
I n,
J=0
c 1 o
3305 Ulsp ) 57— (1)
B=1 LgC1c \tn, i Hnj ielg

J=0
: (—1e-F
= 2 E - I—BJ ( E U?“.“tzﬂ)
X t“'...,tzﬁ

B=0 ZLgC1c I, 28
J =0
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and

A7) Dgpn=

il 7;
J=0
r-1 =1 -k 1
+ 2 ( 2 3 3121--11:];) r( 1)8‘7 + E U%l...tr’_'
k=1 IxCR \ti1,--,tig I 7. 1T iy, b n,
G=0
s (="
=0 ILZCR . 5371 g (tnz‘ltu U%ut”)
i
respectively, we have (4. 69) is equal to
71 D da D iyt 1 1
@ S=3% 3 B B 4U g
1 IcCR (%1-+%¢) Qz-7) I n
J
J=0
1
2 R—
+ ['o.tg;.tr st n, txz Utl t:l
z D,..ap 1 1
=ZEB(,1 .L)+Uz = F
k=1 nCr P ¢1ip I 7,
J=0 g
P> sty — o ) Uty
iy T ny 6.2, i
. L (=D** 1
=1 > 2> —T—( P Ufll-Jls)_‘T_.—
k=1 IxCR B=0 LBCIk H 118 i1, -, 218 (@188
J=0
1 1 1
+ U — _E_—*—[t tztuimmtr—n tzt Ugl t}
n, 0.£1, . tr 0 1, o)
JI-Io 7
= 1
— —1)+B nﬁzlzs( 2“)
I»E—-l IL;R BE-O LBC1L< ) H tll,;tlﬁUtll ~tip B(il...ik)
r i 1 1
+ jZ}‘wnjUZ_B_ + Lo"ghuﬁozl.“: iy 5_‘, U;l ,] o
- - 1

ti1, -, tip B=0 LBC Ik

80 3
R U D IR AL e
) Ca2p)

” = 1 = T1
2 _+ 2 _ 2 P B
+ EonjU B + [tOvtg'tT utotl.“tr no tL‘E:tTUtlntrJ ao o
Here we need to prove the following
LEMMA 4.4.
L

k - 2
(4.73) E ST (=1 ﬁUm 415= Z _ [E > (—'1>L~_3Utn.utlp]
s 1, tig LB=0 LBCIE

ik ﬁ =0 chz;,

PROOF. Proof is given by making use of the mathematical induction. In case
k=1, the proof is given by
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@ D T+ (1Tt} = (Tt~ T
= ZJ,11—22U2+2.U2

ti1

= 3t —250.0+ 30"
= tzu (ﬁtﬁ"‘ﬁ)z-

Further assuming (4. 73) to be valid in case =/ we have

h+1

U S 3 S (—DM T,

i, 2in,2ih+1 B=0 LECIh+1

131

- Ml'“tz’f%.+1§0 LB%‘}IK—l)h_ﬁﬁfh":”ﬁtih“ Zt‘i/m g LECIn 2, (~D" BUM"'”B
=22 B T 5 S5 B0 Tty

- fz‘hEH ['L Etzh{ﬁghb“ LBCIIL< l)h_ Utll tlshhﬂ} _'i1,2~.fih{ jo Lﬁclh( l)h— Um ”B}J

- ‘il.gilwl[{ﬁg} ZiCIA 2, (T ”'st”’“} B { fo LﬁC1h< D" ”B}J

And by writing

P h
4.76) Ziyriyy=3> 3] > -(—1)>-# Utu 3

B=0 LgC1In
— h N
.77 Zti1-~-fih(fih+1) —B - LﬂCM( 1) U’l1 2IBtiR+1)

(4.75) is equal to

(4- 78) 2 [Zfﬁu-fih(tinﬂ) _thil-utih:’

241, o, tip 41

2 2
[ tn.utih(t.,;hé_l) = ZZtil'--tih, 'l Ztil'--tih]
tnh+1

‘h+ [ Zirtip(tin+1) T 22111 thfn tzh(tmﬂ)'l"Ztn tm]
Th+1

2
tirtip(tip+1) Ztu -ip
¢zh,+1

3 — 2
( 1>h" Utn B1gtip+1 T Z E b(_"].)h_BUtzl...nB]

K
L
5
52

3
>y >
B=0 LpC1x B=0 LgClIn
3
= h— h+1-8
S 23,2, (1T nﬁtw+§zm< 1 Ty |
+1
- 1)r—B+1 U 1)r+1-BFT
%[22, (T ,IB+§LB§M( PG s |
am+1 LBDih+1

o 2
(_l)hﬂ_ﬁUtn-ntz,s:,

tm+1 [B =0 chzhﬂ
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which completes the proof of the lemma.

By making use of this Lemma the first term in (4.72) comes to be equal to (4.79),
and the second term is equal to (4.80), and finally the third is equal to (4.81);

k
3, i = 5[5 5 0 R0 |
24y, -, tig | B=0 LBC Ik
(— 1Ko |

am 5[5 =

B=0 LRC1Ik

iy, -, ik I:B =0 lBCIk

(4.80) ilonj()?— )

s 1
(4.81) [to‘tgltr,(utotln.t,._Utl.utr->2jl ey
= 1
E (x;otl 2y th...:,>20_—
5 @

;0 t, -

The .combination of (4.79), (4.80) and (4.81) leads us to the completion of the proof.

4.4 Estimation. Finally we shall treat the problem of estimation of the variance
components. By the usual estimates of the variance components we mean the usual
ones, which is calculated as a linear form of a suitable number of mean squares in
the table of the analysis of variance and is widely used as the estimates in the ordinary
practice of statistical analysis. As we have already stated in the case of the 2-way
layout, the completeness of the family of distribution of the sufficient statistics in
our concern is yet in question, and we shall here make use of the notion [of the
minimum variance estimate due to Bhattacharyya to justify the usual estimates.
Thus we have,

THEOREM 4.4. In the rway layout of random effect model, the minimum variance
estimates of the variance components oi..s; (LR, k=1, , 7) ave given by such linear
forms of Scy.ixy and S, in (4.63) and (4.64) that these are unbiased, namely the usual
estimates of the variance components, and that of the general mean is given by the sample
total mean.

PROOF. After taking the logarithm of the density function (4.60)

(4.82) 1nf= — %hlB" E E (nn_l)(ntz_l) """ (n’:k_l) lnB(ir"ik)

k=1 1;C

(
g = 2 1 z S iy.d So
[incrwi e e+ 5]

k=1 1;CR B(il'“‘ik) gy

we have easily

4.83) B 11 = (X—p)f,

240 af S, -
W8 Dm0, {—<no—"‘1>n—‘1 ", “’°}f '
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(4.85) 2£B<i1-~ik)}2 af +l <_1)k{B(’i1...ik)}2 BZf _ [M

- ~Beasn]
o 7 I 2 I3 (GED NP
=) 25w g fioe—1 % L fi(m—)

In view of the result given in Chapter II of Bhattacharyya [1] we observe that
each one of these three relations shows the minimum variance estimates of the general
mean g, the variance of the error term o, and Bu,.q, are given by the total mean

S, — and Stiriz.iz
(no_l)n1n2"'nr ’ (ni1_1>(niz_1)”'<nik—1)
respectively. The proof that the usual estimates of the variance components is of
minimum variance can be obtained by taking a linear combination of a suitable number
of equations in (4.85). For instance that the minimum variance estimate of gy, is

given by

1 Stas..s Stz
(5i86) nonl[(nz—l)(ns—(l)-)--(nr—l) B (nl—l)(nz—(l)-)-(nr—l)J

can be proved by noting

B(23~--r) —B(12~~«r)
1,1,

X, the mean square due to error

(4. 87) O3...0—

and by taking the linear form of (4.85) involving B(zs..;,) and B(lz...,) and by using the
relation

(4 88) 2 {B(Zar)} z af _ 2 {B(m,)} 2 af
. i B - oB
n,n, II <n1_1> 15} (23--.7) nn, I (nz__1> (12--7)
=2 i=0

+ (_1)"-1{3(23”.’)}2 a?.f _ (-1>T{B(12---r)}2 aZf;

non ;- (n—1) % o, Ty- T (ng—1) O
g=0 " g=z d=0 7 i-1
1 Stas . S, 127 -
- [nonl { e - ¢ : } _023~-r] f'

I(n—1)  1(n—1)
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