ON OSIMA'S BLOCKS OF CHARACTERS OF GROUPS OF FINITE ORDER

Kenzo IIZUKA

(Received June 30, 1960)

Let \mathfrak{B} be a group of finite order g and p be a fixed rational prime. M. OSIMA, in his paper (5), introduced a concept of blocks of group characters with regard to a subgroup \mathfrak{F} of \mathfrak{B} (" \mathfrak{F} -blocks"). Let \mathfrak{F}_0 be the maximal normal subgroup of \mathfrak{B} contained in \mathfrak{F} . It is well known that the irreducible characters" $\phi_1, \phi_2, \cdots, \phi_k$ of \mathfrak{F}_0 are distributed into the classes $\mathfrak{B}_1, \mathfrak{B}_2, \cdots, \mathfrak{B}_s$ of associated characters in \mathfrak{G} . If $\mathfrak{B}_1', \mathfrak{B}_2', \cdots, \mathfrak{B}_s'$ are the classes of associated irreducible characters of \mathfrak{F}_0 in \mathfrak{F}_0 , then each class \mathfrak{B}_{σ} is a collection of classes \mathfrak{B}_p' . Let $\chi_1, \chi_2, \cdots, \chi_n$ be the irreducible characters of \mathfrak{F} and $\theta_1, \theta_2, \cdots, \theta_n$ be those of \mathfrak{F} . As is well known, there corresponds to each character χ_i exactly one class \mathfrak{B}_{σ} such that

$$\chi_{i}(H_{\scriptscriptstyle 0}) = S_{i\sigma} \sum_{\phi_{\mu} \in \mathfrak{B}_{\sigma}} \phi_{\mu}(H_{\scriptscriptstyle 0}) \qquad (H_{\scriptscriptstyle 0} \in \mathfrak{F}_{\scriptscriptstyle 0}),$$

where $s_{i\sigma}$ is a positive rational integer. If a class \mathfrak{B}_{σ} corresponds to a character \mathcal{X}_i in this sense, we say that \mathcal{X}_i belongs to \mathfrak{B}_{σ} by counting \mathcal{X}_i in \mathfrak{B}_{σ} . We also say that θ_{λ} belongs to \mathfrak{B}_{σ} if θ_{λ} belongs to \mathfrak{B}_{ρ}' contained in \mathfrak{B}_{σ} . We set

$$\chi_i(H) = \sum_{\lambda=1}^h r_{i\lambda} \theta_{\lambda}(H)$$
 (H\in\theta),

where the $r_{i\lambda}$ are non-negative rational integers. As is easily seen, if $r_{i\lambda} \neq 0$, then χ_i and θ_{λ} belong to the same class \mathfrak{B}_{σ} . Hence, χ_i and χ_j belong to the same class \mathfrak{B}_{σ} if and only if χ_i and χ_j are connected by a chain $\chi_i, \chi_r, \dots, \chi_t, \chi_j$ such that any two consecutive $\chi_i(H)$ and $\chi_m(H)$ of the chain have an irreducible constituent θ_{λ} in common, i.e. $r_{i\lambda} \neq 0$ and $r_{m\lambda} \neq 0$. Thus the classes \mathfrak{B}_{σ} are the \mathfrak{H}_{σ} -blocks of \mathfrak{H}_{σ} in OSIMA's sense. From the definition of the classes \mathfrak{B}_{σ} , we have the following:

LEMMA 1. Two characters \mathcal{X}_i and \mathcal{X}_j belong to the same \mathfrak{F} -block \mathfrak{B}_{σ} of \mathfrak{G} if and only if

$$\frac{\chi_{i}(H_{\scriptscriptstyle 0})}{\chi_{i}(1)} = \frac{\chi_{j}(H_{\scriptscriptstyle 0})}{\chi_{j}(1)}$$

for all elements H_0 of \mathfrak{H}_0 , where 1 denotes the identity of the group \mathfrak{G} . ((5))

Henceforth the term "block of a group" will always mean block with regard to a p-Sylow subgroup of the group. While BRAUER's blocks with regard to a rational prime q will be referred as q-blocks.

The purpose of this paper is to consider a connection between the blocks of 3 and

¹⁾ The term "irreducible character" will always mean absolutely irreducible ordinary character.

²⁾ Cf. [5].

those of the normalizer $\mathfrak{N}(R)$ of a p-regular element R in $\mathfrak{G}^{\mathfrak{s}}$

NOTATION: G denotes a group of finite order $\mathcal G$ and $\mathcal P$ is a fixed rational prime. $\mathcal Q$ is the field of $\mathcal G$ -th roots of unity. K_1, K_2, \cdots, K_n are the classes of conjugate elements in G; there are $\mathcal P$ distinct irreducible characters $\mathcal K_1, \mathcal K_2, \cdots, \mathcal K_n$ of G. $\mathcal M(G)$ denotes the normalizer of an element G in G; the order of $\mathcal M(G)$ is denoted by $\mathcal M(G)$. For a rational prime $\mathcal M(G)$, any element $\mathcal M(G)$ is written uniquely as $\mathcal M(G)$, where $\mathcal M(G)$ is a $\mathcal M(G)$ -regular element and $\mathcal M(G)$ is an element whose order is a power of $\mathcal M(G)$; is called the $\mathcal M(G)$ -regular factor of $\mathcal M(G)$ and $\mathcal M(G)$ is called the $\mathcal M(G)$ -factor of $\mathcal M(G)$.

1. Let \mathfrak{P} be a p-Sylow subgroup of \mathfrak{G} and \mathfrak{P}_0 be the maximal normal p-subgroup of \mathfrak{G} . We denote by $\mathfrak{B}_1, \mathfrak{B}_2, \dots, \mathfrak{B}_s$ the blocks of \mathfrak{G} with regard to \mathfrak{P} . For each block \mathfrak{B}_{σ} , we set

$$\mathcal{L}_{\sigma} = \sum_{\chi_{i} \in \mathfrak{B}_{\sigma}} e_{i},$$

where e_i denotes the primitive idempotent of the center Z of the group ring of \mathfrak{G} over \mathfrak{Q} which belongs to χ_i , $i=1,2,\cdots,n$. Let G_1,G_2,\cdots,G_n be a complete system of representatives for the classes K_1,K_2,\cdots,K_n . If we interprete each class K_r as the sum of all its elements, then we may write

$$\mathfrak{I}_{\sigma} = \sum_{\nu} a_{\nu}^{\sigma} K_{\nu},$$

where

(1.3)
$$a_{\nu}^{\sigma} = \frac{1}{g} \sum_{\chi_{i} \subset \mathfrak{B}_{\sigma}} \chi_{i}(1) \overline{\chi}_{i}(G_{\nu})^{4}$$

We denote by φ_{σ} the sum of all irreducible characters ϕ_{μ} of \mathfrak{P}_{0} which belong to \mathfrak{B}_{σ} and denote by ϕ^{*} the character of \mathfrak{G} induced by a character ϕ of \mathfrak{P}_{0} . If we set

$$\chi_{i}(P_{0}) = s_{i\sigma} \phi_{\sigma}(P_{0}) \qquad (P_{0} \in \mathfrak{P}_{0})$$

where $s_{i\sigma}$ is a positive rational integer, then, by Frobenius' theorem on induced characters, we have

(1.5)
$$\phi_{\mu}^{*}(G) = \sum_{\chi_{i} \in \mathfrak{B}_{\sigma}} s_{i\sigma} \chi_{i}(G) \qquad (G \in \mathfrak{G})$$

for each irreducible character ϕ_{μ} of $\mathfrak{P}_{\scriptscriptstyle{0}}$ belonging to $\mathfrak{B}_{\sigma}.$

LEMMA 2. 1) $a_{\nu}^{\sigma}=0$ for all classes K_{ν} which are not contained in \mathfrak{P}_{0} . 2) All $(\mathfrak{P}_{0};1)a_{\nu}^{\sigma}$ are algebraic integers.

PROOF. 1) By the above formulae (1.3)-(1.5), we have

$$a_{\nu}^{\sigma} = \frac{1}{g} \, \varphi_{\sigma}(1) \bar{\phi}_{\mu}^{*}(G_{\nu}),$$

where $\phi_{\mu} \in \mathfrak{B}_{\sigma}$. Since each class K_{ν} containing an element of \mathfrak{P}_{0} is contained in \mathfrak{P}_{0} , $\phi_{\mu}^{*}(G_{\lambda})=0$ for all $K_{\lambda} \not\equiv \mathfrak{P}_{0}$. Hence we have $a_{\nu}^{\sigma}=0$ for these classes K_{λ} .

³⁾ A summary of the results obtained herein will appear in [4].

⁴⁾ If α is a complex number, the conjugate complex number of α is denoted by $\bar{\alpha}$.

2) For $K_{\nu} \subseteq \mathfrak{P}_{0}$, we have

$$a_
u^\sigma = rac{1}{g}\, \overline{arphi}_\sigma(G_
u)\, \phi_\mu^st(1) = rac{1}{(\mathfrak{P}_0\!:\!1)}\, \overline{arphi}_\sigma(G_
u)\phi_\mu(1),$$

where $\phi_{\mu} \in \mathfrak{B}_{\sigma}$. Since $\mathscr{O}_{\sigma}(G_{\nu})$ and $\phi_{\mu}(1)$ are algebraic integers, it follows from this formula and 1) in this lemma that all $(\mathfrak{P}_{0}:1)a_{\nu}^{\sigma}$ are algebraic integers, if $K_{\nu} \subseteq \mathfrak{P}_{0}$ or not.

THE CONVERSE OF LEMMA 2. If, for a set \mathfrak{B} of characters \mathcal{X}_i , the idempotent $\Delta = \sum_{\chi_i \in \mathfrak{B}} e_i$ of Z is expressed as a linear combination of classes K_{ν} contained in \mathfrak{P}_0 , then \mathfrak{B} is a collection of blocks \mathfrak{B}_{σ} of \mathfrak{G} .

PROOF. Suppose $\mathfrak{B} \cap \mathfrak{B}_{\sigma}$ is not vacuous and $\mathfrak{B} \not\equiv \mathfrak{B}_{\sigma}$. Then we may select two characters χ_i and χ_j of \mathfrak{B}_{σ} such that $\chi_i \in \mathfrak{B}$ and $\chi_j \notin \mathfrak{B}$. For these characters, we have $\omega_i(\varDelta) = 1$ and $\omega_j(\varDelta) = 0$, where ω_i and ω_j are the linear characters of Z which belong to e_i and e_j , respectively. On the other hand, we have $\omega_i(\varDelta) = \omega_j(\varDelta)$, because we have $\omega_i(K_{\nu}) = \omega_j(K_{\nu})$ for all $K_{\nu} \subseteq \mathfrak{P}_0$ by Lemma 1. Therefore \mathfrak{B} must be a collection of blocks \mathfrak{B}_{σ} of \mathfrak{G} .

2. Let q be an arbitrarily fixed rational prime, different from p, and q be a prime ideal in Q dividing q. For each q-block B_{τ} of G, we consider the primitive idempotent η_{τ} of the center Z_0 of the group ring of G over the ring O_q of Q-integers: $Q_{\tau} = \sum_{\chi_i \in B_{\tau}} e_i$. If we set

$$(2.1) \eta_{\tau} = \sum_{\nu} b_{\nu}^{\tau} K_{\nu}$$

then, as is well known, b_{ν}^{τ} vanishes for all q-singular classes K_{ν} of \mathfrak{G} and all the coefficients b_{ν}^{τ} are \mathfrak{q} -integers. The converse also holds in the following form: If, for a set B of characters χ_i , the idempotent $\eta = \sum_{\chi_i \in B} e_i$ is expressed as a linear combination of the classes K_{ν} of \mathfrak{G} with \mathfrak{q} -integral coefficients, then B is a collection of q-blocks B_{τ} of \mathfrak{G} . Therefore, it follows from Lemma 2 that each block \mathfrak{B}_{σ} of \mathfrak{G} is a collection of q-blocks B_{τ} of \mathfrak{G} .

Let Q be an arbitrarily given element of $\mathbb G$ whose order is a power of q. Let $B^{(\tau)}(Q)$ be the collection of q-blocks $\hat B_\rho$ of $\mathbb R(Q)$, which determine a q-block B_τ of $\mathbb G$ in BRAUER's sense, and $\hat \gamma_\rho$ be the primitive idempotent of the center $\hat Z_0$ of the group ring of $\mathbb R(Q)$ over the ring $\mathbb R_0$ of $\mathbb R(Q)$ over the ring $\mathbb R_0$ of $\mathbb R(Q)$. We set $\hat \gamma^{(\tau)} = \sum_{\hat B_\rho \subseteq B^{(\tau)}(Q)} \hat \gamma_\rho$ and $\hat \gamma^0_\tau = \sum_\nu b_\nu^\tau K_\nu^0$, where K_ν^0 is the sum of all elements in $K_\nu \cap \mathbb R(Q)$, $\nu=1,2,\cdots,n$. It is well known that

$$\eta_{\tau}^{0} \equiv \hat{\eta}^{(\tau)} \pmod{\mathfrak{q}Z_{0}}.^{5)}$$

If we set $\mathfrak{B}^{(\sigma)}(Q) = \bigcup_{B_{\tau} \subseteq \mathfrak{B}_{\sigma}} B^{(\tau)}(Q)$, then we have the following:

LEMMA 3. Each $\mathfrak{B}^{(\sigma)}(Q)$ is a collection of blocks $\hat{\mathfrak{B}}_{\gamma}$ of $\mathfrak{N}(Q)$.

⁵⁾ Cf. (4.16) in [2] and [8, p. 181].

PROOF. Suppose $\hat{\mathbb{B}}_{\gamma} \cap \mathfrak{B}^{(\sigma)}(Q)$ is not vacuous and $\hat{\mathbb{B}}_{\gamma} \equiv \mathfrak{B}^{(\sigma)}(Q)$. Then we may choose two irreducible characters $\hat{\lambda}_i$ and $\hat{\chi}_j$ of $\mathfrak{N}(Q)$ in $\hat{\mathfrak{B}}_{\gamma}$ such that $\hat{\lambda}_i \in \mathfrak{B}^{(\sigma)}(Q)$ and $\hat{\lambda}_j \equiv \mathfrak{B}^{(\sigma)}(Q)$. If we set $\mathcal{A}_{\sigma}^0 = \sum_{B_{\tau} \subseteq \mathfrak{B}_{\sigma}} \eta_{\tau}^0$, then we have $\mathcal{A}_{\sigma}^0 = \sum_{\nu} a_{\nu}^{\sigma} K_{\nu}^0$, where the coefficients a_{ν}^{σ} are given by (1.2) for the block \mathfrak{B}_{σ} . By Lemma 2, \mathcal{A}_{σ}^0 is a linear combination of classes \hat{K}_{μ} of $\mathfrak{N}(Q)$ with \mathfrak{q} -integral coefficients which are contained in $\mathfrak{P}_{\sigma} \cap \mathfrak{N}(Q)$. Since $\mathfrak{P}_{\sigma} \cap \mathfrak{N}(Q)$ is contained in the maximal normal p-subgroup $\hat{\mathfrak{P}}_{\sigma}$ of $\mathfrak{N}(Q)$, we have $\hat{\omega}_i(\mathcal{A}_{\sigma}^0) = \hat{\omega}_j(\mathcal{A}_{\sigma}^0)$ by Lemma 1, where $\hat{\omega}_i$ and $\hat{\omega}_j$ are the linear characters of the center \hat{Z} of the group ring of $\mathfrak{N}(Q)$ over Q which belong to $\hat{\lambda}_i$ and $\hat{\lambda}_j$, respectively. Setting $\hat{A}^{(\sigma)} = \sum_{B_{\tau} \subseteq \mathfrak{R}_{\sigma}} \hat{\eta}^{(\tau)}$, by (2.2) we have

$$(2.3) \qquad \hat{\omega}_i(\hat{A}^{(\sigma)}) \equiv \hat{\omega}_j(\hat{A}^{(\sigma)}) \pmod{\mathfrak{q}}.$$

On the other hand, we have $\hat{\omega}_i(\hat{A}^{(\sigma)})=1$ and $\hat{\omega}_j(\hat{A}^{(\sigma)})=0$, hence

(2.4)
$$\hat{\omega}_i(\hat{\varDelta}^{(\sigma)}) \not\equiv \hat{\omega}_j(\hat{\varDelta}^{(\sigma)}) \pmod{\mathfrak{q}}.$$

(2.4) contradicts with (2.3), therefore $\mathfrak{B}^{(\sigma)}(Q)$ is a collection of blocks of $\mathfrak{N}(Q)$. This completes the proof.

3. Let R be a p-regular element of \mathfrak{G} . If the order of R is a product of powers of r distinct rational primes q_1, q_2, \dots, q_r , then R is uniquely decomposed into

$$(3.1) R = Q_1 Q_2 \cdots Q_r (Q_i Q_j = Q_j Q_i),$$

where Q_i is the q_i -factor of R, $i=1,2,\cdots,r$. Let a block \mathfrak{B}_{σ} of \mathfrak{S} be given arbitrarily. First, applying Lemma 3 for Q_1 , \mathfrak{B}_{σ} and \mathfrak{S} , we have a collection $\mathfrak{B}^{(\sigma)}(Q_1)$ of blocks of $\mathfrak{S}^{(1)}=\mathfrak{N}(Q_1)$. Secondly, working similarly for Q_2 , $\mathfrak{B}^{(\sigma)}(Q_1)$, and $\mathfrak{S}^{(1)}$, we have a collection $\mathfrak{B}^{(\sigma)}(Q_1,Q_2)$ of blocks of $\mathfrak{S}^{(2)}=\mathfrak{N}(Q_1Q_2)$. Continuing this process, we have finally a collection $\mathfrak{B}^{(\sigma)}=\mathfrak{B}^{(\sigma)}(Q_1,Q_2,\cdots,Q_r)$ of blocks \mathfrak{B}_{ρ} of $\mathfrak{S}=\mathfrak{N}(R)$. If a block \mathfrak{B}_{ρ} of \mathfrak{S} belongs to the collection $\mathfrak{B}^{(\sigma)}$, we say that the block \mathfrak{B}_{σ} of \mathfrak{S} is determined by the block \mathfrak{B}_{ρ} of \mathfrak{S} . It follows immediately from Theorem 1 that $\mathfrak{B}^{(\sigma)}$ is independent of the order of Q_1,Q_2,\cdots,Q_r .

Let S(R) be the p-regular section of R in \mathfrak{G} ("Oberklasse") $^{6)}$, i. e. the set of all elements of \mathfrak{G} whose p-regular factors are conjugate to R in \mathfrak{G} . Let $\widetilde{K}_1,\widetilde{K}_2,\cdots,\widetilde{K}_{\widetilde{n}}$ be the classes of conjugate elements in \mathfrak{G} ; we may assume that the p-regular section $\widetilde{S}(1)$ of 1 in $\widetilde{\mathfrak{G}}$ is the union of the first v classes K_{α} . We may choose a complete system of representatives P_1,P_2,\cdots,P_v for the classes $K_1,\widetilde{K}_2,\cdots,\widetilde{K}_v$ in a given p-Sylow subgroup $\widetilde{\mathfrak{F}}$ of $\widetilde{\mathfrak{G}}$. As is easily seen, any two elements RP_{α} and RP_{β} with $\alpha \neq \beta$ can not belong to the same class K_v of \mathfrak{G} . Hence, arranging the classes K_v of \mathfrak{G} in a suitable order, we may assume that RP_{α} belongs to K_{α} , $\alpha=1,2,\cdots,v$; S(R) is the union of K_1,K_2,\cdots,K_v . Further we may assume that the maximal normal p-subgroup $\widetilde{\mathfrak{F}}_0$ of $\widetilde{\mathfrak{G}}$ is the union of $\widetilde{K}_1,\widetilde{K}_2,\cdots,\widetilde{K}_v$. Further we may assume that the maximal normal p-subgroup $\widetilde{\mathfrak{F}}_0$ of $\widetilde{\mathfrak{G}}$ is the union of $\widetilde{K}_1,K_2,\cdots,K_v$. Further we may assume that the maximal normal p-subgroup

⁶⁾ Cf. [11].

 K_1 , K_2 , \cdots , K_n and denote by $S_1(R)$ the union of K_{n+1} , K_{n+2} , \cdots , K_v ; $S(R) = S_0(R)$ $\bigcup S_1(R)$.

There are u distinct blocks $\widetilde{\mathfrak{B}}_1$, $\widetilde{\mathfrak{B}}_2$,, $\widehat{\mathfrak{B}}_n$ of $\widetilde{\mathfrak{G}}$ with regard to $\widetilde{\mathfrak{P}}$ ((5)), as is immediately seen from Lemma 1. For each block \mathfrak{B}_{σ} of \mathfrak{G} , let \mathcal{A}_{σ} be given by (1.1). Similarly, for each block $\widetilde{\mathfrak{B}}_{\rho}$ of $\widetilde{\mathfrak{G}}$, we may define an idempotent $\widetilde{\mathcal{A}}_{\rho}$ of the center \widetilde{Z} of the group ring of $\widetilde{\mathfrak{G}}$ over \mathcal{Q} . We set $\widetilde{\mathcal{A}}^{(\sigma)} = \sum_{\widehat{\mathfrak{D}}_{\rho} \subseteq \mathfrak{D}^{(\sigma)}} \widetilde{\mathcal{A}}_{\rho}$ and set

(3.2)
$$K_{\mu} \mathcal{L}_{\sigma} = \sum_{\nu=1}^{n} a_{\mu\nu}^{\sigma} K_{\nu} \qquad (\mu = 1, 2, \dots, n).$$

We then have the following:

THEOREM 1. For $\alpha = 1, 2, \dots, u$, we have

$$(3.3) K_{\alpha} \varDelta_{\sigma} = \sum_{\beta=1}^{n} a_{\alpha\beta}^{\sigma} K_{\beta}$$

and

(3.4)
$$\widetilde{K}_{\alpha}\widetilde{\mathcal{J}}^{(\sigma)} = \sum_{\beta=1}^{n} a_{\alpha\beta}^{\sigma} \widetilde{K}_{\beta}.$$

For $\alpha = u + 1$, u + 2,, v, we have

$$(3.3') K_{\alpha} \mathcal{L}_{\sigma} = \sum_{\beta=n+1}^{\nu} a_{\alpha\beta}^{\sigma} K_{\beta}$$

and

$$\widetilde{K}_{\alpha}\widetilde{\Delta}^{(\sigma)} = \sum_{\beta=\nu+1}^{\nu} a_{\alpha\beta}^{\sigma} \widetilde{K}_{\beta}.$$

PROOF. According to Lemma 2, we may set

$$(3.5) \tilde{K}_{\alpha} \tilde{J}^{(\sigma)} = \sum_{\beta} \tilde{a}_{\alpha\beta}^{(\sigma)} \tilde{K}_{\beta} (\alpha = 1, 2, \dots, v),$$

where β ranges over 1,2,..., u for $\alpha=1,2,...$, u and ranges over u+1,u+2,..., v for $\alpha=u+1,u+2,...$, v. Denote by $\Delta^{(\sigma)}(Q_1,Q_2,...,Q_f)$ the idempotent of the center of the group ring of $\mathfrak{G}^{(f)}$ over \mathcal{Q} which is associated with $\mathfrak{B}^{(\sigma)}(Q_1,Q_2,...,Q_f)$, f=1,2,..., r; $\widetilde{\Delta}^{(\sigma)}=\Delta^{(\sigma)}(Q_1,Q_2,...,Q_r)$. Since any two elements Q_rP_α and Q_rP_β with $\alpha\neq\beta$ can not belong to the same class of conjugate elements in $\mathfrak{G}^{(r-1)}$, if we denote by $K_\alpha^{(r-1)}$ the class of conjugate elements in $\mathfrak{G}^{(r-1)}$ which contains Q_rP_α , $\alpha=1,2,...$, v, then $K_1^{(r-1)}$, $K_2^{(r-1)}$,..., $K_v^{(r-1)}$ are v distinct classes of $\mathfrak{G}^{(r-1)}$. First, considering $\mathfrak{F}^{(\sigma)}$ and $\mathfrak{F}^{(\sigma)}(Q_1,Q_2,...,Q_{r-1})$ as collections of q_r -blocks of \mathfrak{F} and $\mathfrak{F}^{(r-1)}$, respectively, by Theorem 2 in (3) we have

$$K_{\alpha}^{(r-1)} \mathcal{A}^{(\sigma)}(Q_1, Q_2, \dots, Q_{r-1}) = \sum_{\beta} \tilde{a}_{\alpha\beta}^{(\sigma)} K_{\beta}^{(r-1)}$$

with the same proviso as (3.5). Secondly, denoting by $K_{\alpha}^{(r-2)}$ the classes of conjugate elements in $\mathfrak{G}^{(r-2)}$ which contains $Q_{r-1}Q_{r}P_{\alpha}$, $\alpha=1,2,\cdots,v$, we have

280 K. IIZUKA

$$K_{\alpha}^{(r-2)} \Delta^{(\sigma)}(Q_1, Q_2, \dots, Q_{r-2}) = \sum_{\beta} \widetilde{a}_{\alpha\beta}^{(\sigma)} K_{\beta}^{(r-2)}$$

with the same proviso as above. Continuing this process, we have finally (3.3) and (3.3') with $a_{\alpha\beta}^{\sigma} = \tilde{a}_{\alpha\beta}^{(\sigma)}$ ($\alpha, \beta = 1, 2, \dots, v$). This completes the proof.

4. In this section, we shall use the notations in the preceding sections. The elements P_1, P_2, \cdots, P_v need not form a complete system of representatives for the classes of conjugate elements in $\widetilde{\mathfrak{P}}$. However, we may construct such a system by adding further elements P to the set P_1, P_2, \cdots, P_v . Each P is conjugate to a certain P_α in $\widetilde{\mathfrak{G}}$, where α is uniquely determined, $\alpha=1,2,\cdots,v$. We denote by the elements P belonging to P_α by $P_\alpha=P_\alpha^{(a)}, P_\alpha^{(1)}, P_\alpha^{(2)}, \cdots, P_\alpha^{(l_\alpha)}, l_\alpha \geq 0$. Let $\widetilde{\lambda}_1, \widetilde{\lambda}_2, \cdots, \widetilde{\lambda}_{\widetilde{\kappa}}$ be the irreducible characters of $\widetilde{\mathfrak{G}}$ and $\widetilde{\theta}_1, \widetilde{\theta}_2, \cdots, \widetilde{\theta}_{\widetilde{\kappa}}$ be those of $\widetilde{\mathfrak{P}}$. We set

(4.1)
$$\widetilde{\chi}_{j}(P) = \sum_{\lambda=1}^{\widetilde{h}} \widetilde{r}_{j\lambda} \widetilde{\theta}_{\lambda}(P) \qquad (P \in \widetilde{\mathfrak{P}})$$

and, after M. OSIMA (6), (7), we define the constants $r_{i\lambda}^R$ by

(4.2)
$$\chi_{i}(RP) = \sum_{\lambda=1}^{\widetilde{h}} r_{i\lambda}^{R} \widetilde{\theta}_{\lambda}(P) \qquad (P \in \widehat{\mathfrak{P}}).$$

For $\alpha, \beta = 1, 2, \dots, v$, since we see from (3.1) that

$$a_{\alpha\beta}^{\sigma} = \frac{1}{n(RP_{\alpha})} \sum_{\chi_{i} \in \mathfrak{R}_{\sigma}} \chi_{i}(RP_{\alpha}) \bar{\chi}_{i}(RP_{\beta}) = \frac{1}{n(RP_{\alpha})} \sum_{\chi_{i} \in \mathfrak{B}_{\sigma}} \chi_{i}(RP_{\alpha}^{(\gamma)}) \bar{\chi}_{i}(RP_{\beta}^{(\delta)}),$$

 $a_{\alpha\beta}^{\sigma}$ is expressed as

(4.3)
$$a_{\alpha\beta}^{\sigma} = \frac{1}{n(RP_{\alpha})} \sum_{\lambda,\mu=1}^{h} \widetilde{\theta}_{\lambda}(P_{\alpha}^{(\gamma)}) \overline{\widetilde{\theta}}_{\mu}(P_{\beta}^{(\delta)}) \sum_{\chi_{i} \in \mathfrak{B}_{\sigma}} r_{i\lambda}^{R} \overline{r}_{i\mu}^{R}.$$

On the other hand, from Theorem 1 we see, for $\alpha, \beta = 1, 2, \dots, v$,

$$\begin{split} a_{\alpha\beta}^{\sigma} &= \frac{1}{n(RP_{\alpha})} \sum_{\widetilde{\chi}_{j} \in \widetilde{\mathfrak{B}}^{(\sigma)}} \widetilde{\chi}_{j}(P_{\alpha}) \overline{\widetilde{\chi}}_{j}(P_{\beta}) \\ &= \frac{1}{n(RP_{\alpha})} \sum_{\widetilde{\theta}_{\lambda}, \widetilde{\theta}_{\mu} \in \widetilde{\mathfrak{B}}^{(\sigma)}} \widetilde{\theta}_{\lambda}(P_{\alpha}^{(\gamma)}) \overline{\widetilde{\theta}}_{\mu}(P_{\beta}^{(\delta)}) \sum_{\widetilde{\chi}_{j} \in \widetilde{\mathfrak{B}}^{(\sigma)}} \widetilde{r}_{j\lambda} \widetilde{r}_{j\mu} \\ &= \frac{1}{n(RP_{\alpha})} \sum_{\widetilde{\theta}_{\lambda}, \widetilde{\theta}_{\mu} \in \widetilde{\mathfrak{B}}^{(\sigma)}} \widetilde{\theta}_{\lambda}(P_{\alpha}^{(\gamma)}) \overline{\widetilde{\theta}}_{\mu}(P_{\beta}^{(\delta)}) \sum_{j=1}^{n} \widetilde{r}_{j\lambda} \widetilde{r}_{j\mu}. \end{split}$$

Setting

$$\widetilde{w}_{\lambda\mu} = \sum_{j=1}^{\widetilde{n}} \widetilde{r}_{j\lambda} \widetilde{r}_{j\mu}$$
 $(\lambda, \mu=1, 2, \dots, \widetilde{h}),$

we have

$$(4.4) a_{\alpha\beta}^{\sigma} = \frac{1}{n(RP_{\alpha})} \sum_{\widetilde{\theta}_{\lambda}, \widetilde{\delta}_{\mu} \in \widetilde{\mathfrak{B}}^{(\sigma)}} \widetilde{\theta}_{\lambda}(P_{\alpha}^{(\gamma)}) \overline{\widetilde{\theta}}_{\mu}(P_{\beta}^{(\delta)}) \widetilde{w}_{\lambda\mu}.$$

Since (4.3) and (4.4) hold for any pair of γ and δ ($\gamma=0,1,2,\dots,l_{\alpha};\ \delta=0,1,2,\dots,l_{\beta}$), we have

$$\sum_{\chi_{i} \in \mathfrak{B}_{\sigma}} r_{i\lambda}^{R} r_{i\mu}^{R} = \begin{cases} \widetilde{w}_{\lambda\mu} & (\widetilde{\theta}_{\lambda}, \widetilde{\theta}_{\mu} \in \widetilde{\mathfrak{B}}_{\rho} \subseteq \widetilde{\mathfrak{B}}^{(\sigma)}), \\ 0 & (\text{elsewhere}). \end{cases}$$

In particular, we have

$$\sum_{\chi_i \in \mathfrak{B}_{\sigma}} r_{i\lambda}^R r_{i\lambda}^R = 0 \qquad \qquad (\widetilde{\theta}_{\lambda} \oplus \widetilde{\mathfrak{B}}^{(\sigma)}),$$

hence

$$r_{i\lambda}^{R} = 0$$
 $(\chi_{i} \in \mathfrak{B}_{\sigma}, \widetilde{\theta}_{\lambda} \notin \widetilde{\mathfrak{B}}^{(\sigma)}).$

Thus we obtain the following:

THEOREM 2. If an irreducible character $\widetilde{\theta}_{\lambda}$ of $\widetilde{\mathfrak{P}}$ belongs to a block $\widetilde{\mathfrak{B}}_{\rho}$ of $\widetilde{\mathfrak{G}}$, then $r_{i\lambda}^{R}$ can be different from zoro only for irreducible characters \mathcal{X}_{i} of \mathfrak{G} which belong to the block \mathfrak{B}_{σ} of $\widetilde{\mathfrak{G}}$ determined by the block $\widetilde{\mathfrak{B}}_{\rho}$ of $\widetilde{\mathfrak{G}}$.

It is easy to see that $a_{\mu\nu}^{\sigma} = 0$ implies

$$\sum_{\chi_i \in \mathfrak{B}_{\sigma}} \chi_i(G_{\mu}) \bar{\chi}_i(G_{\nu}) = 0$$

Hence, by Theorem 1, we have a refinement of some of the orthogonality relations for group characters. $^{7)}$

Theorem 3. 1) If two elements L and M of ${}^{\textcircled{S}}$ belong to different p-regular sections of ${}^{\textcircled{S}}$, then

$$\sum_{\chi_i \in \mathfrak{R}_{\sigma}} \chi_i(L) \bar{\chi}_i(M) = 0$$

for each block \mathfrak{B}_{σ} of $\mathfrak{G}^{(8)}$ ([10])

2) If L and M belong to the same p-regular section S(R) of \mathfrak{G} and if exactly one of the p-factors of them belongs to the maximal normal p-subgroup of $\mathfrak{N}(R)$, then (4.6) also holds for each block \mathfrak{B}_{σ} of \mathfrak{G} .

From (3.3) and (3.3'), we see the following:

LEMMA 4. If

$$(4.7) \qquad \sum_{\nu=1}^{n} a_{\nu} K_{\nu} \Delta_{\sigma} = 0,$$

where $a_{\nu} \in \Omega$, then

$$\sum_{K_{\nu} \subseteq S_{0}(R)} a_{\nu} K_{\nu} \Delta_{\sigma} = \sum_{K_{\nu} \subseteq S_{1}(R)} a_{\nu} K_{\nu} \Delta_{\sigma} = 0$$

for each p-regular section S(R) of \mathfrak{G} .

⁷⁾ Cf. [1]—[4], [9] and [10].

⁸⁾ We have a refinement of this, which is a dual result of Theorem 2 in [1].

We shall describe this lemma in terms of the irreducible characters χ_i of \mathfrak{G} . (4.7) implies

$$\sum_{\nu=1}^{n} a_{\nu} \omega_{i}(K_{\nu}) = \omega_{i} \left(\sum_{\nu=1}^{n} a_{\nu} K_{\nu} \Delta_{\sigma} \right) = 0$$
 $(\chi_{i} \in \mathfrak{B}_{\sigma}),$

where $\omega_i(K_{\nu}) = g \chi_i(G_{\nu})/n(G_{\nu}) \chi_i(1)$. Conversely, if

$$\sum_{\nu=1}^{n} a_{\nu} \omega_{i}(K_{\nu}) = 0$$

for all $\chi_i \in \mathfrak{B}_{\sigma}$, where the a_{ν} are numbers of \mathcal{Q} depending only on the classes K_{ν} of \mathfrak{G} , then

$$\omega_{j}\left(\sum_{\nu=1}^{n}a_{\nu}K_{\nu}\Delta_{\sigma}\right)=\sum_{\nu=1}^{n}a_{\nu}\omega_{j}(K_{\nu})\omega_{j}(\Delta_{\sigma})=0$$

for all irreducible characters χ_j of \mathfrak{G} . Hence (4.7) holds for these a_{ν} . Therefore Lemma 4 is equivalent to the following:

LEMMA 4'. If, for all χ_i of \mathfrak{B}_{σ} ,

$$\sum_{\nu=1}^{n} a_{\nu} \omega_{i}(K_{\nu}) = 0$$

where the a_{ν} are numbers of Ω depending only on the classes K_{ν} of ${}^{\textcircled{S}}$, then

$$\sum_{K_{\nu} \subseteq S_{0}(R)} a_{\nu}\omega_{i}(K_{\nu}) = \sum_{K_{\nu} \subseteq S_{1}(R)} a_{\nu}\omega_{i}(K_{\nu}) = 0$$

for these χ_i , where R is an arbitrary p-regular element of $^{\circ}$.

Evidently this lemma is equivalent to the following:

LEMMA 4". If, for all χ_i of \mathfrak{B}_{σ} ,

$$\sum_{\nu=1}^{n} a_{\nu} \chi_{i}(G_{\nu}) = 0$$

where the $a_{
u}$ are numbers of arOmega depending only on the classes $K_{
u}$ of igotimes , then

$$\sum_{K_{\nu} \subseteq S_0(R)} a_{\nu} \chi_i(G_{\nu}) = \sum_{K_{\nu} \subseteq S_1(R)} a_{\nu} \chi_i(G_{\nu}) = 0$$

for these χ_i , where R is an arbitrary p-regular element of \mathfrak{G} .

In consideration of Lemma 4", the orthogonality relations for group characters imply the following refinement of some of them.

THEOREM 4. If χ_i and χ_j are two irreducible characters of $^{\textcircled{S}}$ which belong to different blocks \mathfrak{B}_{σ} of $^{\textcircled{S}}$, then

$$\sum_{G \subseteq S_0(R)} \chi_i(G) \bar{\chi}_j(G) = \sum_{G \subseteq S_1(R)} \chi_i(G) \bar{\chi}_j(G) = 0$$

for each p-regular section S(R) of \mathfrak{G}^{9}

⁹⁾ This is an improvement of a result in [10]. Cf. the papers quoted in foot-note 7).

References

- [1] R. Brauer, On blocks of characters of groups of finite order II, Proc. Nat. Acad. Sci. U.S.A., 32 (1946), 215-219.
- [2] —, Zur Darstellungstheorie der Gruppen endlicher Ordnung II, Math. Zeitschr., 72 (1959), 25-46.
- [3] K. I_{IZUKA} , On Brauer's theorem on sections in the theory of blocks of group characters, Math. Zeitschr., forthcoming.
- [4] ———, On Osima's blocks of group characters, Proc. Japan Acad., 36 (1960), forthcoming.
- [5] M. Osima, On the representations of groups of finite order, Math. Journ. Okayama Univ., 1 (1952), 33-61.
- [6] ——, On the induced characters of a group, Proc. Japan Acad., 28 (1952), 243-248.
- [7] ———, On the induced characters of groups of finite order, Math. Journ. Okayama Univ., 3 (1953), 47-64.
- [8] —, Notes on blocks of group characters, ibid., 4 (1955), 175-188.
- [9] _____, On some properties of group characters, Proc. Japan Acad., 36 (1960), 18-21.
- [10] ———, On some properties of group characters II, forthcoming.
- [11] P. Roquette, Arithmetische Untersuchung des Charakterringes einer endlichen Gruppe, Crelles Journ., 190 (1952), 148-168.