A NOTE ON REPRESENTATIONS OF ALGEBRAS AS SUBALGEBRAS OF C(X) FOR X COMPACT

Yukio Kōmura and Isamu Nakahara

(Received May 15, 1962)

In a recent paper Frank W. Anderson and Robert L. Blair gave some characterizations of C(X) for X an arbitrary completely regular space 1.

In the paper, the theorem 4.1 states that if A is a regular algebra, the condition $\mathfrak{M}_A = \mathfrak{R}_A$ is sufficient that A is isomorphic to a regular point-determining subalgebra of C(X) for some topologically unique compact space X.

But the converse is left open. We shall give in this note an example answering the question negatively.

§ 1. Some preliminary notions and notations.

We adopt the same notions and notations as in [1], but recite here some of them.

Let A be a subset of C(X), A is regular in case (i) A contains the identity e of C(X) and (ii) whenever $x \in X$ and U is an open neighborhood of x, there is an $f \in A$ such that f(x) = 0 and f(y) = 1 for all $y \in U$.

If A is any ring, then an ideal I in A is said to be real in case A/I is isomorphic to R real.

We shall denote by \mathfrak{M}_{A} , $\hat{\mathfrak{R}}_{A}$ the set of all maximal ideals of A, and the set of all real maximal ideals of A respectively.

If X is a topological space and A is a subring of C(X) then we shall set $M_x = \{f \in A; f(x) = 0\}.$

We say that A is point-determining in case $M \in \mathfrak{M}_A$ if and only if $M = M_x$ for some unique $x \in X$.

§ 2. A counter example to the converse of the theorem 4.1.

We define a compact set X and algebras A_0 , A_1 , A as follows.

X: [0,1]

 A_{o} : the algebra of all functions $f \in C[0,1]$ such that for finite partition $0=a_0 < a_1 < \cdots < a_n = 1$, $f(x) = p_i(x)/q_i(x)$ for $x \in [a_i, a_{i+1}]$, where p_i and q_i are polynomials. (The partition depends on f, and $q_i(x) \neq 0$ for $x \in [a_i, a_{i+1}]$, $p_i(a_i)/q_i(a_i) = p_{i+1}(a_{i+1})/q_{i+1}(a_{i+1})$.)

^{(1)[1]} Frank W. Anderson and Robert L. Blair: Characterizations of the algebra of all real-valued continuous functions on a completely regular space. Illinois Jour. of Math. vol. 3 (1959) pp. 121-133.

 $A_{\scriptscriptstyle 1}$: the algebra generated by $A_{\scriptscriptstyle 0}$ and e^{z} .

A: the algebra of all functions f(x) of the form $g(x)/P(e^x)$, where g is an element of A_1 and $P(e^x)$ is a function of the form $\prod\limits_{k=1}^n (e^x-\alpha_k)$, $\alpha_k \in A_0$, $e^x-\alpha_k \neq 0$ on [0, 1].

Under these preparations we have following propositions.

(1) A_0 is a regular subset of C(X).

Proof. For any $X_1 \in X$ and any $\varepsilon > 0$, the function defined by

$$f(x) = \begin{cases} 1 & \text{for } |x - x_1| \ge \varepsilon \\ |x - x_1| / \varepsilon & \text{for } |x - x_1| \le \varepsilon, \end{cases}$$

is evidently contained in A_0 .

(2) A is a regular subset of C(X). This is evident from (1).

(3) Let I be a real ideal of A. Then $I_1 = A_1 \cap I$ and $I_0 = A_0 \cap I$ are real ideals.

Proof. $A_0/I_0 \subset A_1/I_1 \subset A/I$. On the other hand, $1 \in A_0$ and $\notin I$. Since A_0 is an algebra, $R\subset A_0/I_0$. Hence $R\subset A_0/I_0\subset A_1/I_1\subset A/I=R$, which implies that R= $A_0/I_0 = A_1/I_1$.

(4) For the above ideal I_0 , there exists a point $x_0 \in X$ such that $I_0 = \{f \in A; f(x_0) = 0\}$.

Proof. Let $g \in A_0$. Then g has no zero point in X if and only if $1/g \in A_0$. Hence if $g \in I_0$, then g has at least one zero point. If $g,h \in I_0$ such that g and h have no common zero point, then $g^2+h^2\!\in\! I_0$ which has no zero point. This is a contradiction. Since X is a compact set, the ideal $I_{\scriptscriptstyle 0}$ has a common zero point. Since $I_{\scriptscriptstyle 0}$ is a real ideal, the common zero point are at most one.

(5) The ideal I_1 contains $e^x - \alpha$ for some α , where $\log \alpha \in X$.

Proof. $a_nu^n+a_{n-1}u^{n-1}+\cdots+a_0+b\cdot Q(u)\in I_1$, where $u=e^x$, $a_i\in A_0$ and $a_i\not\in I_0$, $b\in I_0$, $Q(u) \in A_1$.

Since $I_1 \supseteq A_1 I_0$, we may assume $n \ge 1$.

 $a_n u^n + a_{n-1} u^{n-1} + \dots + a_0 + b \cdot Q(u) \equiv a_n(x_0) u^n + a_{n-1}(x_0) u^{n-1} + \dots + a_0(x_0) \pmod{A_1 I_0}. \text{ Hence } I_0 = a_0 u^n + a_{n-1} u^{n-1} + \dots + a_0 u^{n-1}$ $a_n(x_0)u^n+a_{n-1}(x_0)u^{n-1}+\cdots+a_0(x_0)\in I_1, \ a_n(x_0)\neq 0.$

If $F(X) = a_n(x_0)X^n + a_{n-1}(x_0)X^{n-1} + \dots + a_0(x_0)$ is irreducible, and if n > 1, then a root θ of F(X)=0, which is not real, is contained in A_1/I_1 . This is a contradiction. Hence n=1, that is, $a_1(x_0)u+a_0(x_0) \in I_1$. Since $a_1(x_0) \neq 0$, $I \in u+a_0(x_0)/a_1(x_0)=u-\alpha$, where $\alpha = -a_0(x_0)/a_1(x_0)$.

If $\log \alpha \oplus X$, then $u-\alpha$ is a unit of A, so $u-\alpha \oplus I$. Therefore $u-\alpha \in I$ implies $log \alpha \in X$.

(6) $\log \alpha = x_0$. That is, $I_1 = \{ f \in A_1; f(x_0) = 0 \}$.

Proof. Suppose $\log \alpha + x_0$, for example, $x_0 > \log \alpha$. Then there exists $g \in I_0$ such that $g \ge 0$, and $g(x) > \alpha$ for $x \le \log \alpha$. $I_1 \ni e^x - \alpha + g > 0$. Hence a unit $e^x - \alpha + g$ of $m{A}$ is contained in $m{I}$, which is a contradiction.

(7) The algebra A is point-determining.

Proof. For a real ideal I, $I_1 = I \cap A_1$ determines a point $x_0 \in X$, Hence $I = AI_1$ determines the point x_0 .

(8) The maximal ideal of A containing $e^{2x}+1$ is not real, that is $\mathfrak{M}_A = \mathfrak{R}_A$.

Therefore we have the conclusion:

If A is a regular algebra, $\mathfrak{M}_A=\mathfrak{R}_A$ is the sufficient but not the necessary condition that A is isomorphic to a regular point-determining subalgebra of C(X) for some topologically unique compact space X.

Quite similarly, the converse of the theorem 4.5 in [1] does not hold.

Department of Mathematics
Faculty of Science,
Kumamoto University