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NOTE ON MALCEV ALGEBRAS

Kiyosi YAMAGUTI

(Received Aug. ?;O, 1962)

A Malcev algebra is an anti-commutative algebra defined by the Malcev condition
() (zx) + (xy-2)x+ (¥z2- %) 2+ (2%-2)Yy=0. In an anti-commutative algebra A, the
Jacobi condition (xy)z+ (¥2)%+ (2x)y=0 says that a mapping ¥—ax is a derivation
in A. 1In this note we show that this situation holds for the Malcev condition with
a suitable modification. We next show that any Malcev algebra can be made into a
certain subspace of a Lie algebra satisfying some conditions. For this purpose it is
important to consider a trilinear composition-[x4y2] =x(y2) —vy(x2) + (xy)z with the

original composition xV. S -

1. Axioms of Malcev algebras. An anti:commutative algebra A over a field @
is a non-associative algebra satisfying

(1.1 =0 .. - for all xEA.
A Malcev algebra M or a Moufang-Lie algebra [2]° is an anti-commutative algebra
satisfying :

(1.2) : (o) (z2) + (xy-2)x+ (¥2- ) 2+ (2%- ) y=0 for all x,9,2€M.

Any Lie algebra is a Malcev algebra. Let C be a Cayley-Dickson algebra with a
multiplication %Y. An algebra derived from C with a new multiplication [%,y]=2xy—yx
is a Malcev algebra but not a Lie algebra.

Let M, be an anti-commutative algebra defined by the identity:

(1.3) [xy,2w] = [xyz]w +z[xyw],
where
1.4 [xyz] =x(yz) —y(x2) + (xp)z.

(1.3) shows that a linear mapping 2—>[x:¥:2] is a derivation in M,. Then we have
the following

THEOREM 1.1. In an anti-commutative algebra over a field @ of characteristic not 2
or 3, the Malcev condition (1.2) is equivalent to (1.3).

That a Malcev algebra over a field @ of characteristic different from 2 is an
algebra M, is proved by Sagle [3, Prop. 8.3]. Hence we prove the converse under

1) Numbers in brackets refer to the references at the end of the paper.
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the assumption that the characteristic of @ is not 2 or 3. In an anti-commutative

algebra, put

(1.5) gxyzw)=[xy2w] + [z,w,xy].
Clearlyg(x,x,y,z)=g(x,31,z,z)=0. Also, put

(1.6) J(xy.2)=(z+ (y2)x+ (22,
then J is a skew-symmetric fﬁnction of its arguments.

LEMMA 1.1. An algebra M, of characteristic not 2 is a Malcev algebra if and only if
the function £ 1S skew-symmetric with respect 1o its variables.

PROOF. Let M, be a Malcev algebra. . The identity g£(x,9,2,W) + J(x,y,2w) + J(xp,
zw)=0 and the result of Kleinfeld [1] imply that & is skew-symmetric with respect
to its arguments. Conversely, assume that £ is a skew-symmetric function in an
algebra M,. In an anti-commutative algebra it holds the identity: [x,y,2w] — [xyz]w
—z[xyw] = (xy) (zw) + x(z-wy) +w(x-y2) +yWw .2x) +2(y- xw) +g(xy,2,W) +g(y,w,x2).
Hence we have (xy)(zw) + x(z-wy) +w(x yz) +yw-2zx) +2z(y-xw)=0", which implies
(1.2) by putting W=X. q.e.d.

Next, by using the identity

a.n J(x,9,2) + [xyz] =2(xy)z

in an anti-commutative algebra and that z—[xyz] is a derivation in an algebra M,
we have J(x¥,2w)=2(xy) (zw) — [wyz]lw—z[xyw] in M,, hence by (1.7) we obtain

J(xy,2w) +2] (xy,2,0) = J(x,9,2)w+2z] (%y,W).
In this relation, if we interchange % with 2 and ¥ with W respectively, we have
J(zaw,z) +2] (2w, 5,3) = J (20,93 + %] (2.0,).
Adding these two relations and using that J is a skew-symmetric function, we have
ag(x.y,2w) + J(xy,2)w+2] (xyw) +J (zw,0)y + 2] (2wy) =0.
Since the characteristic of @ is not 3, we obtain g(x,9,9,2)=0 and £ is skew-sym-

metric with respect to its variables. Hence Theorem 1.1 is proved from Lemma 1.1.

2. Relation between Malcev algebras and Lie algebras. In this section we prove
the following

THEOREM 2.1. For a Malcev algebra M over a field @ of characteristic not 2, there
exists a Lie algebra % such that Q=M®P®D (a vector space direct sum) and [D,D]=D,
[MDIE=M and where the product Xy in M is an M-component of a product [%Y] in &,

2) We remark that this relation is equivalent to (1.2) by [3, Prop. 2.21].
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PROOF. We have the following identities in M.

2.1 ‘ [xxy] =0,

(2:2) [xyz] + [yzx] + [229] + () z+ () 2+ (z2) y=0,
and

@.3 [xy,z,w] + [yz,5,w] + [zx,9,w] =0.

In fact, put F(x,9,2)=(xy)(2x) + (xy-2)x+ (¥z-x)x+ (2x-x)y, then since the charac-
teristic of @ is not 2, F(x+w,9,2)+F(y+w,z,x)+F(z+w,xy)=0 implies (2.3).
Applying the derivation D(x,9): z—[xyz] for the ternary product [2ow] we have

@9 [y [zow]] = [[xyz]ow] + [z[xyv]w] + [20[xyw] ],
from this
(2.5) [D(xy), D(z,w)]=D([xyz],w) +D(z,[xyw]).

Let D(M) be a vector space over @ spanned by >1D(%.,¥:)’s, then D(M) is a Lie

algebra by (2.5). Let & be a vector space direct sum M®OD(M), then the element
of & is of the form %+ >D(¥;2:). A multiplication in & is defined as follows:

[+ ;DC%,Z?:) , U+ ED(U@WJ]
=xu+>i[y2zu] —S[vwx] + D(xu)
—+ ;DC lyizw],w,) + ;D@)i, [yzaw;]),

then from (1.1, (1.3), (2.1),,(24) £ is a Lie algebra such that [MD(M)]SM
and %y is an M-component of [x,¥] for xYEM [6]. Therefore the theorem is proved.

COROLLARY 2.1. That a Malcey algebra M reduces to a Lie algebra relative to the
original composition XY is equivalent to that M is a Lie triple system® relative to the ternary
composition [xyz] =x(yz) —y(xz) + (xy)z.

COROLLARY 2.2. If @ Malcev algebra M satisfies [MMM]=0, then M is a Lie
algebra.

REMARK. If M is finite-dimensional, then the Lie algebra L=MDOD(M) is
also finite-dimensional, since dim @<n(%+1)/2 where #n=dim M. Suppose that a
vector space 7 has a binary composition %Y and a ternary composition [%yz] satisfying
1.1, A.3), 2.1),-, (2.4), then T is called a gemeral Lie triple system [6]. Therefore
a Malcev algebra has a structure of general Lie triple system relative to the com-

3) A Lie triple system is a vector space with a trilinear composition '[xyz] satisfying
[xxy1=0, [xyz]+[yzx]+[2xy]=0 and [xy Czvw]]=[LxyzJow]+ Ll xyvTw]+[2v[xyw]]. See [5].
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positions %y and [xyz] =2(y2) —y(x2) + (xy)2.
’ 2 2 6]
Let & be a Lie algebra over R with a basis X1=5;, X,=%—--, Xo=%7%5
2 o be)
X4=y—a;, X5=—@—, X5=y3y— and let M and © be the subspaces of Q with bases
X, X, X,, X, and X;, X; respectively. Then ¥ is the vector space direct sum MDD
and [D, DD, [M, DI&M. For X, X,, X, X, define

Xin: [Xi, X.i] My
[XinXk] = [[Xm XJ] Y Xk] ,

where [X, X;]1»r and [X;, X;]s denote the M-component of [X;, X;] and the D-com-
ponent of [X,, X;] respectively. Then, M is a general Lie triple system relative to
XY and [XYZ] but not a Malcev algebra relative to XY, in fact for X=X, +X,
Y=X,Z=X, (XY)(ZX)+ XY DX+ Y Z- X)X+ (ZX-X)Y =—2X70. ‘

PROPOSITION 2.1. In a general Lie triple system T with compositions %y and [%2],
the Malcev condition (1.2) is equivalent to the following condition:

[x, 3, 2x] + [, 2%, 2] + [2%, %, ¥] + [xyz]x+ [yzx] 2+ [229] x=0.

PROOF. From (2.2) we have the identity: (xy) (z2) + (xy-2) %+ (yz- %) x+ (2% %)Y
+[x, 9, 2x] + [, 2%, x] + [2%, %, y] + [wyz] x+ [yzx] 2+ [zxy]x=0, which proves the prop-
osition.

Let N be a subalgebra of a Malcev algebra M and let DV, N) be a Lie algebra
generated by >:D(%;, 9.)’s, %;, ¥:€N. From Theorem 2.1 the vector space direct sum

NO®D(N, N) becomes a Lie algebra. A subalgebra U of a Lie algebra ® is called
to be subinvariant in & if there exists a finite sequence of subalgebras &=, A,y
A, =9 such that U; is an ideal in A, 1=1,2,-, 7 [4]. Let N be an ideal of a
Malcev algebra M, then the next proposition shows that the Lie algebra NED(N, N)
is subinvariant in the Lie algebra M®D(M, M).

PROPOSITION 2.2. Let N be an ideal of a Malcev algebra M. Then, the Lie algebra
N®D(N, N) is an ideal of the Lie dgebra NOD(N, M) and NOD(N, M) is an ideal
of the Lie algebra MOD(M, M).

Department of Mathematics,
Faculty of Science,
Kumamoto University




13
£2]
3]
[4]
051

[6]

Note on.Malcev Algebras 207

References

E. Kleinfeld, A note on Mowfang-Lie rings, Proc. Amer. Math. Soc., 9 (1958), 72-74.

A. 1. Malcev, Analytic loops, Mat. Sb. (N.S.), 36 (78) (1955), 569-576 (Russian).

A. A. Sagle, Malcev algebras, Trans. Amer. Math. Soc., 101 (1961), 426-458.

E. Schenkman, A theory of subinvariant Lie algebras, Amer. J. Math., 73 (1951), 453-474.

K. Yamaguti, On algebras of totally geodesic spaces (Lie triple systems), J. Sci. Hiroshima Univ.,
Ser. A, 21 (1957-1958), 107-113.

,» On the Lie triple system and its generalization, J. Sci. Hiroshima Univ., Ser. A, 21

(1957-1958), 155-160.




